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Abstract

We present and study a novel algorithm for the computation of 2-Wasserstein population
barycenters of absolutely continuous probability measures on Euclidean space. The pro-
posed method can be seen as a stochastic gradient descent procedure in the 2-Wasserstein
space, as well as a manifestation of a law of large numbers therein. The algorithm aims
to find a Karcher mean or critical point in this setting, and can be implemented ‘online’,
sequentially using independent and identically distributed random measures sampled
from the population law. We provide natural sufficient conditions for this algorithm
to almost surely converge in the Wasserstein space towards the population barycen-
ter, and we introduce a novel, general condition which ensures uniqueness of Karcher
means and, moreover, allows us to obtain explicit, parametric convergence rates for the
expected optimality gap. We also study the mini-batch version of this algorithm, and
discuss examples of families of population laws to which our method and results can
be applied. This work expands and deepens ideas and results introduced in an early ver-
sion of Backhoff-Veraguas et al. (2022), in which a statistical application (and numerical
implementation) of this method is developed in the context of Bayesian learning.

Keywords: Wasserstein distance; Wasserstein barycenter; Fréchet mean; Karcher mean;
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1. Introduction

Let P(X ) denote the space of Borel probability measures over a Polish space X . Given
μ, υ ∈P(X ), denote by �(μ, υ) := {γ ∈P(X ×X ) : γ (dx,X ) = μ(dx), γ (X , dy) = υ(dy)}
the set of couplings (transport plans) with marginals μ and υ. For a fixed, compatible, complete
metric d, and given a real number p ≥ 1, we define the p-Wasserstein space by Wp(X ) :={
η ∈P(X ) :

∫
X d(x0, x)p η(dx) < ∞, for some x0

}
. Accordingly, the p-Wasserstein distance
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16 J. BACKHOFF ET AL.

between measures μ, υ ∈Wp(X ) is given by

Wp(μ, υ) =
(

inf
γ∈�(μ,υ)

∫
X×X

d(x, y)p γ (dx, dy)

)1/p

. (1)

When p = 2, X =R
q, d is the Euclidean distance, and μ is absolutely continuous, which is

the setting we will soon adopt for the remainder of the paper, Brenier’s theorem [50, Theorem
2.12(ii)] establishes the uniqueness of a minimizer for the right-hand side of (1). Furthermore,
this optimizer is supported on the graph of the gradient of a convex function. See [6, 51] for
further general background on optimal transport.

We recall now the definition of the Wasserstein population barycenter.

Definition 1. Given � ∈P(P(X )), write Vp(m̄) := ∫
P(X ) Wp(m, m̄)p �(dm). Any measure

m̂ ∈Wp(X ) that is a minimizer of the problem infm̄∈P(X ) Vp(m̄) is called a p-Wasserstein
population barycenter of �.

Wasserstein barycenters were first introduced and analyzed in [1], in the case when the sup-
port of � ∈P(P(X )) is finite and X =R

q. More generally, [12, 38] considered the so-called
population barycenter, i.e. the general case in Definition 1 where � may have infinite support.
These works addressed, among others, the basic questions of the existence and uniqueness
of solutions. See also [35] for the Riemannian case. The concept of the Wasserstein barycen-
ter has been extensively studied from both theoretical and practical perspectives over the last
decade: we refer the reader to the overview in [43] for statistical applications, and to [17, 26,
27, 44] for computational aspects of optimal transport and applications in machine learning.

In this article we develop a stochastic gradient descent (SGD) algorithm for the computation
of 2-Wasserstein population barycenters. The method inherits features of the SGD rationale, in
particular:

• It exhibits a reduced computational cost compared to methods based on the direct for-
mulation of the barycenter problem using all the available data, as SGD only considers
a limited number of samples of � ∈P(P(X )) per iteration.

• It is online (or continual, as referred to in the machine learning community), meaning
that it can incorporate additional datapoints sequentially to update the barycenter esti-
mate whenever new observations becomes available. This is relevant even when � is
finitely supported.

• Conditions ensuring convergence towards the Wasserstein barycenter as well as finite-
dimensional convergence rates for the algorithm can be provided. Moreover, the variance
of the gradient estimators can be reduced by using mini-batches.

From now on we make the following assumption.

Assumption 1. X =R
q, d is the squared Euclidean metric, and p = 2.

We denote by W2,ac(X ) the subspace of W2(X ) of absolutely continuous measures with
finite second moment and, for any μ ∈W2,ac(X ) and ν ∈W2(X ) we write Tν

μ for the
(μ-almost sure, unique) gradient of a convex function such that Tν

μ(μ) = ν. Notice that
x �→ Tν

μ(x) is a μ-almost sure (a.s.) defined map and that we use throughout the notation Tν
μ(ρ)

for the image measure/law of this map under the measure ρ.
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Stochastic gradient descent for barycenters in Wasserstein space 17

Recall that a set B ⊂W2,ac(X ) is geodesically convex if, for every μ, ν ∈ B and t ∈ [0, 1]
we have ((1 − t)I + tTν

μ)(μ) ∈ B, with I denoting the identity operator. We will also assume the
following condition for most of the article.

Assumption 2. � gives full measure to a geodesically convex W2-compact set K� ⊂
W2,ac(X ).

In particular, under Assumption 2 we have
∫
P(X )

∫
X d(x, x0)2 m(dx) �(dm) < ∞ for all

x0. Moreover, for each ν ∈W2(X ) and �(dm) for almost every (a.e.) m, there is a unique
optimal transport map Tν

m from m to ν and, by [38, Proposition 6], the 2-Wasserstein population
barycenter is unique.

Definition 2. Let μ0 ∈ K�, mk
i.i.d.∼ �, and γk > 0 for k ≥ 0. We define the stochastic gradient

descent (SGD) sequence by

μk+1 := [
(1 − γk)I + γkTmk

μk

]
(μk) for k ≥ 0. (2)

The reasons why we can truthfully refer to the above sequence as stochastic gradient descent
will become apparent in Sections 2 and 3. We stress that the sequence is a.s. well defined, as
we can show by induction that μk ∈W2,ac(X ) a.s. thanks to Assumption 2. We also refer to
Section 3 for remarks on the measurability of the random maps {Tmk

μk }k and sequence {μk}k.
Throughout the article, we assume the following conditions on the steps γk in (2), commonly

required for the convergence of SGD methods:
∞∑

k=1

γ 2
k < ∞, (3)

∞∑
k=1

γk = ∞. (4)

In addition to barycenters, we will need the concept of Karcher means (cf. [55]), which,
in the setting of the optimization problem in W2,ac(X ) considered here, can be intuitively
understood as an analogue of a critical point of a smooth function in Euclidean space (see the
discussion in Section 2).

Definition 3. Given � ∈P(P(X )), we say that μ ∈W2,ac(X ) is a Karcher mean of � if
μ
({

x : x = ∫
m∈P(X ) Tm

μ (x) �(dm)
})= 1.

It is known that any 2-Wasserstein barycenter is a Karcher mean, though the latter is in
general a strictly larger class; see [4] or Example 1. However, if there is a unique Karcher
mean, then it must coincide with the unique barycenter. We can now state the main result of
the article.

Theorem 1. We assume Assumptions 1 and 2, conditions (3) and (4), and that the 2-
Wasserstein barycenter μ̂ of � is the unique Karcher mean. Then, the SGD sequence {μk}k

in (2) is a.s. W2-convergent to μ̂ ∈ K�.

An interesting aspect of Theorem 1 is that it hints at a law of large numbers (LLN) on
the 2-Wasserstein space. Indeed, in the conventional LLN, for i.i.d. samples Xi the summation
Sk := (1/k)

∑
i≤k Xi can be expressed as

Sk+1 = 1

k + 1
Xk+1 +

(
1 − 1

k + 1

)
Sk.
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18 J. BACKHOFF ET AL.

Therefore, if we rather think of sample Xk as a measure mk and of Sk as μk, we immediately
see the connection with

μk+1 :=
[

1

k + 1
Tmk

μk
+
(

1 − 1

k + 1

)
I

]
(μk),

obtained from (2) when we take γk = 1/(k + 1). The convergence in Theorem 1 can thus be
interpreted as an analogy to the convergence of Sk to the mean of X1 (we thank Stefan Schrott
for this observation).

In order to state our second main result, Theorem 2, we first introduce a new concept.

Definition 4. Given � ∈P(P(X )) we say that a Karcher mean μ ∈W2,ac(X ) of � is pseudo-
associative if there exists Cμ > 0 such that, for all ν ∈W2,ac(X ),

W2
2 (μ, ν) ≤ Cμ

∫
X

∣∣∣∣
∫
P(X )

(Tm
ν (x) − x)) �(dm)

∣∣∣∣
2

ν(dx). (5)

Since the term on the right-hand side of (5) vanishes for any Karcher mean ν, the existence
of a pseudo-associative Karcher mean implies μ = ν, hence uniqueness of Karcher means. We
will see that, moreover, the existence of a pseudo-associative Karcher mean implies a Polyak–
Lojasiewicz inequality for the functional minimized by the barycenter, see (20). This in turn
can be utilized to obtain convergence rates for the expected optimality gap in a similar way
to the Euclidean case. While the pseudo-associativity condition is a strong requirement, in the
following result we are able to weaken Assumption 2 into the following milder assumption.

Assumption 2′. � gives full measure to a geodesically convex set K� ⊂W2,ac(X ) that is W2-
bounded (i.e. supm∈K�

∫ |x|2 m(dx) < ∞).

Clearly this condition is equivalent to requiring that the support of � be W2-bounded and
consist of absolutely continuous measures.

We now present our second main result.

Theorem 2. We assume Assumptions 1 and 2′, and that the 2-Wasserstein barycenter μ̂ of
� is a pseudo-associative Karcher mean. Then, μ̂ is the unique barycenter of �, and the
SGD sequence {μk}k in (2) is a.s. weakly convergent to μ̂ ∈ K� as soon as (3) and (4) hold.
Moreover, for every a > C−1

μ̂
and b ≥ a there exists an explicit constant Ca,b > 0 such that, if

γk = a/(b + k) for all k ∈N, the expected optimality gap satisfies

E[F(μk) − F(μ̂)] ≤ Ca,b

b + k
.

Let us explain the reason for the terminology ‘pseudo-associative’ we have chosen. This
comes from the fact that the inequality in Definition 4 holds true (with equality and Cμ = 1)
as soon as the associativity property Tm

μ (x) = Tm
ν ◦ Tν

μ(x) holds μ(dx)-a.s. for each pair ν, m ∈
W2,ac(X ); see Remark 2. The previous identity was assumed to hold for the results proved
in [12], and is always valid in R, since the composition of monotone functions is monotone.
Further examples where the associativity property holds are discussed in Section 6. Thus, in
all those settings, (5) and Theorem 2 hold as soon as Assumption 2′ is granted, and, further,
we have the explicit LLN-like expression μk+1 = (

(1/k)
∑k

i=1 Tmi
μ0

)
(μ0). As regards the more

general pseudo-associativity property, we will see that it holds, for instance, in the Gaussian
framework studied in [19], and in certain classes of scatter-location families, which we discuss
in Section 6.
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The remainder of the paper is organized as follows:

• In Section 2 we recall basic ideas and results on gradient descent algorithms for
Wasserstein barycenters.

• In Section 3 we prove Theorem 1, providing the technical elements required to that end.

• In Section 4 we discuss the notion of pseudo-associative Karcher means and their
relation to the so-calledPolyak–Lojasiewicz and variance inequalities, and we prove
Theorem 2.

• In Section 5 we introduce the mini-batch version of our algorithm, discuss how this
improves the variance of gradient-type estimators, and state extensions of our previous
results to that setting.

• In Section 6 we consider closed-form examples and explain how in these cases the exis-
tence of pseudo-associative Karcher means required in Theorem 2 can be guaranteed.
We also explore certain properties of probability distributions that are ‘stable’ under the
operation of taking their barycenters.

In the remainder of this introduction we provide independent discussions on various aspects
of our results (some of them suggested by the referees) and on related literature.

1.1. On the assumptions

Although Assumption 2 might appear strong at first sight, it can be guaranteed in suit-
able parametric situations (e.g. Gaussian, or the scatter-location setting recalled in Section
6.4) or, more generally, under moment and density constraints on the measures in K�. For
instance, if � is supported on a finite set of measures with finite Boltzmann entropy, then
Assumption 2 is guaranteed. More generally, if the support of � is a 2-Wasserstein compact set
and the Boltzmann entropy is uniformly bounded on it, then Assumption 2 is fulfilled too: see
Lemma 3.

The conditions of Assumption 2 and the uniqueness of a Karcher mean in Theorem 1 are
natural substitutes for, respectively, the compactness of SGD sequences and the uniqueness of
critical points, which hold under ther usual sets of assumptions ensuring the convergence of
SGD in Euclidean space to a minimizer, e.g. some growth control and certain strict convexity-
type conditions at a minimum. The usual reasoning underlying the convergence analysis of
SGD in Euclidean spaces, however, seem not to be applicable in our context, as the functional
W2,ac(X ) 
 μ �→ F(μ) := ∫

W2(m, m̄)2 �(dm) is not convex, in fact not even α-convex for
some α ∈R, when W2,ac(X ) is endowed with its almost Riemannian structure induced by
optimal transport (see [6, Chapter 7.2]). The function F is also not α-convex for some α ∈R

when we use generalized geodesics (see [6, Chapter 9.2]). In fact, SGD in finite-dimensional
Riemannian manifolds could provide a more suitable framework to draw inspiration from; see,
e.g., [13]. Ideas useful in that setting seem not straightforward to leverage since that work
either assumes negative curvature (while W2,ac(X ) is positively curved), or that the functional
to be minimized be rather smooth and have bounded derivatives of first and second order.

The assumption that K� is contained in a subset of W2(X ) of absolutely continuous prob-
ability measures, and hence the existence of optimal transport maps between elements of K�,
appears as a more structural requirement, as it is needed to construct the iterations in (2).
Indeed, by dealing with an extended notion of Karcher mean, it is in principle also possible to
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define an analogous iterative scheme in a general setting, including in particular the case of dis-
crete laws, and thus to relax to some extent the absolute continuity requirement. However, this
introduces additional technicalities, and we unfortunately were not able to provide conditions
ensuring the convergence of the method in reasonably general situations. For completeness of
the discussion, we sketch the main ideas of this possible extension in the Appendix.

1.2. Uniqueness of Karcher means

Regarding situations where uniqueness of Karcher means can be granted, we refer to [43,
55] for sufficient conditions when the support of � is finite, based on the regularity theory of
optimal transport, and to [12] for the case of an infinite support, under rather strong assump-
tions. We remark also that in one dimension, the uniqueness of Karcher means is known to hold
without further assumptions. A first counterexample where this uniqueness is not guaranteed
is given in [4]; see also the simplified Example 1. A general understanding of the uniqueness
of Karcher means remains an open and interesting challenge, however. This is not only rele-
vant for the present work, but also for the (non-stochastic) gradient descent method of [55] and
the fixed-point iterations of [4]. The notion of pseudo-associativity introduced in Definition 4
provides an alternative viewpoint on this question, complementary to the aforementioned ones,
which might deserve being further explored.

1.3. Gradient descents in Wasserstein space

Gradient descent (GD) in Wasserstein space was introduced as a method to compute
barycenters in [4, 55]. The SGD method we develop here was introduced in an early version
of [9] (arXiv:1805.10833) as a way to compute Bayesian estimators based on 2-Wasserstein
barycenters. In view of the independent, theoretical interest of this SGD method, we decided
to separately present this algorithm here, along with a deeper analysis and more complete
results on it, and devote [9] exclusively to its statistical application and implementation. More
recently, [19] obtained convergence rates for the expected optimality gap for these GD and
SGD methods in the case of Gaussian families of distributions with uniformly bounded, uni-
formly positive-definite covariance matrices. This relied on proving a Polyak–Lojasiewicz
inequality, and also derived quantitative convergence bounds in W2 for the SGD sequence,
relying on a variance inequality, which was shown to hold under general, though strong, con-
ditions on the dual potential of the barycenter problem (verified under the assumptions in that
paper). We refer to [16] for more on the variance inequality.

The Riemannian-like structure of the Wasserstein space and its associated gradient have
been utilized in various other ways with statistical or machine learning motivations in recent
years; see, e.g., [21] for particle-like approximations, [34] for a sequential first-order method,
and [18, 39] for information geometry perspectives.

1.4. Computational aspects

Implementing our SGD algorithm requires, in general, computing or approximating opti-
mal transport maps between two given absolutely continuous distributions (some exceptions
where explicit closed-form maps are available are given in Section 6). During the last two
decades, considerable progress has been made on the numerical resolution of the latter prob-
lem through partial differential equation methods [7, 10, 14, 40] and, more recently, through
entropic regularization approaches [25, 27, 29, 41, 44, 49] crucially relying on the Sinkhorn
algorithm [47, 48], which significantly speeds up the approximate resolution of the problem.
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It is also possible to approximate optimal transport maps via estimators built from samples
(based on the Sinkhorn algorithm, plug-in estimators, or using stochastic approximations) [11,
28, 33, 42, 45]. We also refer to [37] for an overview and comparison of sample-free methods
for continuous distributions, for instance based on neural networks (NNs).

1.5. Applications

The proposed method to compute Wasserstein barycenters is well suited to situations where
a population law � on infinitely many probability measures is considered. The Bayesian setting
addressed in [9] provides a good example of such a situation, i.e. where we need to compute
the Wasserstein barycenter of a prior/posterior distribution � on models that has a possibly
infinite support.

Further instances of population laws � with infinite support arise in the context of Bayesian
deep learning [54], in which an NN’s weights are sampled from a given law (e.g. Gaussian,
uniform, or Laplace); in the case that these NNs parametrize probability distributions, the
collection of resulting probability laws is distributed according to a law � with possibly infi-
nite support. Another example is variational autoencoders [36], which model the parameters
of a law by a simple random variable (usually Gaussian) that is then passed to a decoder
NN. In both cases, the support of � is infinite naturally. Furthermore, sampling from � is
straightforward in these cases, which eases the implementation of the SGD algorithm.

1.6. Possible extensions

It is in principle possible to define and study SGD methods similar to (2) for the minimiza-
tion on the space of measures of other functionals than the barycentric objective function, or
with respect to other geometries than the 2-Wasserstein one. For instance, [17] introduces the
notion of barycenters of probability measures based on weak optimal transport [8, 31, 32]
and extends the ideas and algorithm developed here to that setting. A further, natural, exam-
ple of functionals to consider are the entropy-regularized barycenters dealt with for numerical
purposes in some of the aforementioned works and most recently in [20, 22].

In a different vein, it would be interesting to study conditions ensuring the convergence
of the algorithm in (2) to stationary points (Karcher means) when the latter is a class that
strictly contains the minimum (barycenter). Under suitable conditions, such convergence can
be expected to hold by analogy with the behavior of the Euclidean SGD algorithm in general
(not necessarily convex) settings [15]. In fact, we believe this question can also be linked to
the pseudo-associativity of Karcher means. A deeper study is left for future work.

2. Gradient descent in Wasserstein space: A review

We first survey the gradient descent method for the computation of 2-Wasserstein barycen-
ters. This method will serve as motivation for the subsequent development of the SGD in
Section 3. For simplicity, we take � to be finitely supported. Concretely, we suppose in this
section that � =∑

i≤L λiδmi , with L ∈N, λi ≥ 0, and
∑

i≤L λi = 1. We define the operator over
absolutely continuous measures

G(m) :=
(

L∑
i=1

λiT
mi
m

)
(m). (6)

Notice that the fixed points of G are precisely the Karcher means of � presented in the intro-
duction. Thanks to [4] the operator G is continuous for the W2 distance. Also, if at least one of
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the L measures mi has a bounded density, then the unique Wasserstein barycenter m̂ of � has a
bounded density as well and satisfies G(m̂) = m̂. This suggests defining, starting from μ0, the
sequence

μn+1 := G(μn) for n ≥ 0. (7)

The next result was proven in [4, Theorem 3.6] and independently in [55, Theorem 3,
Corollary 2]:

Proposition 1. The sequence {μn}n≥0 in (7) is tight, and every weakly convergent subsequence
of {μn}n≥0 converges in W2 to an absolutely continuous measure in W2(Rq) that is also a
Karcher mean. If some mi has a bounded density, and if there exists a unique Karcher mean,
then m̂ is the Wasserstein barycenter of � and W2(μn, m̂) → 0.

For the reader’s convenience, we present next a counterexample to the uniqueness of
Karcher means.

Example 1. In R
2 we take μ1 as the uniform measure on B((−1, M), ε) ∪ B((1, −M), ε)

and μ2 the uniform measure on B((−1, −M), ε) ∪ B((1, M), ε), with ε a small radius and
M � ε. Then, if � = 1

2 (δμ1 + δμ2 ), the uniform measure on B((−1, 0), ε) ∪ B((1, 0), ε) and
the uniform measure on B((0, M), ε) ∪ B((0, −M), ε) are two distinct Karcher means.

Thanks to the Riemann-like geometry of W2,ac(Rq) we can reinterpret the iterations in (7)
as a gradient descent step. This was discovered in [43, 55]. In fact, [55, Theorem 1] shows that
the functional

F(m) := 1

2

L∑
i=1

λiW
2
2 (mi, m) (8)

defined on W2(Rq) has a Fréchet derivative at each point m ∈W2,ac(Rq) given by

F′(m) = −
L∑

i=1

λi(T
mi
m − I) = I −

L∑
i=1

λiT
mi
m ∈ L2(m), (9)

where I is the identity map in R
q. More precisely, for such m, when W2(m̂, m) goes to zero,

F(m̂) − F(m) − ∫
Rq〈F′(m)(x), Tm̂

m (x) − x〉 m(dx)

W2(m̂, m)
−→ 0

thanks to [6, Corollary 10.2.7]. It follows from Brenier’s theorem [50, Theorem 2.12(ii)] that
m̂ is a fixed point of G defined in (6) if and only if F′(m̂) = 0. The gradient descent sequence
with step γ starting from μ0 ∈W2,ac(Rq) is then defined by (cf. [55])

μn+1 := Gγ (μn) for n ≥ 0, (10)

where

Gγ (m) := [I + γ F′(m)](m) =
[

(1 − γ )I + γ

L∑
i=1

λiT
mi
m

]
(m) =

[
I + γ

L∑
i=1

λi(T
mi
m − I)

]
(m).

Note that, by (9), the iterations in (10) truly correspond to a gradient descent in W2(Rq) for the
function in (8). We remark also that, if γ = 1, the sequence in (10) coincides with that in (7),
i.e. G1 = G. These ideas serve as inspiration for the stochastic gradient descent iteration in the
next part.

https://doi.org/10.1017/jpr.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.39


Stochastic gradient descent for barycenters in Wasserstein space 23

3. Stochastic gradient descent for barycenters in Wasserstein space

The method presented in Section 2 is well suited to calculating the empirical barycenter. For
the estimation of a population barycenter (i.e. when � does not have finite support) we would
need to construct a convergent sequence of empirical barycenters, which can be computation-
ally expensive. Furthermore, if a new sample from � arrives, the previous method would need
to recalculate the barycenter from scratch. To address these challenges, we follow the ideas of
stochastic algorithms [46], widely adopted in machine learning [15], and define a stochastic
version of the gradient descent sequence for the barycenter of �.

Recall that for μ0 ∈ K� (in particular, μ0 absolutely continuous), mk
i.i.d.∼ � defined in

some probability space (
,F , P), and γk > 0 for k ≥ 0, we constructed the SGD sequence as
μk+1 := [

(1 − γk)I + γkTmk
μk

]
(μk) for k ≥ 0. The key ingredients for the convergence analysis

of the above SGD iterations are the functions

F(μ) := 1

2

∫
P(X )

W2
2 (μ, m) �(dm), F′(μ)(x) := −

∫
P(X )

(Tm
μ − I)) �(dm)(x),

the natural analogues to the eponymous objects in (8) and (9). In this setting, we can formally
(or rigorously, under additional assumptions) check that F′ is the actual Frechet derivative of F,
and this justifies naming {μk}k a SGD sequence. In the following, the notation F and F′ always
refers to the functions just defined. Observe that the population barycenter μ̂ is the unique
minimizer of F. The following lemma justifies that F′ is well defined and that ‖F′(μ̂)‖L2(μ̂) = 0,
and in particular that μ̂ is a Karcher mean. This is a generalization of the corresponding result
in [4] where only the case |supp(�)| < ∞ is covered.

Lemma 1. Let �̃ be a probability measure concentrated on W2,ac(Rq). There exists
a jointly measurable function W2,ac(Rq) ×W2(Rq) ×R

q 
 (μ, m, x) �→ Tm
μ (x) that is

μ(dx) �(dm) �̃(dμ)-a.s. equal to the unique optimal transport map from μ to m at x.
Furthermore, letting μ̂ be a barycenter of �, x = ∫

Tm
μ̂

(x) �(dm), μ̂(dx)-a.s.

Proof. The existence of a jointly measurable version of the unique optimal maps is proved
in [30]. Let us prove the last assertion. Letting Tm

μ̂
=: Tm, we have, by Brenier’s theorem [50,

Theorem 2.12(ii)],∫
W2(μ̂, m)2�(dm) =

∫ ∫
|x − Tm(x)|2 μ̂(dx) �(dm)

=
∫ ∫ ∣∣∣∣x −

∫
Tm̄(x) �(dm̄) +

∫
Tm̄(x) �(dm̄) − Tm(x)

∣∣∣∣
2

μ̂(dx) �(dm)

=
∫ ∣∣∣∣x −

∫
Tm̄(x) �(dm̄)

∣∣∣∣
2

μ̂(dx)

+
∫ ∫ ∣∣∣∣

∫
Tm̄(x) �(dm̄) − Tm(x)

∣∣∣∣
2

μ̂(dx) �(dm),

where we used the fact that

2
∫ ∫ 〈

x −
∫

Tm̄(x) �(dm̄),
∫

Tm̄(x) �(dm̄) − Tm(x)

〉
�(dm) μ̂(dx) = 0.
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The term in the last line is an upper bound for

∫
W2

(( ∫
Tm̄ �(dm̄)

)
(μ), m

)2

�(dm) ≥
∫

W2(μ̂, m)2 �(dm).

We conclude that
∫ ∣∣x − ∫

Tm̄(x) �(dm̄)
∣∣2 μ̂(dx), as required. �

Notice that Lemma 1 ensures that the SGD sequence {μk}k is well defined as a sequence of
(measurable) W2-valued random variables. More precisely, denoting by F0 the trivial sigma-
algebra and Fk+1, k ≥ 0, the sigma-algebra generated by m0, . . . , mk, we can inductively apply
the first part of Lemma 1 with �̃ = Law(μk) to check that Tmk

μk (x) is measurable with respect
to Fk+1 ⊗B(Rq), where B stands for the Borel sigma-field. This implies that both μk and
‖F′(μk)‖2

L2(μk)
are measurable with respect to Fk.

The next proposition suggests that, in expectation, the sequence {F(μk)}k is essentially
decreasing. This is a first insight into the behavior of the sequence {μk}k.

Proposition 2. The SGD sequence in (2) satisfies, almost surely,

E[F(μk+1) − F(μk) |Fk] ≤ γ 2
k F(μk) − γk‖F′(μk)‖2

L2(μk). (11)

Proof. Let ν ∈ supp(�). Clearly,
([

(1 − γk)I + γkTmk
μk

]
, Tν

μk

)
(μk) is a feasible (not neces-

sarily optimal) coupling with first and second marginals μk+1 and ν respectively. Writing
Om := Tm

μk
− I, we have

W2
2 (μk+1, ν) ≤ ∥∥(1 − γk)I + γkTmk

μk
− Tν

μk

∥∥2
L2(μk)

= ‖−Oν + γkOmk‖2
L2(μk) = ‖Oν‖2

L2(μk) − 2γk〈Oν, Omk 〉L2(μk) + γ 2
k ‖Omk‖2

L2(μk).

Evaluating μk+1 on the functional F, thanks to the previous inequality we have

F(μk+1) = 1

2

∫
W2

2 (μk+1, ν) �(dν)

≤ 1

2

∫
‖Oν‖2

L2(μk) �(dν) − γk

〈 ∫
Oν �(dν), Omk

〉
L2(μk)

+ γ 2
k

2
‖Omk‖2

L2(μk)

= F(μk) + γk〈F′(μk), Omk 〉L2(μk) + γ 2
k

2
‖Omk‖2

L2(μk).

Taking conditional expectation with respect to Fk, and as mk is independently sampled from
this sigma-algebra, we conclude that

E[F(μk+1) |Fk] ≤ F(μk) + γk

〈
F′(μk),

∫
Om �(dm)

〉
L2(μk)

+ γ 2
k

2

∫
‖|Om‖2

L2(μk) �(dm)

= (1 + γ 2
k )F(μk) − γk‖F′(μk)‖2

L2(μk).
�

The next lemma states some key continuity properties of the functions F and F′. For this
result, Assumption 2 can be dropped and it is only required that

∫ ∫ ‖x‖2 m(dx) �(dm) < ∞.
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Lemma 2. Let (ρn)n ⊂W2,ac(Rq) be a sequence converging with respect to W2 to ρ ∈
W2,ac(Rq). Then, as n → ∞,

(i) F(ρn) → F(ρ);

(ii) ‖F′(ρn)‖L2(ρn) → ‖F′(ρ)‖L2(ρ).

Proof. We prove both convergence claims using Skorokhod’s representation theorem.
Thanks to that result, in a given probability space (
, G, P) we can simultaneously construct
a sequence of random vectors (Xn)n of laws (ρn)n and a random variable X of law ρ such that
(Xn)n converges P-a.s. to X. Moreover, by [23, Theorem 3.4], the sequence (Tm

ρn
(Xn))n con-

verges P-a.s. to Tm
ρ (X). Notice that, for all n ∈N, Tm

ρn
(Xn) distributes according to the law m,

and the same holds true for Tm
ρ (X).

We now enlarge the probability space (
, G, P) (maintaining the same notation for sim-
plicity) with an independent random variable m in W2(Rd) with law � (thus independent of
(Xn)n and X). Applying Lemma 1 with �̃ = δρn for each n, or with �̃ = δρ , we can show that(
Xn, Tm

ρn
(Xn)

)
and

(
X, Tm

ρ (X)
)

are random variables in (
, G, P). By conditioning on {m = m},
we further obtain that

(
Xn, Tm

ρn
(Xn)

)
n∈N converges P-a.s. to

(
X, Tm

ρ (X)
)
.

Notice that supn E
(‖Xn‖21‖Xn‖2≥M

)= supn

∫
‖x‖2≥M ‖x‖2 ρn(dx) → 0 as M → ∞ since

(ρn)n converges in W2(X ), while, upon conditioning on m,

sup
n

E
(∥∥Tm

ρn
(Xn)

∥∥21‖Tm
ρn (Xn)‖2≥M

)=
∫
W2(X )

( ∫
‖y‖2≥M

‖y‖2 m(dy)

)
�(dm) → 0

by dominated convergence, since
∫
‖x‖2≥M ‖x‖2 m(dx) ≤ ∫ ‖x‖2 m(dx) = W2

2 (m, δ0) and � ∈
W2(W2(X )). By Vitalli’s convergence theorem, we deduce that (Xn, Tm

ρn
(Xn))n∈N converges

to (X, Tm
ρ (X)) in L2(
, G, P). In particular, as n → ∞,

∫
P(X )

W2
2 (ρn, m) �(dm) =E

∣∣Xn − Tm
ρn

(Xn)
∣∣2 →E

∣∣X − Tm
ρ (Xn)

∣∣2 =
∫
P(X )

W2
2 (ρ, m) �(dm),

which proves the convergence in (i). Now denoting by G∞ the sigma-field generated by
(X1, X2, . . . ), we also obtain that

E
(
Xn − Tm

ρn
(Xn) | G∞

)→E
(
X − Tm

ρ (X) | G∞
)

in L2(
, G, P). (12)

Observe now that the following identities hold:

F′(ρn)(Xn) =E
(
Xn − Tm

ρn
(Xn) | Xn

)=E
(
Xn − Tm

ρn
(Xn) | G∞

)
F′(ρ)(X) =E

(
X − Tm

ρ (X) | X
)=E

(
X − Tm

ρ (X) | G∞
)
.

The convergence in (ii) follows from (12), E(F′(ρn)(Xn))2 = ‖F′(ρn)‖L2(ρn), and
E(F′(ρ)(X))2 = ‖F′(ρ)‖L2(ρ).

We now proceed to prove the first of our two main results.

Proof of Theorem 1. Let us denote by μ̂ the unique barycenter, write F̂ := F(μ̂), and
introduce ht := F(μt) − F̂ ≥ 0 and αt := ∏t−1

i=1 1/(1 + γ 2
i ). Thanks to the condition in (3),
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the sequence (αt) converges to some finite α∞ > 0, as can be verified simply by applying
logarithms. By Proposition 2,

E[ht+1 − (1 + γ 2
t )ht |Ft] ≤ γ 2

t F̂ − γt‖F′(μt)‖2
L2(μt)

≤ γ 2
t F̂,

from which, after multiplying by αt+1, the following bound is derived:

E[αt+1ht+1 − αtht |Ft] ≤ αt+1γ
2
t F̂ − αt+1γt‖F′(μt)‖2

L2(μt)
≤ αt+1γ

2
t F̂. (13)

Now defining ĥt := αtht −∑t
i=1 αiγ

2
i−1F̂, we deduce from (13) that E[ĥt+1 − ĥt |Ft] ≤ 0,

namely that (ĥt)t≥0 is a supermartingale with respect to (Ft). The fact that (αt) is con-
vergent, together with the condition in (3), ensures that

∑∞
i=1 αiγ

2
i−1F̂ < ∞, and thus ĥt is

uniformly lower-bounded by a constant. Therefore, the supermartingale convergence theo-
rem [53, Corollary 11.7] implies the existence of ĥ∞ ∈ L1 such that ĥt → ĥ∞ a.s. But then,
necessarily, ht → h∞ a.s. for some non-negative random variable h∞ ∈ L1.

Thus, our goal now is to prove that h∞ = 0 a.s. Taking expectations in (13) and summing
over t to obtain a telescopic summation, we obtain

E[αt+1ht+1] −E[h0α0] ≤ F̂
t∑

s=1

αs+1γ
2
s −

t∑
s=1

αs+1γsE
[‖F′(μs)‖2

L2(μs)

]
.

Then, taking liminf, applying Fatou on the left-hand side and monotone convergence on the
right-hand side, we obtain

−∞ <E[α∞h∞] −E[h0α0] ≤ C −E

[ ∞∑
s=1

αs+1γs‖F′(μs)‖2
L2(μs)

]
.

In particular, since (αt) is bounded away from 0, we have

∞∑
t=1

γt‖F′(μt)‖2
L2(μt)

< ∞ a.s. (14)

Note that P( lim inft→∞ ‖F′(μt)‖2
L2(μt)

> 0) > 0 would be at odds with the conditions in (14)
and (4), so

lim inft→∞ ‖F′(μt)‖2
L2(μt)

= 0 a.s. (15)

Observe also that, from Assumption 2 and Lemma 2, we have

for all ε > 0, inf{ρ:F(ρ)≥F̂+ε}∩K�
‖F′(ρ)‖2

L2(ρ)
> 0. (16)

Indeed, we can see that the set {ρ : F(ρ) ≥ F̂ + ε} ∩ K� is W2-compact, using Lemma 2(i), and
then check that the function ρ �→ ‖F′(ρ)‖2

L2(ρ)
attains its minimum on it, using part (ii) of that

result. That minimum cannot be zero, as otherwise we would have obtained a Karcher mean
that is not equal to the barycenter (contradicting the uniqueness of the Karcher mean). Note
also that, a.s., μt ∈ K� for each t, by the geodesic convexity part of Assumption 2. We deduce
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the following a.s. relationships between events:

{h∞ ≥ 2ε} ⊂ {μt ∈ {ρ : F(ρ) ≥ F̂ + ε} ∩ K� for all t large enough}
⊂
⋃
�∈N

{‖F′(μt)‖2
L2(μt)

> 1/� : for all t large enough
}

⊂
{

lim inf
t→∞ ‖F′(μt)‖2

L2(μt)
> 0

}
,

where (16) was used to obtain the second inclusion. It follows using (15) that P(h∞ ≥ 2ε) = 0
for every ε > 0, and hence h∞ = 0 as required.

To conclude, we use the fact that the sequence {μt}t is a.s. contained in the W2-compact
K� by Assumption 2, and the first convergence in Lemma 2 to deduce that the limit μ̃ of any
convergent subsequence satisfies F(μ̃) − F̂ = h∞ = 0, and then F(μ̃) = F̂. Hencem μ̃ = μ̂ by
the uniqueness of the barycenter. This implies that μt → μ̂ in W2(X ) a.s. as t → ∞. �

Remark 1. Observe that, for a fixed μ ∈W2,ac(X ) and a random m ∼ �, the random variable
−(Tm

μ − I)(x) is an unbiased estimator of F′(μ)(x) for μ(dx) almost eveywhere, x ∈R
q. A natu-

ral way to jointly quantify the pointwise variances of these estimators is through the integrated
variance,

V[ − (Tm
μ − I)] :=

∫
Varm∼�[Tm

μ (x) − x] μ(dx),

which is the equivalent (for unbiased estimators) of the mean integrated square error from non-
parametric statistics [52]. Simple computations yield the following expresion for it, which will
be useful in the next two sections:

V[ − (Tm
μ − I)] =E

[‖−(Tm
μ − I)‖2

L2(μ)

]− ‖E[ − (Tm
μ − I)]‖2

L2(μ)

= 2F(μ) − ‖F′(μ)‖2
L2(μ). (17)

We close this section with the promised statement of Lemma 3, referred to in the
introduction, giving us a sufficient condition for Assumption 2.

Lemma 3. If the support of � is W2(Rd)-compact and there is a constant C1 < ∞ such that
�({m ∈W2,ac(Rd) :

∫
log (dm/dx) m(dx) ≤ C1}) = 1, then Assumption 2 is fulfilled.

Proof. Let K be the support of �, which is W2(Rd)-compact. By the de la Vallée
Poussin criterion, there is a V : R+ →R+, increasing, convex, and super-quadratic
(i.e. limr→+∞ V(r)/r2 = +∞), such that C2 := supm∈K

∫
V(‖x‖) m(dx) < ∞. Observe that

p(dx) := exp{−V(‖x‖)} dx is a finite measure (without loss of generality a probabil-
ity measure). Moreover, for the relative entropy with respect to p we have H(m |
p) := ∫

log (dm/dp) dm = ∫
log (dm/dx) m(dx) + ∫

V(‖x‖) m(dx) if m � dx and +∞ oth-
erwise. Now define K� := {m ∈W2,ac(Rd) : H(m | p) ≤ C1 + C2,

∫
V(‖x‖) m(dx) ≤ C2} so

that �(K�) = 1. Clearly, K� is W2-closed, since the relative entropy is weakly lower-
semicontinuous, and also W2-relatively compact, since V is super-quadratic. Finally, K� is
geodesically convex by [50, Theorem 5.15]. �

For instance, if all m in the support of � is of the form

m(dx) = e−Vm(x)∫
y e−Vm (y) dy

dx
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with Vm bounded from below, then one way to guarantee the conditions in Lemma 3,
assuming without loss of generality that Vm ≥ 0, is to ask that

∫
y e−Vm (y) dy ≥ A and∫

y |y|2+εe−Vm (y) dy ≤ B for some fixed ε, A, B > 0. In words: tails are controlled and the
measures cannot be too concentrated.

4. A condition granting uniqueness of Karcher means and convergence rates

The aim of this section is to prove Theorem 2, a refinement of Theorem 1 under the addi-
tional assumption that the barycenter is a pseudo-associative Karcher mean. Notice that, with
the notation introduced in Section 3, Definition 4 of pseudo-associative Karcher mean μ simply
reads as

W2
2 (μ, ν) ≤ Cμ‖F′(ν)‖2

L2(ν) (18)

for all ν ∈W2,ac(X ).

Remark 2. Suppose μ is a Karcher mean of � such that, for all ν ∈W2,ac(X ) and �(dm) for
almost every m,

Tm
μ (x) = Tm

ν ◦ Tν
μ(x), μ(dx) a.e. x ∈R

q. (19)

Then, μ is pseudo-associative, with Cμ = 1 and equality holding in Definition 4. Indeed, in
that case we have

‖F′(ν)‖2
L2(ν) =

∫
X

∣∣∣∣
∫
P(X )

(Tm
ν ◦ Tν

μ(x) − Tν
μ(x)) �(dm)

∣∣∣∣
2

μ(dx)

=
∫
X

∣∣∣∣
∫
P(X )

Tm
μ (x) �(dm) − Tν

μ(x)

∣∣∣∣
2

μ(dx)

=
∫
X

|x − Tν
μ(x)|2 μ(dx) = W2

2 (μ, ν).

We will thus say that the Karcher mean μ is associative simply if (19) holds.

The following is an analogue in Wasserstein space of a classical property implying
convergence rates in gradient-type optimization algorithms.

Definition 5. We say that μ ∈W2,ac(X ) satisfies a Polyak–Lojasiewicz inequality if

F(ν) − F(μ) ≤ C̄μ

2
‖F′(ν)‖2

L2(ν) (20)

for some C̄μ > 0 and every ν ∈W2,ac(X ).

We next state some useful properties.

Lemma 4. Suppose μ is a Karcher mean of �. Then:

(i) For all ν ∈W2,ac(X ), F(ν) − F(μ) ≤ 1
2 W2

2 (μ, ν).

(ii) If μ is pseudo-associative, then it is the unique barycenter, and it satisfies the Polyak–
Lojasiewicz inequality (20) with C̄μ = Cμ.

(iii) If the associativity relation in (19) holds, F(ν) − F(μ) = 1
2 W2

2 (μ, ν) = 1
2‖F′(ν)‖2

L2(ν)
.
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Proof. For (i), we notice that this is a particular case of [19, Theorem 7], which we can prove
by an elementary argument based on the notion of Karcher mean. Indeed, by the definition of
the function F and the fact that (Tν

μ, Tm
μ )(μ) is a coupling of ν and m,

F(ν) − F(μ) ≤ 1

2

∫
P(X )

∫
X

{|Tν
μ(x) − Tm

μ (x)|2 − |x − Tm
μ (x)|2} μ(dx) �(dm)

= 1

2

∫
P(X )

∫
X

{|Tν
μ(x)|2 − 2〈Tm

μ (x), Tν
μ(x)〉 − x2 + 2〈x, Tm

μ (x)〉} μ(dx) �(dm)

= 1

2

∫
X

|Tν
μ(x) − x|2 μ(dx),

where in the second equality we twice used the fact that
∫
P⇒(X ) Tm

μ (x)�(dm) = x for μ(dx)
a.e. x.

For (ii), the claim is obvious in view of the previous argument and (18).
For (iii), taking into account Remark 2, it is enough to notice that

F(ν) =
∫
P(X )

∫
X

|y − Tm
ν (y)|2 ν(dy) �(dm) =

∫
P(X )

∫
X

|Tν
μ(x) − Tm

μ (x)|2 μ(dx) �(dm)

under (19), in which case the inequality in the proof of (i) is an equality. �

Remark 3. Recall that � is said to satisfy a variance inequality [2] if, for some constant
C > 0, F(ν) − F(μ̂) ≥ 1

2 CW2
2 (μ̂, ν), with μ̂ the barycenter of �. It readily follows that μ̂ is a

pseudo-associative Karcher mean as soon as a variance inequality and the Polyak–Lojasiewicz
inequality 20 hold. That was the case in [19], and so the barycenter in the Gaussian setting
considered therein is a pseudo-associative Karcher mean too. Notice that if the barycenter is
associative, by Lemma 4(iii) the variance inequality holds; this is the case for the examples
discussed in Sections 6.1–6.3. Notice also that, if a variance inequality holds, bounds on the
optimality gap for the SDG sequence as in Theorem 2 immediately yield similar bounds for
the expected squared Wasserstein distance E[W2

2 (μk, μ̂)].

Proof of Theorem 2. If we assume the pseudo-associtativity condition (5) holds, the unique-
ness of Karcher means (hence equal to the barycenter) is immediate, as noted in Section 1.
Under that assumption, the inequality (20) holds thanks to Lemma 4(ii), and convergence esti-
mates can then be deduced by adapting classic arguments of the SGD algorithm in an Euclidean
setting; see, e.g., [15]. Indeed, by Proposition 2, (17), and (20),

E[F(μk+1) − F(μk) |Fk] ≤ γ 2
k F(μk) − γk‖F′(μk)‖2

L2(μk)

= γ 2
k

2
V
[−(Tm

μk
− I

)]−
(

1 − γk

2

)
γk‖F′(μk)‖2

L2(μk)

≤ γ 2
k F̄ −

(
1 − γk

2

)
2γk

Cμ

(F(μk) − F̂)

≤ γ 2
k F̄ − γkC−1

μ (F(μk) − F̂)

for some finite (deterministic) upper bound F̄ > 0 of the sequence (F(μt))t≥1 under
Assumption 2′. In the last line we used the fact that γk ≤ γ0 ≤ 1 for the choice γk = a/(b + k)
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with fixed b ≥ a > 0. It follows that

E[F(μk+1) − F̂] ≤ γ 2
k F̄ + (

1 − γkC−1
μ

)
E[F(μk) − F̂] for all k ∈N. (21)

Assume now that a > Cμ̂ and that, for certain c ≥ a2F̄/(C−1
μ̂

a − 1) > 0 and a given k ∈N,

E[F(μk) − F̂] ≤ c

b + k
. (22)

Let us show that E[F(μk+1) − F̂] ≤ c/(b + k + 1) too. By (21),

E[F(μk+1) − F̂] ≤ c
(b + k − 1)

(b + k)2
+ c

(
1 − aC−1

μ

)+ a2F̄

(b + k)2
≤ c

(b + k − 1)

(b + k)2
≤ c

b + k + 1
,

where we used the choice of c in the second inequality. Taking

c = max
{
bE[F(μ0) − F̂], a2F̄/

(
C−1

μ̂
a − 1

)}
,

the inequality in (22) holds for k = 0, and hence for all k ∈N by induction.
Concerning the a.s. weak convergence of μk to μ̂, we can follow the proof of Theorem 1 up

to (15), and then derive in the present setting (16), i.e.

for all ε > 0, inf{ρ:F(ρ)≥F̂+ε}∩K�
‖F′(ρ)‖2

L2(ρ)
> 0,

from the Polyak–Lojasiewicz inequality (20), which holds thanks to Lemma 4(ii). As before,
this is then used to obtain that F(μk) → F̂ almost surely. Since K� is W2-bounded, it is in
particular tight. The fact that ν �→ F(ν) is weakly lower semicontinuous and the uniqueness of
minimizers of F now entail that, almost surely, μk → μ̂ weakly. �

Remark 4. In addition to concluding that, almost surely, μk → μ̂ weakly, the above proof also
establishes the a.s. existence of a subsequence nk such that μnk → μ̂ in W2. Indeed, this follows
from (15) together with (18).

The above proof shows that we may relax the definition of pseudo-associativity by requiring
(5) to hold for ν ∈ K� (or more precisely, for ν ∈ {μk : k ∈N}) only.

5. Variance reduction via batch SGD

Paralleling the Euclidean setting, the function −(Tmk
μk − I

)
can be seen as an estimator of

the gradient in the kth step of the SGD scheme. Hence, conditionally on m0, . . . , mk−1, its
integrated variance given by 2F(μk) − ‖F′(μk)‖2

L2(μk)
could be large for some sampled μk,

which would yield a slow convergence if the steps γk are not small enough. To cope with this
issue, as customary in stochastic algorithms, we are led to consider alternative estimators of
F′(μ) with less (integrated) variance.

Definition 6. Let μ0 ∈ K�, mi
k

i.i.d.∼ �, and γk > 0 for k ≥ 0 and i = 1, . . . , Sk. The batch
stochastic gradient descent (BSGD) sequence is given by

μk+1 :=
[

(1 − γk)I + γk
1

Sk

Sk∑
i=1

T
mi

k
μk

]
(μk). (23)
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Notice that (1/Sk)
∑Sk

i=1 T
mi

k
μk − I is an unbiased estimator of −F′(μk). Proceeding as in

Proposition 2, with Fk+1 now denoting the sigma-algebra generated by {mi
� : � ≤ k, i ≤ Sk},

and writing � also for the law of an i.i.d. sample of size Sk, we now have

E[F(μk+1) |Fk] = F(μk) + γk

〈
F′(μk),

∫ (
1

Sk

Sk∑
i=1

T
mi

k
μk − I

)
�(dm1

k · · · dmSk
k )

〉
L2(μk)

+ γ 2
k

2

∫ ∥∥∥∥∥ 1

Sk

Sk∑
i=1

T
mi

k
μk − I

∥∥∥∥∥
2

L2(μk)

�(dm1
k · · · dmSk

k )

= F(μk) − γk‖F′(μk)‖2
L2(μk) + γ 2

k

2

∫ ∥∥∥∥∥ 1

Sk

Sk∑
i=1

T
mi

k
μk − I

∥∥∥∥∥
2

L2(μk)

�(dm1
k · · · dmSk

k )

≤ F(μk) − γk‖F′(μk)‖2
L2(μk) + γ 2

k

2

1

Sk

Sk∑
i=1

∫ ∥∥T
mi

k
μk − I

∥∥2
L2(μk) �(dmi

k)

= (1 + γ 2
k )F(μk) − γk‖F′(μk)‖2

L2(μk).

The arguments in the proof of Theorem 1 can then be easily adapted to get the following
result.

Theorem 3. Under the assumptions of Theorem 1, the BSGD sequence {μt}t≥0 in (23)
converges almost surely to the 2-Wasserstein barycenter of �.

The supporting idea for using mini-batches is reducing the noise of the estimator of F′(μ).

Proposition 3. The integrated variance of the mini-batch estimator of fixed batch size S
for F′(μ), given by −(1/S)

∑S
i=1

(
Tmi

μ − I
)
, decreases linearly in the sample size. More

precisely,

V

[
−1

S

S∑
i=1

(
Tmi

μ − I
)]= 1

S
V
[−(Tm1

μ − I
)]= 1

S

[
2F(μ) − ‖F′(μ)‖2

L2(μ)

]
.

Proof. In a similar way to (17), the integrated variance of the mini-batch estimator is

V

[
−1

S

S∑
i=1

(
Tmi

μ − I
)]=E

[∥∥∥∥∥−1

S

S∑
i=1

(
Tmi

μ − I
)∥∥∥∥∥

2

L2(μ)

]
−
∥∥∥∥∥E
[
−1

S

S∑
i=1

(
Tmi

μ − I
)]∥∥∥∥∥

2

L2(μ)

=E

[∥∥∥∥∥−1

S

S∑
i=1

(
Tmi

μ − I
)∥∥∥∥∥

2

L2(μ)

]
− ‖F′(μ)‖2

L2(μ).
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The first term can be expanded as∥∥∥∥∥−1

S

S∑
i=1

(
Tmi

μ − I
)∥∥∥∥∥

2

L2(μ)

= 1

S2

〈
S∑

i=1

(
Tmi

μ − I
)
,

S∑
j=1

(
T

mj
μ − I

)〉
L2(μ)

= 1

S2

S∑
i=1

S∑
j=1

〈
Tmi

μ − I, T
mj
μ − I

〉
L2(μ)

= 1

S2

S∑
i=1

∥∥−(Tmi
μ − I

)∥∥2
L2(μ) + 1

S2

S∑
j �=i

〈
Tmi

μ − I, T
mj
μ − I

〉
L2(μ).

By taking expectation, as the samples mi ∼ � are independent, we get

E

[∥∥∥∥∥−1

S

S∑
i=1

(
Tmi

μ − I
)∥∥∥∥∥

2

L2(μ)

]
= 1

S2

S∑
i=1

E[W2
2 (μ, mi)] + 1

S2

S∑
j �=i

〈
E
[
Tmi

μ − I
]
,E
[
T

mj
μ − I

]〉
L2(μ)

= 2

S2

S∑
i=1

F(μ) + 1

S2

S∑
j �=i

〈F′(μ), F′(μ)〉L2(μ)

= 2

S
F(μ) + S − 1

S
‖F′(μ)‖2

L2(μ).

Subtracting ‖F′(μ)‖2
L2(μ)

yields the asserted identities. �

The mini-batch implementation is easily seen to inherit the convergence estimates estab-
lished in Theorem 2.

Theorem 4. Under the assumptions of Theorem 2, the BSGD sequence {μk}k in (23) is almost
surely convergent to μ̂ ∈ K� as soon as (3) and (4) hold. Moreover, for every a > C−1

μ̂
and

b ≥ a there exists an explicit constant Ca,b > 0 such that, if γk = a/(b + k) for all k ∈N, the
expected optimallity gap satisfies

E[F(μk) − F(μ̂)] ≤ Ca,b

b + k
.

6. SGD for closed-form Wasserstein barycenters

As discussed in the introduction, recent developments have enabled the approximate com-
putation of optimal transport maps between two given absolutely continuous distributions, and
hence the practical implementation of the SGD in fairly general cases is feasible in principle.
We will not address this issue in the present work, but rather content ourselves with analyz-
ing some families of models considered in [5, 24] for which this additional algorithmic aspect
can be avoided, their optimal transport maps being explicit and easy to evaluate. Further, we
will examine some of their closure properties that are preserved under the operation of taking
barycenter. This is important, for instance, in the context of the statistical application in [9],
wherein � really represents a posterior distribution on models and its barycenter is postulated
as a useful representative of the posterior distribution on models. It is thus desirable that the
representative model share some of the properties of all the models charged by the posterior.
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In the settings that will be presented, the pseudo-associativity condition (5) is either satisfied
or conditions ensuring it can be given explicitly. Convergence bounds as in Theorem 2 can be
easily deduced in those cases for each specification of � satisfying the required assumptions.

6.1. Univariate distributions

We assume that m is a continuous distribution over R, and denote respectively by Fm and
Qm := F−1

m its cumulative distribution function and its right-continuous quantile function. The
increasing transport map from a continuous m0 to m, also known as the monotone rearrange-
ment, is given by Tm

m0
(x) = Qm(Fm0 (x)), and is known to be p-Wasserstein optimal for p ≥ 1 (see

[50, Remark 2.19(iv)]). Given �, the barycenter m̂ is also independent of p and characterized
via its quantile, i.e.

Qm̂(·) =
∫

Qm(·) �(dm). (24)

In words: the quantile function of the barycenter is equal to the average quantile function. Our
SGD iteration, starting from a distribution function Fμ(x), sampling some m ∼ �, and with
step γ , produces the measure ν = ((1 − γ )I + γ Tm

μ )(μ). This is characterized by its quantile
function, Qν(·) = (1 − γ )Qμ(·) + γ Qm(·). The BSGD iteration is

Qν(·) = (1 − γ )Qμ(·) + γ

S

S∑
i=1

Qmi (·).

As explained in Remark 2, the barycenter is automatically pseudo-associative, since trans-
port maps (i.e. increasing functions) are in this case associative in the sense discussed therein,
and hence Theorem 2 applies. Moreover, by Remark 3, it entails convergence bounds in W2

2
for the SGD sequence itself.

Interestingly, the model average m̄ := ∫
m �(dm) is characterized by the averaged cumu-

lative distribution function, i.e. Fm̄(·) = ∫
Fm(·) �(dm). The model average does not preserve

intrinsic shape properties from the distributions such as symmetry or unimodality. For exam-
ple, if � = 0.3 × δm1 + 0.7 × δm2 with m1 =N (1, 1) and m2 =N (3, 1), the model average is
an asymmetric bimodal distribution with modes on 1 and 3, while the Wasserstein barycenter
is the Gaussian distribution m̂ =N (2.4, 1).

The following reasoning illustrates the fact that Wasserstein barycenters preserve geometric
properties in a way that, e.g., the model average does not. A continuous distribution m on
R is unimodal with a mode on x̃m if its quantile function Q(y) is concave for y < ỹm and
convex for y > ỹm, where Q(ỹm) = x̃m. Likewise, m is symmetric with respect to xm ∈R if
Q
( 1

2 + y
)= 2xm − Q

( 1
2 − y

)
for y ∈ [0, 1

2

]
note that

(
xm = Qm

( 1
2

))
. These properties can be

analogously described in terms of the function Fm. Let us show that the barycenter preserves
unimodality/symmetry.

Proposition 4. If � is concentrated on continuous symmetric (resp. symmetric unimodal)
univariate distributions, then the barycenter m̂ is symmetric (resp. symmetric unimodal).

Proof. Using the quantile function characterization in (24) we have, for y ∈ [0, 1
2

]
,

Qm̂

(
1

2
+ y

)
=
∫

Qm

(
1

2
+ y

)
�(dm) = 2xm̂ − Qm̂

(
1

2
− y

)
,

where xm̂ := ∫
xm �(dm). In other words, m̂ is symmetric with respect to xm̂. Now, if each

m is unimodal in addition to symmetric, its mode x̃m coincides with its median Qm
( 1

2

)
, and
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Qm(λy + (1 − λ)z) ≥ (resp. ≤ ) λQm(y) + (1 − λ)Qm(z) for all y, z < (resp. >) 1
2 and λ ∈ [0, 1].

Integrating these inequalities with respect to �(dm) and using (24), we deduce that m̂ is
unimodal (with mode 1

2 ) too. �

Unimodality is not preserved in general non-symmetric cases. Still, for some families of
distributions unimodality is maintained after taking barycenter, as we show in the next result.

Proposition 5. If � ∈Wp(Wac(R)) is concentrated on log-concave univariate distributions,
then the barycenter m̂ is unimodal.

Proof. If f (x) is a log-concave density, then − log (f (x)) is convex and so is e− log (f (x)) =
1/f (x). Some computation reveals that f (x) dx is unimodal for some x̃ ∈R, so its quantile Q(y)
is concave for y < ỹ and convex for y > ỹ, where Q(ỹ) = x̃. Since 1/f (x) is convex decreasing
for x < x̃ and convex increasing for x > x̃, 1/f (Q(y)) is convex. So (dQ/dy)(y) = 1/f (Q(y)) is
convex, positive, and with a minimum at ỹ. Given �, its barycenter m̂ satisfies

dQm̂

dy
=
∫

dQm

dy
�(dm),

so if all the dQm/dy are convex, then dQm̂/dy is convex and positive, with a minimum at
some ŷ. Thus, Qm̂(y) is concave for y < ŷ and convex for y > ŷ, and m̂ is unimodal with a mode
at Qm̂(ŷ). �

Useful examples of log-concave distribution families include the general normal, exponen-
tial, logistic, Gumbel, chi-square, and Laplace laws, as well as the Weibull, power, gamma,
and beta families when their shape parameters are larger than one.

6.2. Distributions sharing a common copula

If two multivariate distributions P and Q over R
q share the same copula, then their Wp

distance to the pth power is the sum of the Wp(R) distances between their marginals raised
to the pth power. Furthermore, if the marginals of P have no atoms, then an optimal map is
given by the coordinate-wise transformation T(x) = (T1(x1), . . . , Tq(xq)), where Ti(xi) is the
monotone rearrangement between the marginals Pi and Qi for i = 1, . . . , q. This setting allows
us to easily extend the results from the univariate case to the multidimensional case.

Lemma 5. If � ∈Wp(Wac(Rq)) is concentrated on a set of measures sharing the same copula
C, then the p-Wasserstein barycenter m̂ of � has copula C as well, and its ith marginal m̂i is
the barycenter of the ith marginal measures of �. In particular, the barycenter does not depend
on p.

Proof. It is known [3, 24] that for two distributions m and μ with respective ith marginals
mi and μi for i = 1, . . . , q, the p-Wasserstein metric satisfies Wp

p (m, μ) ≥∑n
i=1 Wp

p (mi, μi),
where equality is reached if m and μ share the same copula C (we have abused the notation,
denoting by Wp the p-Wasserstein distance on R

q as well as on R). Thus,

∫
Wp

p (m, μ) �(dm) ≥
∫ q∑

i=1

Wp
p (mi, μi) �(dm) =

q∑
i=1

∫
Wp

p (ν, μi) �i(dν),

where �i is defined via the identity
∫
P(R) f (ν) �i(dν) = ∫

P(Rq) f (mi) �(dm). The infimum for

the lower bound is reached on the univariate measures m̂1, . . . , m̂q where m̂i is the p-barycenter
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of �i, which means that m̂i = argmin
∫

Wp
p (ν, μi) �i(dν). It is plain that the infimum is reached

on the distribution m̂ with copula C and ith marginal m̂i for i = 1, . . . , q, which then has to be
the barycenter of � and is independent of p. �

A Wasserstein SGD iteration, starting from a distribution μ, sampling m ∼ �, and with step
γ , both μ and m having copula C, produces the measure ν = ((1 − γ )I + γ Tm

μ )(μ) charac-
terized by having copula C and the ith marginal quantile functions Qνi (·) = (1 − γ )Qμi(·) +
γ Qmi (·) for i = 1, . . . , q. The BSGD iteration works analogously. Alternatively, we can per-
form (batch) stochastic gradient descent component-wise (with respect to the marginals �i

of �) and then make use of the copula C. As in the one-dimensional case, the barycenter is
in this case automatically pseudo-associative since it is associative. Bounds for the expected
optimality gap and in W2

2 for the SGD sequence can be similarly deduced in this case too.

6.3. Spherically equivalent distributions

We denote here by L(·) the law of a random vector, so m =L(x) and x ∼ m are synonyms.
Following [24], another multidimensional case is constructed as follows: Given a fixed measure
m̃ ∈W2,ac(Rq), its associated family of spherically equivalent distributions is

S0 := S(m̃) =
{
L
(

α(‖x̃‖2)

‖x̃‖2
x̃

)
| α ∈ND(R), x̃ ∼ m̃

}
,

where ‖ · ‖2 is the Euclidean norm and ND(R) is the set of non-decreasing non-negative func-
tions of R+. These types of distributions include the simplicially contoured distributions, and
also elliptical distributions with the same correlation structure.

If y ∼ m ∈ S0, then α(r) = Q‖y‖2 (F‖x̃‖2 (r)), where Q‖y‖2 is the quantile function of the norm
of y, F‖x̃‖2 is the distribution function of the norm of x̃, and

y ∼ α(‖x̃‖2)

‖x̃‖2
x̃.

More generally, if

m1 =L
(

α1(‖x̃‖2)

‖x̃‖2
x̃

)
, m2 =L

(
α2(‖x̃‖2)

‖x̃‖2
x̃

)
,

then the optimal transport from m1 to m2 is given by

Tm2
m1

(x) = α(‖x‖2)

‖x‖2
x,

where α(r) = Q‖x2‖2 (F‖x1‖2 (r)). Since F‖x1‖2 (r) = F‖x̃‖2 (α−1
1 (r)) and Q‖x2‖2 (r) = α2(Q‖x̃‖2 (r)),

we see that α(r) = α2(Q‖x̃‖2 (F‖x̃‖2 (α−1
1 (r)))) = α2(α−1

1 (r)), so finally

Tm2
m1

(x) = α2(α−1
1 (‖x‖2))

‖x‖2
x.

Note that these kinds of transports are closed under composition and convex combination, and
contain the identity. An SGD iteration, starting from a distribution

μ =L
(

α0(‖x̃‖2)

‖x̃‖2
x̃

)
,
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sampling

m =L
(

α(‖x̃‖2)

‖x̃‖2
x̃

)
∼ �

with step γ , produces m1 = Tγ,m
0 (μ) := ((1 − γ )I + γ Tm

μ )(μ). Since

Tγ,m
0 (x) = (γα + (1 − γ )α0)(α−1

0 (‖x‖2))

‖x‖2
x,

we have

m1 =L
(

α1(‖x̃‖2)

‖x̃‖2
x̃

)
with α1 = γα + (1 − γ )α0. Analogously, the batch stochastic gradient iteration produces α1 =
(1 − γ )α0 + (γ /S)

∑S
i=1 αmi . Note that these iterations live in S0, and thus the barycenter

m̂ ∈ S0.
For the barycenter

m̂ =L
(

α̂(‖x̃‖2)

‖x̃‖2
x̃

)
,

the equation
∫

Tm
m̂ (x) �(dm) = x can be expressed as α̂(r) = ∫

αm(r) �(dm), or equivalently

Qm̂
‖ŷ‖2

(p) = ∫
Qm‖y‖2

(p) �(dm), where Qm‖y‖2
is the quantile function of the norm of y ∼ m. This

is similar to the univariate setting and, as in that case, the barycenter is associative, and
convergence bounds for the optimality gap and the SDG sequence can be established.

6.4. Scatter-location family

We borrow here the setting of [5], where another useful multidimensional case is defined as
follows: Given a fixed distribution m̃ ∈W2,ac(Rq), referred to as the generator, the generated
scatter-location family is given by

F(m̃) := {L(Ax̃ + b) | A ∈Mq×q
+ , b ∈R

q, x̃ ∼ m̃},
where Mq×q

+ is the set of symmetric positive-definite matrices of size q × q. Without loss of
generality we can assume that m̃ has zero mean and identity covariance. A clear example is the
multivariate Gaussian family F(m̃), with m̃ a standard multivariate normal distribution.

The optimal transport between two members of F(m̃) is explicit. If m1 =L(A1x̃ + b1) and
m2 =L(A2x̃ + b2) then the optimal map from m1 to m2 is given by Tm2

m1 (x) = A(x − b1) + b2,
where A = A−1

1 (A1A2
2A1)1/2A−1

1 ∈Mq×q
+ . The family F(m̃) is therefore geodesically closed.

If � is supported on F(m̃), then its 2-Wasserstein barycenter m̂ belongs to F(m̃). Call
its mean b̂ and its covariance matrix �̂. Since the optimal map from m̂ to m is Tm

m̂ (x) =
Am

m̂(x − b̂) + bm where Am
m̂ = �̂−1/2(�̂1/2�m�̂1/2)1/2�̂−1/2, and we know that m̂-almost

surely
∫

Tm
m̂ (x) �(dm) = x, then we must have

∫
Am

m̂ �(dm) = I, since clearly b̂ = ∫
bm �(dm).

As a consequence, we have �̂ = ∫
(�̂1/2�m�̂1/2)1/2 �(dm).

A stochastic gradient descent iteration, starting from a distribution μ =L(A0x̃ + b0), sam-
pling some m =L(Amx̃ + bm) ∼ �, and with step γ , produces the measure ν = Tγ,m

0 (μ) :=(
(1 − γ )I + γ Tm

μ

)
(μ). If x̃ has a multivariate distribution F̃(x), then μ has distribution

F0(x) = F̃(A−1
0 (x − b0)) with mean b0 and covariance �0 = A2

0. We have Tγ,m
0 (x) = ((1 − γ )I +

γ Am
μ)(x − b0) + γ bm + (1 − γ )b0 with Am

μ := A−1
0 (A0A2

mA0)1/2A−1
0 . Then

Fν(x) =: F1(x) = F0
([

Tγ .m
0

]−1(x)
)= F̃

([
(1 − γ )A0 + γ Am

μA0
]−1(x − γ bm − (1 − γ )b0)

)
,
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with mean b1 = (1 − γ )b0 + γ bm and covariance

�1 = A2
1 = [

(1 − γ )A0 + γ A−1
0

(
A0A2

mA0
)1/2][(1 − γ )A0 + γ

(
A0A2

mA0
)1/2

A−1
0

]
= A−1

0

[
(1 − γ )A2

0 + γ
(
A0A2

mA0
)1/2][(1 − γ )A2

0 + γ
(
A0A2

mA0
)1/2]

A−1
0

= A−1
0

[
(1 − γ )A2

0 + γ
(
A0A2

mA0
)1/2]2

A−1
0 .

The batch stochastic gradient descent iteration is characterized by

b1 = (1 − γ )b0 + γ

S

S∑
i=1

bmi , A2
1 = A−1

0

[
(1 − γ )A2

0 + γ

S

S∑
i=1

(
A0A2

mi A0
)1/2

]2

A−1
0 .

Notice that if all the matrices {Am : m ∈ supp(�)} share the same eigenspaces, then the
barycenter is pseudo-associative, as it is in fact associative. In the case that these matrices
do not necessarily share the same eigenspaces, and m̃ is Gaussian, it is still possible to give
conditions under which the barycenter is pseudo-associative: as we have already mentioned,
this property holds in the setting of [19] under conditions of uniform boundedness and uniform
positivity of covariance matrices.

Appendix A. Some remarks in the case of general measures

We discuss a natural counterpart to the SGD sequence in the case where � is not necessarily
supported on absolutely continuous measures. However, in this case we neither have a verifi-
able result guaranteeing the convergence of the SGD method, nor a verifiable result saying that
the accumulation points of the SGD sequence are necessarily Karcher means. The goal of this
section is to introduce the objects needed for an analysis of the general case, to advance the
convergence analysis as much as possible, and to illustrate the difficulties that we encounter
that make us stop short of obtaining general convergence results.

While we retain Assumption 1, we modify Assumption 2 into the following.

Assumption 2′′. � =∑�
j=1 λjδνj , with each νj ∈W2(X ) and where the λj ∈ (0, 1) sum to 1.

Remark 5. We can find V : X → [0, ∞) convex, continuous, and super-quadratic (i.e.
lim|y|→∞ V(y)/|y|2 = +∞) and C ∈ (0, ∞) such that

∫
V dνj ≤ C for each j. Defining

K� =
{
μ :

∫
V dμ ≤ C

}
, (25)

it follows that K� is compact in W2(X ) and �(K�) = 1. Moreover, if (X,Y) is any optimal
coupling with marginals μ and ν, with μ and ν in K�, then also Law(tX + (1 − t)Y) ∈ K� for
each t ∈ (0, 1). In the following, we denote by K� a set with these properties which may or
may not be given explicitly as in (25).

Throughout, we denote by Opt(μ, ν) the set of optimal couplings attaining the infimum
defining W2(μ, ν), which is non-empty and may contain multiple elements, and we fix

W2(X )2 
 (μ, ν) �→ G(μ, ν) ∈ Opt(μ, ν),
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a measurable selection of optimal couplings. In practical terms an algorithm for computing or
approximating optimal couplings would be automatically measurable.

Definition 7. Let μ0 ∈ K�, mk
i.i.d.∼ �, and γk > 0 for k ≥ 0. We define the SGD sequence by

μk+1 := Law[(1 − γk)X + γkY], (26)

where Law(X, Y) = G(μk, mk).

By Remark 5 we have {μk : k ∈N} ⊂ K� (almost surely).

Definition 8. μ ∈W2(X ) is a Karcher mean of � if, μ(dx)-almost surely, x =∑�
j=1 λjE[Yj |

X = x], where (for each j) Law(X, Yj) is some coupling in Opt(μ, νj).

We first observe that if μ is absolutely continuous, then it is a Karcher mean according to
Definition 8 if and only if it is a Karcher mean according to Definition 3. On the other hand,
if μ is a barycenter of � then it is also a Karcher mean according to Definition 8. Indeed,
if Law(X, Yj) ∈ Opt(μ, νj) and we couple all these random variables in the same probability
space, then

�∑
i=1

λiW
2
2 (μ, νi) =E

[
�∑

i=1

λi|X − Yi|2
]

≥E

[
�∑

j=1

λj

∣∣∣∣∣Yj −
�∑

i=1

λiYi

∣∣∣∣∣
2]

≥
�∑

i=1

λiW
2
2 (μ̃, νi),

so the inequalities above must be actual equalities and we have μ = Law(
∑

i λiYi) := μ̃ as
well as X =∑

i λiYi (almost surely). Taking conditional expectation with respect to X in the
latter, we conclude.

In direct analogy to the absolutely continuous case, we write F(μ) := 1
2

∑
j λjW2

2 (μ, νj),

and we introduce F′(μ)(x) := x −∑�
j=1 λjE[Yj | X = x], where (X, Yj) ∼ G(μ, νj). With this

notation we have the implication that ‖F′(μ)‖L2(μ) = 0 ⇒ μ is a Karcher mean. As before,
we denote by F0 the trivial sigma-algebra and Fk+1, k ≥ 0, the sigma-algebra generated by
m0, . . . , mk.

Proposition 6. The SGD sequence in (26) satisfies, almost surely,

E[F(μk+1) − F(μk) |Fk] ≤ γ 2
k F(μk) − γk‖F′(μk)‖2

L2(μk).

Proof. We can define a coupling (Xk, Yk, Zi) such that Law(Xk, Yk) ∈ G(μk, mk),
Law(Xk, Zi) ∈ G(μk, νi), and where Yk and Zi are independent conditionally on Fk. Then
the coupling ((1 − γk)Xk + γkYk, Zi) has first marginal μk+1 and second marginal νi. We
compute

W2
2 (μk+1, νi) ≤E[|(1 − γk)Xk + γkYk − Zi|2]

=E[|Xk − Zi|2] − 2γkE[〈Xk − Zi, Xk − Yk〉] + γ 2
k E[|Xk − Yk|2].
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Hence,

F(μk+1) = 1

2

∫
W2

2 (μk+1, ν) �(dν)

≤ 1

2

�∑
i=1

λiE[|Xk − Zi|2] − γkE

[〈
Xk −

�∑
i=1

λiZi, Xk − Yk

〉]
+ 1

2
γ 2

k E[|Xk − Yk|2]

= F(μk) − γkE

[〈
Xk −

�∑
i=1

λiZi, Xk − Yk

〉]
+ 1

2
γ 2

k W2
2 (μk, mk).

Taking conditional expectation with respect to Fk, and as mk is independently sampled from
this sigma-algebra, we see that

E[W2
2 (μk, mk) |Fk] =

�∑
i=1

λiW
2
2 (μk, νi) = 2F(μk).

Similarly, we have

E

[
E

[〈
Xk −

�∑
i=1

λiZi, Xk − Yk

〉]
|Fk

]
=E

[〈
Xk −

�∑
i=1

λiE[Zi | Xk], Xk −
�∑

i=1

λiE[Yi | Xk]

〉]
.

We conclude that E[F(μk+1) |Fk] ≤ (1 + γ 2
k )F(μk) − γk‖F′(μk)‖2

L2(μk)
. �

The next lemma is the only part where we use that � is supported in finitely many measures.
With more refined arguments we could surely avoid this limitation.

Lemma 6. Let (ρn)n ⊂W2(Rq) be a sequence converging with respect to W2 to ρ ∈W2(Rq).
Then, as n → ∞,

(i) F(ρn) → F(ρ);

(ii) ‖F′(ρn)‖L2(ρn) → 0 implies that ρ is a Karcher mean.

Proof. Part (i) is immediate since W2(ρn, νj) → W2(ρ, νj) for each j. For part (ii), we first
observe that G(ρn, νj) is tight for each j. Passing to a subsequence if necessary, the Skorokhod
representation theorem yields, on some probability space, a sequence of random variables
Xn ∼ ρn and Yn

j ∼ νj, as well as X ∼ ρ and Yj ∼ νj, such that Xn → X and also, for each j,

Yn
j → Yj (convergence is a.s. and in L2). The sequence {E[Yn

j | Xn] : n ∈N} is L2-bounded,
and hence by repeatedly applying Komlos’ theorem, we find yet another subsequence (rela-
beled so it is indexed by N) such that (1/n)

∑
r≤n E[Yr

j | Xr] → Zj almost surely and in L2, for
each j.

We check that E[Zj | X] =E[Yj | X]. Indeed, if g is bounded and continuous,
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E[g(X)Zj] = lim
n

E

[
g(X)

(
1

n

∑
r≤n

E[Yr
j | Xr]

)]

= lim
n

1

n

∑
r≤n

E[g(Xr)E[Yr
j | Xr]] + 1

n

∑
r≤n

E[{g(X) − g(Xr)}E[Yr
j | Xr]]

= lim
n

1

n

∑
r≤n

E[g(Xr)Yr
j ] =E[g(X)Yj]

by dominated convergence. Also,

0 = lim
n

‖F′(ρn)‖2
L2(ρn)

= lim
n

E

[∣∣∣∣∣Xn −
�∑

j=1

λjE[Yn
j | Xn]

∣∣∣∣∣
2]

= lim
n

1

n

∑
r≤n

E

[∣∣∣∣∣Xr −
�∑

j=1

λjE[Yr
j | Xr]

∣∣∣∣∣
2]

≥ lim
n

E

[∣∣∣∣∣1n
∑
r≤n

Xr −
�∑

j=1

λj
1

n

∑
r≤n

E[Yr
j | Xr]

∣∣∣∣∣
2]

≥E

[∣∣∣∣∣X −
�∑

j=1

λjZj

∣∣∣∣∣
2]

≥E

[∣∣∣∣∣X −
�∑

j=1

λjE[Zj | X]

∣∣∣∣∣
2]

,

and we conclude that X =∑�
j=1 λjE[Yj | X], almost surely. Finally, we remark that

Law(X, Yj) ∈ Opt(ρ, νj), and hence we conclude that ρ is a Karcher mean. �

We can now provide a convergence result. The hypotheses of this result are implied by the
hypotheses of Theorem 1 in the case that � is concentrated on absolutely continuous measures.
However, we stress that we do not know of any example where Theorem 5 is applicable and
� is concentrated on non-absolutely continuous measures. For this reason we rather think that
this result and its proof are a template of what could happen or could be done in the general
case, and use it really to illustrate the difficulties present in the general case.

Theorem 5. Assume Assumptions 1 and 2′′, conditions (3) and (4), that � admits a unique
Karcher mean (in the sense of Definition 8) in K�, and that K� contains a (hence, exactly one)
2-Wasserstein barycenter μ̂. Then, the SGD sequence {μk}k in (26) is almost surely convergent
to μ̂.

Proof. The proof of Theorem 1 can be followed verbatim up to (15), namely that
lim inft→∞ ‖F′(μt)‖2

L2(μt)
= 0 almost surely.

We observe that if ρn → ρ with {ρn}n ⊂ K� is such that F(ρn) ≥ F(μ̂) + ε, for ε > 0, and
‖F′(ρn)‖2

L2(ρn)
→ 0, then by Lemma 6 ρ is a Karcher mean in K� that is necessarily different

from μ̂. This would contradict the uniqueness of Karcher means in K�. Thus we establish that,
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for all ε > 0, inf{ρ:F(ρ)≥F̂+ε}∩K�
‖F′(ρ)‖2

L2(ρ)
> 0. From here on we can again follow the proof

of Theorem 1. �

In the absolutely continuous case covered in the rest of this paper, we required the Karcher
mean to be absolutely continuous. Moreover, in this case there is a unique barycenter (auto-
matically absolutely continuous). Once we leave the absolutely continuous world we have to
be more careful, as illustrated by the following example.

Example 2. Let Z be an X -valued random variable with finite second moment, and let bj ∈
X with

∑
j λjbj = 0. Define νj := Law(Z + bj). Then X ∼ μ is a Karcher mean if and ony if

X =E[Z | X] for some optimal coupling of X and Z. Hence, X := Z and X := E[Z] are both
Karcher means per Definition 8, even if Z (and so each νj) is absolutely continuous. On the
other hand, we can check that the barycenter of the νj is unique and given by Law(Z).

Example 3. We continue in the setting of the previous example and choose X =R
2. Here,

Z = (B, 0) with B ∈ {−1, 1} with equal probabilities, and ν1 = Law((B, 1)), ν2 =
Law((B, −1)). In this case we check that μp := p(δ(1,0) + δ(−1,0)) + (1 − 2p)δ(0,0) is a
Karcher mean for each p ∈ [0, 1

2

]
. In particular, the barycenter, given by μ1, is not isolated in

the sense that any ball around μ1 contains other Karcher means (taking p close to 0.5), and
moreover those Karcher means might be more ‘regular’ than the barycenter in the sense of
having a strictly larger support. Also note that if we define K := {Law((B, r)) : r ∈ I} with I
some interval containing ±1, then K is compact, contains the νi, and transport maps between
elements in K are associative.

Examples 2 and 3 show that uniqueness of Karcher means (in the sense of Definition 8),
or even their uniqueness within a nice set K�, is an assumption that is difficult to verify in
the general case. Furthermore, we encounter the same problem with a localized version of this
assumption (for example: ‘uniqueness of Karcher means in a small ball intersected with K�’).
To complicate the matter further, it is known that in the general case multiple barycenters may
exist. For all these reasons we are inclined to believe that the correct object of study in the
general case is the regularized barycenter problem (or, more ambitiously, the limit of such
regularized problems as the regularization parameter goes to zero at a suitable speed). We refer
the reader to [20, 22], and the references therein, for promising results in this direction.
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