ON ROSENBLOOM'S FIXED-POINT THEOREM AND RELATED RESULTS

MINGLIANG FANG and WENJUN YUAN

(Received 3 May 1999; revised 6 September 1999)

Communicated by P. Fenton

Abstract

In this paper, we improve the Rosenbloom's fixed-point theorem and prove a related normality criterion. We also consider the corresponding unicity theorem for transcendental entire functions.

2000 Mathematics subject classification: primary 30D35.
Keywords and phrases: Entire function, fixed-point, normal criterion, unicity theorem.

1. Introduction and the main results

Let $f(z)$ be a nonconstant meromorphic function in the whole complex plane. We use the following standard notations of value distribution theory,

$$
T(r, f), m(r, f), N(r, f), \bar{N}(r, f), \ldots
$$

(see Hayman [5]). We denote by $S(r, f)$ any function satisfying

$$
S(r, f)=o\{T(r, f)\}
$$

as $r \rightarrow+\infty$, possibly outside a set of finite measure.
A meromorphic function $\alpha(z)$ is called a small function related to $f(z)$ if $T(r, \alpha)=$ $S(r, f)$.

Let S be a set of complex numbers. Write

$$
E(S, f)=\bigcup_{a \in S}\{z \mid f(z)-a=0\}
$$

where a solution to $f(z)-a=0$ with multiplicity m is counted m times in the above set.

In 1952, Rosenbloom [6] proved the following theorem.
Theorem 1. Let $P(z)$ be a polynomial with $\operatorname{deg} P \geq 2, f(z)$ a transcendental entire function. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{N(r, 1 /(P(f)-z))}{T(r, f)} \geq 1 . \tag{1.1}
\end{equation*}
$$

In 1995, Zheng and Yang [12] proved
Theorem 2. Let $P(z)$ be a polynomial with $\operatorname{deg} P \geq 2, f(z)$ a transcendental entire function, and $\alpha(z)$ a nonconstant meromorphic function satisfying $T(r, \alpha)=$ $S(r, f)$. Then

$$
\begin{equation*}
T(r, f) \leq k \bar{N}\left(r, \frac{1}{P(f)-\alpha}\right)+S(r, f) . \tag{1.2}
\end{equation*}
$$

Here $k=2 /(\operatorname{deg} P-1)$ if $P^{\prime}(z)$ has only one zero; otherwise $k=2$.
Naturally, we ask what is the best possible k in (1.2). In this paper, we have obtained such a k by proving the following result.

Theorem 3. Let $P(z)$ be a polynomial with $\operatorname{deg} P \geq 2, f(z)$ a transcendental entire function, and $\alpha(z)$ a meromorphic function satisfying $T(r, \alpha)=S(r, f)$. If $\alpha(z)$ is a constant, we also require that there exists a constant $A \neq \alpha$ such that $P(z)-A$ has a zero of multiplicity at least 2 . Then

$$
\begin{equation*}
T(r, f) \leq k \bar{N}\left(r, \frac{1}{P(f)-\alpha}\right)+S(r, f) . \tag{1.3}
\end{equation*}
$$

Here $k=1 /(\operatorname{deg} P-1)$ if $P^{\prime}(z)$ has only one zero; otherwise $k=1$.
Obviously, Theorem 3 improves Theorem 2 and implies the following corollary.
Corollary 1. Let $P(z)$ be a polynomial with $\operatorname{deg} P \geq 2, f(z)$ a transcendental entire function, and $\alpha(z)$ a nonconstant meromorphic function satisfying $T(r, \alpha)=$ $S(r, f)$. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\bar{N}(r, 1 /(P(f)-\alpha))}{T(r, f)} \geq 1 . \tag{1.4}
\end{equation*}
$$

The following examples show that the condition in Theorem 3 when $\alpha(z)$ is a constant is necessary and the number k in Theorem 3 is sharp.

Example 1. Let $f(z)=e^{z}-1, P(z)=(z+1)^{n}+1$, where $n \geq 2$ is a positive integer, and $\alpha=1$. Thus $P(z)-\alpha=P(z)-1=(z+1)^{n}, P(f)-\alpha=e^{n z}$. Hence (1.3) does not hold. Obviously, α is the only constant A such that $P(z)-A$ has a zero with multiplicity ≥ 2.

Example 2. Let $f(z)=e^{z}+z, P(z)=z, \alpha(z)=z$. Thus $P(f)-\alpha=e^{z}$ and (1.3) does not hold.

Example 3. Let $f(z)=e^{z}, P(z)=(z+1)^{n}$, where $n \geq 2$ is a positive integer, and $\alpha=1$. Thus $P(f)-1=\left(e^{z}+1\right)^{n}-1=e^{z} \prod_{i=1}^{n-1}\left(e^{z}+1-e_{i}\right)$, where $e_{i} \neq 1$ is a distinct zero of $z^{n}-1(i=1,2, \ldots, n-1)$. Thus we have

$$
T(r, f)=\frac{1}{n-1} \bar{N}\left(r, \frac{1}{P(f)-1}\right)+S(r, f) .
$$

Hence $k=1 /(\operatorname{deg} P-1)=1 /(n-1)$ is sharp in Theorem 3 .
Example 4. Let $f(z)=e^{z}+1, P(z)=z(z-1)^{2}$ and $\alpha=0$. Thus $P(f)=$ $\left(e^{z}+1\right) e^{2 z}$ and

$$
T(r, f)=\bar{N}\left(r, \frac{1}{P(f)}\right)+S(r, f) .
$$

Thus $k=1$ is sharp in Theorem 3.
We know that for the second Nevanlinna fundamental theorem there exists a corresponding Montel's normality criterion [5] and for Hayman's inequality there exists Gu's normality criterion (see [3]). Naturally, we ask whether there exists a corresponding normality criterion for inequality (1.3). The following theorem gives a positive answer to this question.

THEOREM 4. Let \mathscr{F} be a family of analytic functions in a domain $D, P(z)$ a polynomial with $\operatorname{deg} P \geq 2$. Suppose that $\alpha(z)$ is either a nonconstant analytic function or a constant function such that $P(z)-\alpha$ has at least two distinct roots. If $P(f(z)) \neq \alpha(z)$ for each $f(z) \in \mathscr{F}$, then \mathscr{F} is normal in D.

The following two examples illustrate that the conditions in Theorem 4 are necessary.

Example 5. Take $P(z)=z, f_{n}(z)=z+e^{n z}, D=\{|z|<1\}$. It is easy to see that $P\left(f_{n}(z)\right) \neq z$ in D and the analytic family $\left\{f_{n}(z)\right\}$ is not normal in D.

EXAMPLE 6. Let $P(z)=z^{k}+1$, where $k \geq 2$ is a positive integer, $f_{n}(z)=e^{n z}$, $\alpha(z)=1, D=\{|z|<1\}$. It is easy to see that $P\left(f_{n}(z)\right) \neq 1$ and that $f_{n}(z)$ are analytic in D. But $\left\{f_{n}(z)\right\}$ is not normal in D.

Theorem 4 implies the following corollary.
COROLLARY 2. Let \mathscr{F} be a family of analytic functions in a domain $D, P(z)$ a polynomial with $\operatorname{deg} P \geq 2$. If $P(f(z)) \neq z$ for each $f(z) \in \mathscr{F}$, then \mathscr{F} is normal in D.

By the second fundamental theorem, Nevanlinna obtained the five-valueunicity theorem. Naturally, we ask whether there exists a corresponding unicity theorem for inequality (1.3). In this paper, we prove the following result.

THEOREM 5. Let $f(z)$ and $g(z)$ be two transcendental entire functions, $\alpha(z) \not \equiv 0$ a common small function related to $f(z)$ and $g(z)$, and $P(z)=z^{6}(z-1)$. If $P(f(z))-\alpha(z)$ and $P(g(z))-\alpha(z)$ have the same zeros (counting multiplicity), then $f(z) \equiv g(z)$.

REMARK 1. Let $f(z)=e^{z}, g(z)=e^{-z}, P(z)=z^{6}(z-1)$ and $\alpha(z) \equiv 0$. Obviously, $P(f(z))-\alpha(z)$ and $P(g(z))-\alpha(z)$ have the same zeros (counting multiplicity). But $f(z) \not \equiv g(z)$. Hence, $\alpha(z) \not \equiv 0$ is necessary in Theorem 5.

From Theorem 5, we can easily obtain the following corollaries.
COROLLARY 3. Let $f(z)$ and $g(z)$ be two transcendental entire functions, and $P(z)=z^{6}(z-1)$. If $P(f(z))-z$ and $P(g(z))-z$ have the same zeros (counting multiplicity), then $f(z) \equiv g(z)$.

Note that $P(z)=z^{6}(z-1)$, and that $P(f(z))-1$ and $P(g(z))-1$ have the same zeros (counting multiplicity) if and only if $E(S, f)=E(S, g)$, where $S=\{z \mid$ $\left.z^{6}(z-1)=1\right\}$. Thus Theorem 5 implies.

COROLLARY 4. Let $S=\left\{z \mid z^{6}(z-1)=1\right\}, f(z)$ and $g(z)$ be two transcendental entire functions. If $E(S, f)=E(S, g)$, then $f(z) \equiv g(z)$.

Note that Corollary 4 gives a positive answer to a question of Gross (see Gross [2], Yi [9]).

2. Proof of Theorem 3

In order to prove Theorem 3 we need the following lemmas.

Lemma 2.1 (see $[1,5]$). Let $f(z)$ be a meromorphic function. If there exist two functions $a_{i}(z)$ such that $T\left(r, a_{i}\right)=S(r, f), i=1,2$, then

$$
T(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-a_{1}}\right)+\bar{N}\left(r, \frac{1}{f-a_{2}}\right)+S(r, f) .
$$

Lemma 2.2 ([10]). Let

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0},
$$

where $a_{n}(\neq 0), a_{n-1}, \ldots, a_{0}$, are constants.
If $f(z)$ is a meromorphic function, then

$$
T(r, P(f))=n T(r, f)+S(r, f)
$$

Next we prove Theorem 3.
Proof. We consider two cases.
Case 1. $\alpha(z)$ is a constant function. Then by the assumpion in Theorem 3 we can choose a constant A such that $P(z)-A$ has a zero (say a) with multiplicity $m \geq 2$. Let $a_{1}, a_{2}, \ldots, a_{n-m}$ be the other zeros of $P(z)-A$, where $n=\operatorname{deg} P$. Then from Lemma 2.1, we have

$$
\begin{aligned}
T(r, P(f)) & \leq \bar{N}\left(r, \frac{1}{P(f)-\alpha}\right)+\bar{N}\left(r, \frac{1}{P(f)-A}\right)+S(r, P(f)) \\
& \leq \bar{N}\left(r, \frac{1}{P(f)-\alpha}\right)+\bar{N}\left(r, \frac{1}{f-a}\right)+\sum_{i=1}^{n-m} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f) \\
(2.1) & \leq \bar{N}\left(r, \frac{1}{P(f)-\alpha}\right)+\bar{N}\left(r, \frac{1}{f-a}\right)+(n-m) T(r, f)+S(r, f) .
\end{aligned}
$$

On the other hand, by Lemma 2.2 we have

$$
\begin{equation*}
T(r, P(f))=n T(r, f)+S(r, f) \tag{2.2}
\end{equation*}
$$

If $P^{\prime}(z)$ has only one zero, then $m=n$. Thus we deduce from (2.1) and (2.2) that

$$
T(r, f) \leq \frac{1}{\operatorname{deg} P-1} \bar{N}\left(r, \frac{1}{P(f)-\alpha}\right)+S(r, f) .
$$

Otherwise, $n-m \leq n-2$. Hence we deduce from (2.1) and (2.2) that

$$
T(r, f) \leq \bar{N}\left(r, \frac{1}{P(f)-\alpha}\right)+S(r, f) .
$$

Case 2. $\alpha(z)$ is a nonconstant meromorphic function satisfying $T(r, f)=S(r, f)$. In this case we can also choose A such that $P(z)-A$ has a zero (say a) with multiplicity $m \geq 2$. Using the same argument as in Case 1 , we obtain (1.3). The proof of Theorem 3 is complete.

3. Proof of Theorem 4

For the proof of Theorem 4, we need the Zalcman's Lemma [11].
LEMMA 3.1. If a family \mathscr{F} of functions analytic on the unit disc D is not normal at $z=0$, then there exist a number $0<r<1$, a sequence of complex numbers $z_{n} \rightarrow 0$, a sequence of functions $f_{n}(z) \in \mathscr{F}$, a sequence of positive numbers $\rho_{n} \rightarrow 0$ such that

$$
g_{n}(\xi)=f_{n}\left(z_{n}+\rho_{n} \xi\right) \rightarrow g(\xi)
$$

uniformly on any compact subset of C, where $g(\xi)$ is a non-constant entire function.
Now we prove Theorem 4.
Proof. First, we prove the case when $\alpha(z)$ is a nonconstant analytic function in the domain D. We consider two cases.

Case I. $P(z)-\alpha(0)$ has at least two distinct zeros a and b.
Suppose that \mathscr{F} is not normal in D. Without loss of generality, we assume that \mathscr{F} is not normal at $z=0$. By Lemma 3.1, there exist $0<r<1, z_{n} \rightarrow 0, f_{n} \in \mathscr{F}$, $\rho_{n} \rightarrow 0^{+}$such that

$$
g_{n}(\xi)=f_{n}\left(z_{n}+\rho_{n} \xi\right) \rightarrow g(\xi)
$$

uniformly on compact subsets of C, where $g(\xi)$ is a non-constant entire function.
Hence

$$
\begin{equation*}
P\left(f_{n}\left(z_{n}+\rho_{n} \xi\right)\right)-\alpha\left(z_{n}+\rho_{n} \xi\right) \rightarrow P(g(\xi))-\alpha(0) \tag{3.1}
\end{equation*}
$$

uniformly on any compact subset of C. Since $P\left(f_{n}\left(z_{n}+\rho_{n} \xi\right)\right)-\alpha\left(z_{n}+\rho_{n} \xi\right) \neq 0$, using Hurwitz's theorem for (3.1), we get $P(g(\xi)) \neq \alpha(0)$. Thus $g(\xi) \neq a, b$. Noting that $g(\xi)$ is an entire function, we deduce that $g(\xi)$ is a constant (Picard's theorem), which is a contradiction.

Case II. $P(z)-\alpha(0)$ has only one zero.
We can write $P(z)-\alpha(0)=(a z-b)^{n}(a \neq 0, n \geq 2)$. Obviously, there exists a neighbourhood (denoted by U) of point $z=0$ such that $\alpha(z) \neq \alpha(0)$ for all $z \in U \backslash\{0\}$.

We claim that \mathscr{F} is normal at $z_{0}(\neq 0) \in U$. In fact, if \mathscr{F} is not normal at z_{0}, then by using the similar argument as in Case I, we obtain $P(g(\xi)) \neq \alpha\left(z_{0}\right)$, that is, $(a g(\xi)-$ $b)^{n} \neq \alpha\left(z_{0}\right)-\alpha(0)$. Therefore, $g(\xi)$ is not equal n distinct values $(1 / a)\left(\left\{\alpha\left(z_{0}\right)-\right.\right.$ $\alpha(0))^{1 / n}+b$. This means that $g(\xi)$ is a constant, which is a contradiction.

Next we prove \mathscr{F} is normal at $z_{0}=0$. For any $f_{n}(z) \in \mathscr{F}$ and $C_{r}=\{z:|z|=$ $r\} \subset U$, we know $\left\{f_{n}(z)\right\}$ is normal in C_{r} by the former conclusion. Thus there exists a subsequence $f_{n_{k}}$ such that

$$
f_{n_{k}}(z) \rightarrow g(z)
$$

uniformly on C_{r}.
If $g(z) \not \equiv \infty$, then $g(z)$ is analytic on C_{r}. Hence there exist an integer N and a positive number M such that

$$
\left|f_{n_{k}}(z)\right| \leq M,
$$

for all $k \geq N, z \in C_{r}$. By the maximum modulus theorem, we have

$$
\left|f_{n_{k}}(z)\right| \leq M,
$$

for all $k \geq N,|z| \leq r$. Hence $\left\{f_{n_{t}}(z)\right\}$ is normal in $\{z:|z| \leq r\}$ by Montel's normality criterion (see [5]). Thus there exists a subsequence of $f_{n_{k}}(z)$ (which we continue to denote by $f_{n_{t}}(z)$) such that

$$
\begin{equation*}
f_{n_{k}}(z) \rightarrow g(z), \tag{3.2}
\end{equation*}
$$

uniformly on $\{z:|z| \leq r\}$.
If $g(z) \equiv \infty$, then there exist an integer N and a positive $M>M(r, \alpha(z))$ such that

$$
\left|P\left(f_{n_{t}}(z)\right)\right| \geq M,
$$

for all $k \geq N, z \in C_{r}$, where $\left.M(r, \alpha)=\max _{|z| \leq r} r|\alpha(z)|\right\}$. Thus

$$
\left|P\left(f_{n_{k}}(z)\right)-\alpha(z)\right| \geq M-M(r, \alpha)>0,
$$

for all $k \geq N, z \in C_{r}$. Note that $P\left(f_{n_{t}}(z)\right)-\alpha(z)$ has no zeros in $\{z:|z| \leq r\}$, and thus we have

$$
\left|P\left(f_{n_{k}}(z)\right)-\alpha(z)\right| \geq M-M(r, \alpha),
$$

for all $k \geq N,|z| \leq r$ by the minimum modulus theorem. This means that

$$
\begin{equation*}
f_{n_{k}}(z) \rightarrow \infty \tag{3.3}
\end{equation*}
$$

uniformly on $\{z:|z| \leq r\}$. Thus we deduce from (3.2) and (3.3) that \mathscr{F} is normal at $z=0$. Therefore, \mathscr{F} is normal in D in the case when $\alpha(z)$ is a nonconstant analytic function in D.

If $\alpha(z)$ is a constant, then by using the same argument as in Case I, we can prove \mathscr{F} is normal in D. Thus the proof of Theorem 4 is complete.

4. Proof of Theorem 5

In order to prove our result, we need the following lemma.
Lemma 4.1. Let $f(z)$ be a meromorphic function. Then

$$
T\left(r, \frac{1}{f-a}\right)=T(r, f)+O(1) ; \quad T\left(r, \frac{f^{(k)}}{f^{(l)}}\right)=S(r, f)
$$

where k, l are two integer satisfying $k>l \geq 0$; and

$$
(q-1) T(r, f) \leq N(r, f)+\sum_{i=1}^{q} N\left(r, \frac{1}{f-a_{i}}\right)-N_{1}(r, f)+S(r, f)
$$

where $a_{i}(i=1, \ldots, q)$ are distinct constants and

$$
N_{1}(r, f)=N\left(r, \frac{1}{f^{\prime}}\right)+2 N(r, f)-N\left(r, f^{\prime}\right)
$$

PROOF (of Theorem 5). In the proof we use the following notation.
$N_{(2}(r, 1 /(f-a))$ is the counting function which includes only multiple zeros of $f(z)-a, \bar{N}_{(2}(r, 1 /(f-a))$ the corresponding reduced counting function, and $N_{2}(r, 1 /(f-a))=\bar{N}(r, 1 /(f-a))+\bar{N}_{(2}(r, 1 /(f-a)), N_{1)}(r, 1 /(f-a))=$ $N(r, 1 /(f-a))-N_{(2}(r, 1 /(f-a))$.

Set

$$
F(z)=\frac{P(f(z))}{\alpha(z)}, \quad \text { and } \quad G(z)=\frac{P(g(z))}{\alpha(z)}
$$

It follows from assumptions of Theorem 5 that

$$
\begin{align*}
& N\left(r, \frac{1}{F-1}\right)=N\left(r, \frac{1}{G-1}\right)+S(r, f) \tag{4.1}\\
& N_{2}(r, F)=N_{2}(r, G)=S(r, f) \tag{4.2}
\end{align*}
$$

If z_{0} is a zero of $F(z)$ and not a pole of $\alpha(z)$, then z_{0} is either a zero of $f(z)$ or $f(z)-1$. Thus

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{F}\right) \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-1}\right)+S(r, f) . \tag{4.3}
\end{equation*}
$$

If z_{1} is a multiple zero of $F(z)$ and not a pole of $\alpha(z)$, then z_{1} is a zero of $f(z)$ or a multiple zero of $f(z)-1$. Hence

$$
\begin{equation*}
\bar{N}_{\ell 2}\left(r, \frac{1}{F}\right) \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+S(r, f) . \tag{4.4}
\end{equation*}
$$

Thus we deduce from (4.2), (4.3), (4.4), Lemma 4.1, and Lemma 2.2 that

$$
\begin{aligned}
N_{2}\left(r, \frac{1}{F}\right) & =\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{F}\right) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+S(r, F) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f-1}\right)+S(r, F) \\
& \leq 3 T(r, f)+S(r, F) \\
& \leq\left(\frac{3}{7}+o(1)\right) T(r, F) .
\end{aligned}
$$

In the same manner we obtain that

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{G}\right) \leq\left(\frac{3}{7}+o(1)\right) T(r, G) . \tag{4.6}
\end{equation*}
$$

Therefore, we deduce from (4.5) and (4.6) that

$$
\begin{equation*}
N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right) \leq\left(\frac{6}{7}+o(1)\right) T(r), \tag{4.7}
\end{equation*}
$$

where $T(r)=\max \{T(r, F), T(r, G)\}$.
We claim that either $F(z) \equiv G(z)$ or $F(z) G(z) \equiv 1$. Set

$$
\begin{equation*}
\Phi(z)=\frac{F^{\prime \prime}(z)}{F^{\prime}(z)}-2 \frac{F^{\prime}(z)}{F(z)-1}-\frac{G^{\prime \prime}(z)}{G^{\prime}(z)}+2 \frac{G^{\prime}(z)}{G(z)-1} \tag{4.8}
\end{equation*}
$$

and suppose that $\Phi(z) \not \equiv 0$. Obviously, $m(r, \Phi)=S(r, F)+S(r, G)$.
If z_{2} is a common simple 1-point of $F(z)$ and $G(z)$, substituting their Taylor series at z_{2} into (4.8), we see that z_{2} is a zero of $\Phi(z)$. Thus by Lemma 4.1 we have

$$
\begin{align*}
N_{1)}\left(r, \frac{1}{F-1}\right) & =N_{1)}\left(r, \frac{1}{G-1}\right) \leq \bar{N}\left(r, \frac{1}{\Phi}\right) \\
& \leq T(r, \Phi)+O(1) \leq N(r, \Phi)+S(r, F)+S(r, G) . \tag{4.9}
\end{align*}
$$

It is easy to show that $\Phi(z)$ is analytic at a simple pole or a multiple 1-point of $F(z)$ or $G(z)$. Hence if z_{3} is a pole of $\Phi(z)$ and not a multiple pole of $F(z)$ or $G(z)$, then z_{3} is a zero of $F^{\prime}(z)$ or $G^{\prime}(z)$. Note that z_{3} is not a simple 1-point of $F(z)$ or $G(z)$, so if z_{3} is also not a multiple zero of $F(z)$ or $G(z)$ then $F^{\prime}\left(z_{3}\right)=0, F\left(z_{3}\right) \neq 0,1$ or $G^{\prime}\left(z_{3}\right)=0, G\left(z_{3}\right) \neq 0,1$. Thus we have

$$
\begin{aligned}
\bar{N}(r, \Phi) \leq & \bar{N}_{\ell 2}(r, F)+\bar{N}_{(2}(r, G)+\bar{N}_{\ell 2}\left(r, \frac{1}{F}\right) \\
& +\bar{N}_{<2}\left(r, \frac{1}{G}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right),
\end{aligned}
$$

where $N_{0}\left(r, 1 / F^{\prime}\right)$ is the counting function which only counts those zeros of F^{\prime} but not those of $F(F-1)$.

Substituting the above inequality into (4.9) and noting (4.2), we have

$$
\begin{aligned}
\bar{N}_{1)}\left(r, \frac{1}{F-1}\right) \leq & \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right) \\
& +\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, F)+S(r, G)
\end{aligned}
$$

By the second fundamental theorem and (4.2), we have

$$
\begin{align*}
& T(r, F) \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)+S(r, F) \tag{4.11}\\
& T(r, G) \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \tag{4.12}
\end{align*}
$$

Therefore, we deduce from (4.10), (4.11) and (4.12) that

$$
\begin{align*}
T(r, F)+T(r, G) \leq & \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}_{1)}\left(r, \frac{1}{F-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)+S(r, F) \\
& +\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{G-1}\right) \\
& -N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \\
\leq & N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N\left(r, \frac{1}{G-1}\right) \\
& +S(r, F)+S(r, G) . \tag{4.13}
\end{align*}
$$

Without loss of generality, we assume that $T(r, G) \leq T(r, F)$ for $r \in I$ which is a set of infinite measure. Thus, (4.13) implies

$$
T(r) \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+S(r, F)+S(r, G)
$$

for $r \in I$, contradicting (4.7). Hence $\Phi(z) \equiv 0$, that is,

$$
\begin{equation*}
\frac{F^{\prime \prime}(z)}{F^{\prime}(z)}-2 \frac{F^{\prime}(z)}{F(z)-1}=\frac{G^{\prime \prime}(z)}{G^{\prime}(z)}-2 \frac{G^{\prime}(z)}{G(z)-1} \tag{4.14}
\end{equation*}
$$

Solving (4.14), we have

$$
\begin{equation*}
F(z)=\frac{(b+1) G(z)+(a-b-1)}{b G(z)+(a-b)} \tag{4.15}
\end{equation*}
$$

where $a(\neq 0)$ and b are two constants.
If $b+1 \neq 0, a-b-1 \neq 0$, then

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{G+(a-b-1) /(b+1)}\right) \tag{4.16}
\end{equation*}
$$

By Lemma 2.2 and Lemma 4.1, and (4.15) we deduce that

$$
\begin{equation*}
T(r, F)=T(r, G)+O(1) \tag{4.17}
\end{equation*}
$$

Thus by the second fundamental theorem, we get from (4.2), (4.16) and (4.17) that

$$
\begin{aligned}
T(r) & =T(r, G)+O(1) \\
& \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G+(a-b-1) /(b+1)}\right)+S(r, G) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, G)
\end{aligned}
$$

which contradicts (4.7). Hence either $b+1=0$ or $a-b-1=0$.
If $b+1=0$, then (4.15) becomes

$$
F(z)=\frac{a}{-G(z)+a+1}
$$

Clearly,

$$
\bar{N}(r, F)=\bar{N}\left(r, \frac{1}{G-a-1}\right)
$$

Using the same argument as in the former case, we can deduce that $a=-1$, which implies $F(z) G(z) \equiv 1$.

If $a-b-1=0$, then (4.15) becomes

$$
F(z)=\frac{a G(z)}{b G(z)+1}
$$

If $b \neq 0$, then we have

$$
\bar{N}(r, F)=\bar{N}\left(r, \frac{1}{G+1 / b}\right)
$$

Using the former method once more, we can obtain a contradiction. Hence $b=0$ and then $a=1$ which implies $F(z) \equiv G(z)$. Hence we deduce that either $F(z) G(z) \equiv 1$ or $F(z) \equiv G(z)$.

Now we prove $f(z) \equiv g(z)$.

If $G(z) F(z) \equiv 1$, that is

$$
\begin{equation*}
f^{6}(z)(f(z)-1) g^{6}(z)(g(z)-1) \equiv \alpha^{2}(z) \tag{4.18}
\end{equation*}
$$

then from (4.18) and the conditions of Theorem 5 we know that any zero or 1-point of $f(z)$ must be a zero of $\alpha(z)$. By the second fundamental theorem, we have

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-1}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{\alpha}\right)+S(r, f)=S(r, f)
\end{aligned}
$$

which is a contradiction. It shows that $F(z) G(z) \not \equiv 1$. Hence $F(z) \equiv G(z)$, that is,

$$
f^{6}(z)(f(z)-1) \equiv g^{6}(z)(g(z)-1)
$$

If $f(z) \not \equiv g(z)$, then $h(z)=f(z) / g(z) \not \equiv 1$. Substituting $h(z)$ into the above equation, we have

$$
g(z)=\frac{1+h+\cdots+h^{5}}{1+h+\cdots+h^{6}}
$$

If $h(z)$ is not a constant function, then by Picard's theorem we deduce that $1+h+$ $\cdots+h^{6}$ has zeros. Hence $g(z)$ has poles. Thus we obtain that $g(z)$ is either a constant or has poles but this is impossible. Hence $f(z) \equiv g(z)$. The proof of Theorem 5 is complete.

Acknowledgement

The authors would like to thank the referee for his helpful suggestions.

References

[1] C. T. Chuang and C. C. Yang, Fixed points and factorization theory for meromorphic functions (World Scientific, Singapore, 1990).
[2] F. Gross, Factorization of meromorphic functions and some open problems, Lecture Notes in Math. 599 (Springer, 1977).
[3] Y. X. Gu, 'A normal criterion of meromorphic families', Scientia Sinica 1 (1979), 267-274.
[4] G. G. Gundersen, 'Meromorphic functions that share four values', Trans. Amer. Math. Soc. 277 (1983), 545-567; ‘Correction to 'Meromorphic functions that share four values', Trans. Amer. Math. Soc., 304 (1987), pp. 847-850.
[5] W. K. Hayman, Meromorphic functions (Clarendon Press, Oxford, 1964).
[6] P. C. Rosenbloom, ‘The fix-points of entire functions', Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), Tom Supplementaire, 186-192.
[7] J. Schiff, Normal families (Springer, Berlin, 1993).
[8] L. Yang, 'Normal families and fix-points of meromorphic functions', Indiana Univ. Math. J. 35 (1986), 179-191.
[9] H. X. Yi, 'A question of Gross and uniqueness of meromorphic functions’, Nagoya Math. J. 33 (1995), 521-527.
[10] H. X. Yi and C. C. Yang, Unicity theory of meromorphic functions (Science Press, Beijing, 1995).
[11] L. Zalcman, 'A heuristic principle in complex function theory', Amer. Math. Monthly 82 (1975), 813-817.
[12] J. H. Zheng and C. C. Yang, 'Further results on fixpoints and zeros of entire functions’, Trans. Amer. Math. Soc. 347 (1995), 37-50.

State Key Laboratory of millimetre waves Southeast University
Nanjing 210096
or
Department of Mathematics Nanjing Normal University Nanjing 210097
P. R. China e-mail: mlfang@seu.edu.cn

Department of Mathematics Guan Zhou Normal University

Guan Zhou, 510405
P. R. China
e-mail: gzywj@163.net

