J. Austral. Math. Soc. (Series A) 68 (2000), 321-333

ON ROSENBLOOM'S FIXED-POINT THEOREM AND RELATED RESULTS

MINGLIANG FANG and WENJUN YUAN

(Received 3 May 1999; revised 6 September 1999)

Communicated by P. Fenton

Abstract

In this paper, we improve the Rosenbloom's fixed-point theorem and prove a related normality criterion. We also consider the corresponding unicity theorem for transcendental entire functions.

2000 Mathematics subject classification: primary 30D35. Keywords and phrases: Entire function, fixed-point, normal criterion, unicity theorem.

1. Introduction and the main results

Let f(z) be a nonconstant meromorphic function in the whole complex plane. We use the following standard notations of value distribution theory,

$$T(r, f), m(r, f), N(r, f), N(r, f), \ldots$$

(see Hayman [5]). We denote by S(r, f) any function satisfying

$$S(r, f) = o\{T(r, f)\},\$$

as $r \to +\infty$, possibly outside a set of finite measure.

A meromorphic function $\alpha(z)$ is called a small function related to f(z) if $T(r, \alpha) = S(r, f)$.

Let S be a set of complex numbers. Write

$$E(S, f) = \bigcup_{a \in S} \{ z \mid f(z) - a = 0 \},\$$

321

The first author was supported by National Natural Science Foundation of China. © 2000 Australian Mathematical Society 0263-6115/2000 \$A2.00 + 0.00

where a solution to f(z) - a = 0 with multiplicity *m* is counted *m* times in the above set.

In 1952, Rosenbloom [6] proved the following theorem.

THEOREM 1. Let P(z) be a polynomial with deg $P \ge 2$, f(z) a transcendental entire function. Then

(1.1)
$$\overline{\lim_{r \to \infty} \frac{N(r, 1/(P(f) - z))}{T(r, f)}} \ge 1.$$

In 1995, Zheng and Yang [12] proved

THEOREM 2. Let P(z) be a polynomial with deg $P \ge 2$, f(z) a transcendental entire function, and $\alpha(z)$ a nonconstant meromorphic function satisfying $T(r, \alpha) = S(r, f)$. Then

(1.2)
$$T(r,f) \le k\overline{N}\left(r,\frac{1}{P(f)-\alpha}\right) + S(r,f).$$

Here $k = 2/(\deg P - 1)$ if P'(z) has only one zero; otherwise k = 2.

Naturally, we ask what is the best possible k in (1.2). In this paper, we have obtained such a k by proving the following result.

THEOREM 3. Let P(z) be a polynomial with deg $P \ge 2$, f(z) a transcendental entire function, and $\alpha(z)$ a meromorphic function satisfying $T(r, \alpha) = S(r, f)$. If $\alpha(z)$ is a constant, we also require that there exists a constant $A \neq \alpha$ such that P(z) - A has a zero of multiplicity at least 2. Then

(1.3)
$$T(r,f) \le k\overline{N}\left(r,\frac{1}{P(f)-\alpha}\right) + S(r,f).$$

Here $k = 1/(\deg P - 1)$ if P'(z) has only one zero; otherwise k = 1.

Obviously, Theorem 3 improves Theorem 2 and implies the following corollary.

COROLLARY 1. Let P(z) be a polynomial with deg $P \ge 2$, f(z) a transcendental entire function, and $\alpha(z)$ a nonconstant meromorphic function satisfying $T(r, \alpha) = S(r, f)$. Then

(1.4)
$$\overline{\lim_{r \to \infty} \frac{\overline{N}(r, 1/(P(f) - \alpha))}{T(r, f)}} \ge 1.$$

The following examples show that the condition in Theorem 3 when $\alpha(z)$ is a constant is necessary and the number k in Theorem 3 is sharp.

EXAMPLE 1. Let $f(z) = e^z - 1$, $P(z) = (z + 1)^n + 1$, where $n \ge 2$ is a positive integer, and $\alpha = 1$. Thus $P(z) - \alpha = P(z) - 1 = (z + 1)^n$, $P(f) - \alpha = e^{nz}$. Hence (1.3) does not hold. Obviously, α is the only constant A such that P(z) - A has a zero with multiplicity ≥ 2 .

EXAMPLE 2. Let $f(z) = e^z + z$, P(z) = z, $\alpha(z) = z$. Thus $P(f) - \alpha = e^z$ and (1.3) does not hold.

EXAMPLE 3. Let $f(z) = e^z$, $P(z) = (z + 1)^n$, where $n \ge 2$ is a positive integer, and $\alpha = 1$. Thus $P(f) - 1 = (e^z + 1)^n - 1 = e^z \prod_{i=1}^{n-1} (e^z + 1 - e_i)$, where $e_i \ne 1$ is a distinct zero of $z^n - 1$ (i = 1, 2, ..., n - 1). Thus we have

$$T(r,f) = \frac{1}{n-1}\overline{N}\left(r,\frac{1}{P(f)-1}\right) + S(r,f).$$

Hence $k = 1/(\deg P - 1) = 1/(n - 1)$ is sharp in Theorem 3.

EXAMPLE 4. Let $f(z) = e^{z} + 1$, $P(z) = z(z - 1)^{2}$ and $\alpha = 0$. Thus $P(f) = (e^{z} + 1)e^{2z}$ and

$$T(r,f) = \overline{N}\left(r,\frac{1}{P(f)}\right) + S(r,f).$$

Thus k = 1 is sharp in Theorem 3.

We know that for the second Nevanlinna fundamental theorem there exists a corresponding Montel's normality criterion [5] and for Hayman's inequality there exists Gu's normality criterion (see [3]). Naturally, we ask whether there exists a corresponding normality criterion for inequality (1.3). The following theorem gives a positive answer to this question.

THEOREM 4. Let \mathscr{F} be a family of analytic functions in a domain D, P(z) a polynomial with deg $P \ge 2$. Suppose that $\alpha(z)$ is either a nonconstant analytic function or a constant function such that $P(z) - \alpha$ has at least two distinct roots. If $P(f(z)) \neq \alpha(z)$ for each $f(z) \in \mathscr{F}$, then \mathscr{F} is normal in D.

The following two examples illustrate that the conditions in Theorem 4 are necessary.

EXAMPLE 5. Take P(z) = z, $f_n(z) = z + e^{nz}$, $D = \{|z| < 1\}$. It is easy to see that $P(f_n(z)) \neq z$ in D and the analytic family $\{f_n(z)\}$ is not normal in D.

EXAMPLE 6. Let $P(z) = z^k + 1$, where $k \ge 2$ is a positive integer, $f_n(z) = e^{nz}$, $\alpha(z) = 1$, $D = \{|z| < 1\}$. It is easy to see that $P(f_n(z)) \ne 1$ and that $f_n(z)$ are analytic in D. But $\{f_n(z)\}$ is not normal in D.

Theorem 4 implies the following corollary.

COROLLARY 2. Let \mathscr{F} be a family of analytic functions in a domain D, P(z) a polynomial with deg $P \ge 2$. If $P(f(z)) \ne z$ for each $f(z) \in \mathscr{F}$, then \mathscr{F} is normal in D.

By the second fundamental theorem, Nevanlinna obtained the five-value unicity theorem. Naturally, we ask whether there exists a corresponding unicity theorem for inequality (1.3). In this paper, we prove the following result.

THEOREM 5. Let f(z) and g(z) be two transcendental entire functions, $\alpha(z) \neq 0$ a common small function related to f(z) and g(z), and $P(z) = z^6(z-1)$. If $P(f(z)) - \alpha(z)$ and $P(g(z)) - \alpha(z)$ have the same zeros (counting multiplicity), then $f(z) \equiv g(z)$.

REMARK 1. Let $f(z) = e^z$, $g(z) = e^{-z}$, $P(z) = z^6(z-1)$ and $\alpha(z) \equiv 0$. Obviously, $P(f(z)) - \alpha(z)$ and $P(g(z)) - \alpha(z)$ have the same zeros (counting multiplicity). But $f(z) \neq g(z)$. Hence, $\alpha(z) \neq 0$ is necessary in Theorem 5.

From Theorem 5, we can easily obtain the following corollaries.

COROLLARY 3. Let f(z) and g(z) be two transcendental entire functions, and $P(z) = z^6(z-1)$. If P(f(z)) - z and P(g(z)) - z have the same zeros (counting multiplicity), then $f(z) \equiv g(z)$.

Note that $P(z) = z^6(z-1)$, and that P(f(z)) - 1 and P(g(z)) - 1 have the same zeros (counting multiplicity) if and only if E(S, f) = E(S, g), where $S = \{z \mid z^6(z-1) = 1\}$. Thus Theorem 5 implies.

COROLLARY 4. Let $S = \{z \mid z^6(z-1) = 1\}$, f(z) and g(z) be two transcendental entire functions. If E(S, f) = E(S, g), then $f(z) \equiv g(z)$.

Note that Corollary 4 gives a positive answer to a question of Gross (see Gross [2], Yi [9]).

2. Proof of Theorem 3

In order to prove Theorem 3 we need the following lemmas.

LEMMA 2.1 (see [1, 5]). Let f(z) be a meromorphic function. If there exist two functions $a_i(z)$ such that $T(r, a_i) = S(r, f)$, i = 1, 2, then

$$T(r,f) \leq \overline{N}(r,f) + \overline{N}\left(r,\frac{1}{f-a_1}\right) + \overline{N}\left(r,\frac{1}{f-a_2}\right) + S(r,f).$$

LEMMA 2.2 ([10]). Let

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$

where $a_n \neq 0$, a_{n-1}, \ldots, a_0 , are constants. If f(z) is a meromorphic function, then

$$T(r, P(f)) = nT(r, f) + S(r, f).$$

Next we prove Theorem 3.

PROOF. We consider two cases.

Case 1. $\alpha(z)$ is a constant function. Then by the assumption in Theorem 3 we can choose a constant A such that P(z) - A has a zero (say a) with multiplicity $m \ge 2$. Let $a_1, a_2, \ldots, a_{n-m}$ be the other zeros of P(z) - A, where $n = \deg P$. Then from Lemma 2.1, we have

$$T(r, P(f)) \leq \overline{N}\left(r, \frac{1}{P(f) - \alpha}\right) + \overline{N}\left(r, \frac{1}{P(f) - A}\right) + S(r, P(f))$$

$$\leq \overline{N}\left(r, \frac{1}{P(f) - \alpha}\right) + \overline{N}\left(r, \frac{1}{f - a}\right) + \sum_{i=1}^{n-m} \overline{N}\left(r, \frac{1}{f - a_i}\right) + S(r, f)$$

$$(2.1) \qquad \leq \overline{N}\left(r, \frac{1}{P(f) - \alpha}\right) + \overline{N}\left(r, \frac{1}{f - a}\right) + (n - m)T(r, f) + S(r, f).$$

On the other hand, by Lemma 2.2 we have

(2.2)
$$T(r, P(f)) = nT(r, f) + S(r, f).$$

If P'(z) has only one zero, then m = n. Thus we deduce from (2.1) and (2.2) that

$$T(r, f) \leq \frac{1}{\deg P - 1} \overline{N}\left(r, \frac{1}{P(f) - \alpha}\right) + S(r, f).$$

Otherwise, $n - m \le n - 2$. Hence we deduce from (2.1) and (2.2) that

$$T(r, f) \leq \overline{N}\left(r, \frac{1}{P(f) - \alpha}\right) + S(r, f).$$

Case 2. $\alpha(z)$ is a nonconstant meromorphic function satisfying T(r, f) = S(r, f). In this case we can also choose A such that P(z) - A has a zero (say a) with multiplicity $m \ge 2$. Using the same argument as in Case 1, we obtain (1.3). The proof of Theorem 3 is complete.

3. Proof of Theorem 4

For the proof of Theorem 4, we need the Zalcman's Lemma [11].

LEMMA 3.1. If a family \mathscr{F} of functions analytic on the unit disc D is not normal at z = 0, then there exist a number 0 < r < 1, a sequence of complex numbers $z_n \to 0$, a sequence of functions $f_n(z) \in \mathscr{F}$, a sequence of positive numbers $\rho_n \to 0$ such that

$$g_n(\xi) = f_n(z_n + \rho_n \xi) \to g(\xi)$$

uniformly on any compact subset of C, where $g(\xi)$ is a non-constant entire function.

Now we prove Theorem 4.

PROOF. First, we prove the case when $\alpha(z)$ is a nonconstant analytic function in the domain D. We consider two cases.

Case I. $P(z) - \alpha(0)$ has at least two distinct zeros a and b.

Suppose that \mathscr{F} is not normal in D. Without loss of generality, we assume that \mathscr{F} is not normal at z = 0. By Lemma 3.1, there exist 0 < r < 1, $z_n \to 0$, $f_n \in \mathscr{F}$, $\rho_n \to 0^+$ such that

$$g_n(\xi) = f_n(z_n + \rho_n \xi) \rightarrow g(\xi)$$

uniformly on compact subsets of C, where $g(\xi)$ is a non-constant entire function.

Hence

$$(3.1) \qquad P(f_n(z_n + \rho_n \xi)) - \alpha(z_n + \rho_n \xi) \to P(g(\xi)) - \alpha(0)$$

uniformly on any compact subset of C. Since $P(f_n(z_n + \rho_n \xi)) - \alpha(z_n + \rho_n \xi) \neq 0$, using Hurwitz's theorem for (3.1), we get $P(g(\xi)) \neq \alpha(0)$. Thus $g(\xi) \neq a, b$. Noting that $g(\xi)$ is an entire function, we deduce that $g(\xi)$ is a constant (Picard's theorem), which is a contradiction.

Case II. $P(z) - \alpha(0)$ has only one zero. We can write $P(z) - \alpha(0) = (az - b)^n$ $(a \neq 0, n \ge 2)$. Obviously, there exists a neighbourhood (denoted by U) of point z = 0 such that $\alpha(z) \neq \alpha(0)$ for all $z \in U \setminus \{0\}$.

We claim that \mathscr{F} is normal at $z_0 \neq 0 \in U$. In fact, if \mathscr{F} is not normal at z_0 , then by using the similar argument as in Case I, we obtain $P(g(\xi)) \neq \alpha(z_0)$, that is, $(ag(\xi) - b)^n \neq \alpha(z_0) - \alpha(0)$. Therefore, $g(\xi)$ is not equal *n* distinct values $(1/a)(\{\alpha(z_0) - \alpha(0)\}^{1/n} + b)$. This means that $g(\xi)$ is a constant, which is a contradiction.

Next we prove \mathscr{F} is normal at $z_0 = 0$. For any $f_n(z) \in \mathscr{F}$ and $C_r = \{z : |z| = r\} \subset U$, we know $\{f_n(z)\}$ is normal in C_r by the former conclusion. Thus there exists a subsequence f_{n_k} such that

$$f_{n_k}(z) \to g(z),$$

uniformly on C_r .

If $g(z) \neq \infty$, then g(z) is analytic on C_r . Hence there exist an integer N and a positive number M such that

$$|f_{n_k}(z)| \leq M,$$

for all $k \ge N$, $z \in C_r$. By the maximum modulus theorem, we have

$$|f_{n_k}(z)| \leq M,$$

for all $k \ge N$, $|z| \le r$. Hence $\{f_{n_k}(z)\}$ is normal in $\{z : |z| \le r\}$ by Montel's normality criterion (see [5]). Thus there exists a subsequence of $f_{n_k}(z)$ (which we continue to denote by $f_{n_k}(z)$) such that

$$(3.2) f_{n_k}(z) \to g(z),$$

uniformly on $\{z : |z| \leq r\}$.

If $g(z) \equiv \infty$, then there exist an integer N and a positive $M > M(r, \alpha(z))$ such that

$$|P(f_{n_{\star}}(z))| \geq M,$$

for all $k \ge N$, $z \in C_r$, where $M(r, \alpha) = \max_{|z| \le r} \{ |\alpha(z)| \}$. Thus

$$|P(f_{n_t}(z)) - \alpha(z)| \ge M - M(r, \alpha) > 0,$$

for all $k \ge N$, $z \in C_r$. Note that $P(f_{n_k}(z)) - \alpha(z)$ has no zeros in $\{z : |z| \le r\}$, and thus we have

$$|P(f_{n_k}(z)) - \alpha(z)| \ge M - M(r, \alpha),$$

for all $k \ge N$, $|z| \le r$ by the minimum modulus theorem. This means that

$$(3.3) f_{n_k}(z) \to \infty$$

uniformly on $\{z : |z| \le r\}$. Thus we deduce from (3.2) and (3.3) that \mathscr{F} is normal at z = 0. Therefore, \mathscr{F} is normal in D in the case when $\alpha(z)$ is a nonconstant analytic function in D.

If $\alpha(z)$ is a constant, then by using the same argument as in Case I, we can prove \mathscr{F} is normal in D. Thus the proof of Theorem 4 is complete.

4. Proof of Theorem 5

In order to prove our result, we need the following lemma.

LEMMA 4.1. Let f(z) be a meromorphic function. Then

$$T\left(r,\frac{1}{f-a}\right) = T(r,f) + O(1); \qquad T\left(r,\frac{f^{(k)}}{f^{(l)}}\right) = S(r,f),$$

where k, l are two integer satisfying $k > l \ge 0$; and

$$(q-1)T(r,f) \le N(r,f) + \sum_{i=1}^{q} N\left(r,\frac{1}{f-a_i}\right) - N_1(r,f) + S(r,f),$$

where a_i (i = 1, ..., q) are distinct constants and

$$N_1(r, f) = N\left(r, \frac{1}{f'}\right) + 2N(r, f) - N(r, f').$$

PROOF (of Theorem 5). In the proof we use the following notation.

 $N_{(2}(r, 1/(f - a)))$ is the counting function which includes only multiple zeros of f(z) - a, $\overline{N}_{(2}(r, 1/(f - a)))$ the corresponding reduced counting function, and $N_2(r, 1/(f - a)) = \overline{N}(r, 1/(f - a)) + \overline{N}_{(2}(r, 1/(f - a))), N_{(1)}(r, 1/(f - a))) =$ $N(r, 1/(f - a)) - N_{(2}(r, 1/(f - a))).$

Set

$$F(z) = \frac{P(f(z))}{\alpha(z)}$$
, and $G(z) = \frac{P(g(z))}{\alpha(z)}$.

It follows from assumptions of Theorem 5 that

(4.1)
$$N\left(r,\frac{1}{F-1}\right) = N\left(r,\frac{1}{G-1}\right) + S(r,f),$$

(4.2)
$$N_2(r, F) = N_2(r, G) = S(r, f).$$

If z_0 is a zero of F(z) and not a pole of $\alpha(z)$, then z_0 is either a zero of f(z) or f(z) - 1. Thus

(4.3)
$$\overline{N}\left(r,\frac{1}{F}\right) \leq \overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f-1}\right) + S(r,f).$$

If z_1 is a multiple zero of F(z) and not a pole of $\alpha(z)$, then z_1 is a zero of f(z) or a multiple zero of f(z) - 1. Hence

(4.4)
$$\overline{N}_{(2}\left(r,\frac{1}{F}\right) \leq \overline{N}\left(r,\frac{1}{f}\right) + \overline{N}_{(2}\left(r,\frac{1}{f-1}\right) + S(r,f).$$

Thus we deduce from (4.2), (4.3), (4.4), Lemma 4.1, and Lemma 2.2 that

$$N_{2}\left(r,\frac{1}{F}\right) = \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}_{l2}\left(r,\frac{1}{F}\right)$$

$$\leq 2\overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f-1}\right) + \overline{N}_{l2}\left(r,\frac{1}{f-1}\right) + S(r,F)$$

$$\leq 2\overline{N}\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f-1}\right) + S(r,F)$$

$$\leq 3T(r,f) + S(r,F)$$

$$\leq \left(\frac{3}{7} + o(1)\right)T(r,F).$$
(4.5)

In the same manner we obtain that

(4.6)
$$N_2\left(r,\frac{1}{G}\right) \leq \left(\frac{3}{7} + o(1)\right)T(r,G).$$

Therefore, we deduce from (4.5) and (4.6) that

(4.7)
$$N_2\left(r,\frac{1}{F}\right) + N_2\left(r,\frac{1}{G}\right) \le \left(\frac{6}{7} + o(1)\right)T(r),$$

where $T(r) = \max\{T(r, F), T(r, G)\}.$

We claim that either $F(z) \equiv G(z)$ or $F(z)G(z) \equiv 1$. Set

(4.8)
$$\Phi(z) = \frac{F''(z)}{F'(z)} - 2\frac{F'(z)}{F(z)-1} - \frac{G''(z)}{G'(z)} + 2\frac{G'(z)}{G(z)-1}$$

and suppose that $\Phi(z) \neq 0$. Obviously, $m(r, \Phi) = S(r, F) + S(r, G)$.

If z_2 is a common simple 1-point of F(z) and G(z), substituting their Taylor series at z_2 into (4.8), we see that z_2 is a zero of $\Phi(z)$. Thus by Lemma 4.1 we have

(4.9)
$$N_{11}\left(r,\frac{1}{F-1}\right) = N_{11}\left(r,\frac{1}{G-1}\right) \le \overline{N}\left(r,\frac{1}{\Phi}\right)$$
$$\le T(r,\Phi) + O(1) \le N(r,\Phi) + S(r,F) + S(r,G).$$

It is easy to show that $\Phi(z)$ is analytic at a simple pole or a multiple 1-point of F(z) or G(z). Hence if z_3 is a pole of $\Phi(z)$ and not a multiple pole of F(z) or G(z), then z_3 is a zero of F'(z) or G'(z). Note that z_3 is not a simple 1-point of F(z) or G(z), so if z_3 is also not a multiple zero of F(z) or G(z) then $F'(z_3) = 0$, $F(z_3) \neq 0$, 1 or $G'(z_3) = 0$, $G(z_3) \neq 0$, 1. Thus we have

$$\begin{split} \overline{N}(r,\Phi) &\leq \overline{N}_{(2}(r,F) + \overline{N}_{(2}(r,G) + \overline{N}_{(2}\left(r,\frac{1}{F}\right) \\ &+ \overline{N}_{(2}\left(r,\frac{1}{G}\right) + \overline{N}_{0}\left(r,\frac{1}{F'}\right) + \overline{N}_{0}\left(r,\frac{1}{G'}\right), \end{split}$$

where $N_0(r, 1/F')$ is the counting function which only counts those zeros of F' but not those of F(F-1).

Substituting the above inequality into (4.9) and noting (4.2), we have

(4.10)
$$\overline{N}_{10}\left(r,\frac{1}{F-1}\right) \leq \overline{N}_{02}\left(r,\frac{1}{F}\right) + \overline{N}_{02}\left(r,\frac{1}{G}\right) + \overline{N}_{0}\left(r,\frac{1}{F'}\right) + \overline{N}_{0}\left(r,\frac{1}{G'}\right) + S(r,F) + S(r,G).$$

By the second fundamental theorem and (4.2), we have

(4.11)
$$T(r,F) \leq \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{F-1}\right) - N_0\left(r,\frac{1}{F'}\right) + S(r,F),$$

(4.12)
$$T(r,G) \leq \overline{N}\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{G-1}\right) - N_0\left(r,\frac{1}{G'}\right) + S(r,G).$$

Therefore, we deduce from (4.10), (4.11) and (4.12) that

$$T(r, F) + T(r, G) \leq \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}_{11}\left(r, \frac{1}{F-1}\right) - N_0\left(r, \frac{1}{F'}\right) + S(r, F)$$

$$+ \overline{N}\left(r, \frac{1}{G}\right) + \overline{N}\left(r, \frac{1}{G-1}\right) + \overline{N}_{(2}\left(r, \frac{1}{G-1}\right)$$

$$- N_0\left(r, \frac{1}{G'}\right) + S(r, G)$$

$$\leq N_2\left(r, \frac{1}{F}\right) + N_2\left(r, \frac{1}{G}\right) + N\left(r, \frac{1}{G-1}\right)$$

$$+ S(r, F) + S(r, G).$$

$$(4.13)$$

Without loss of generality, we assume that $T(r, G) \leq T(r, F)$ for $r \in I$ which is a set of infinite measure. Thus, (4.13) implies

$$T(r) \leq N_2\left(r, \frac{1}{F}\right) + N_2\left(r, \frac{1}{G}\right) + S(r, F) + S(r, G).$$

for $r \in I$, contradicting (4.7). Hence $\Phi(z) \equiv 0$, that is,

(4.14)
$$\frac{F''(z)}{F'(z)} - 2\frac{F'(z)}{F(z)-1} = \frac{G''(z)}{G'(z)} - 2\frac{G'(z)}{G(z)-1}.$$

Solving (4.14), we have

(4.15)
$$F(z) = \frac{(b+1)G(z) + (a-b-1)}{bG(z) + (a-b)},$$

where $a \neq 0$ and b are two constants.

If $b + 1 \neq 0$, $a - b - 1 \neq 0$, then

(4.16)
$$\overline{N}\left(r,\frac{1}{F}\right) = \overline{N}\left(r,\frac{1}{G+(a-b-1)/(b+1)}\right).$$

By Lemma 2.2 and Lemma 4.1, and (4.15) we deduce that

(4.17)
$$T(r, F) = T(r, G) + O(1).$$

Thus by the second fundamental theorem, we get from (4.2), (4.16) and (4.17) that

$$\begin{split} T(r) &= T(r, G) + O(1) \\ &\leq \overline{N}(r, G) + \overline{N}\left(r, \frac{1}{G}\right) + \overline{N}\left(r, \frac{1}{G + (a - b - 1)/(b + 1)}\right) + S(r, G) \\ &\leq \overline{N}\left(r, \frac{1}{G}\right) + \overline{N}\left(r, \frac{1}{F}\right) + S(r, G), \end{split}$$

which contradicts (4.7). Hence either b + 1 = 0 or a - b - 1 = 0.

If b + 1 = 0, then (4.15) becomes

$$F(z) = \frac{a}{-G(z) + a + 1}.$$

Clearly,

$$\overline{N}(r, F) = \overline{N}\left(r, \frac{1}{G-a-1}\right).$$

Using the same argument as in the former case, we can deduce that a = -1, which implies $F(z)G(z) \equiv 1$.

If a - b - 1 = 0, then (4.15) becomes

$$F(z) = \frac{aG(z)}{bG(z)+1}.$$

If $b \neq 0$, then we have

$$\overline{N}(r, F) = \overline{N}\left(r, \frac{1}{G+1/b}\right).$$

Using the former method once more, we can obtain a contradiction. Hence b = 0 and then a = 1 which implies $F(z) \equiv G(z)$. Hence we deduce that either $F(z)G(z) \equiv 1$ or $F(z) \equiv G(z)$.

Now we prove $f(z) \equiv g(z)$.

If $G(z)F(z) \equiv 1$, that is

(4.18)
$$f^{6}(z)(f(z)-1)g^{6}(z)(g(z)-1) \equiv \alpha^{2}(z),$$

then from (4.18) and the conditions of Theorem 5 we know that any zero or 1-point of f(z) must be a zero of $\alpha(z)$. By the second fundamental theorem, we have

$$T(r,f) \leq \overline{N}(r,f) + \overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{f-1}\right) + S(r,f)$$
$$\leq N\left(r,\frac{1}{\alpha}\right) + S(r,f) = S(r,f),$$

which is a contradiction. It shows that $F(z)G(z) \neq 1$. Hence $F(z) \equiv G(z)$, that is,

$$f^{6}(z)(f(z)-1) \equiv g^{6}(z)(g(z)-1).$$

If $f(z) \neq g(z)$, then $h(z) = f(z)/g(z) \neq 1$. Substituting h(z) into the above equation, we have

$$g(z)=\frac{1+h+\cdots+h^5}{1+h+\cdots+h^6}.$$

If h(z) is not a constant function, then by Picard's theorem we deduce that $1 + h + \cdots + h^6$ has zeros. Hence g(z) has poles. Thus we obtain that g(z) is either a constant or has poles but this is impossible. Hence $f(z) \equiv g(z)$. The proof of Theorem 5 is complete.

Acknowledgement

The authors would like to thank the referee for his helpful suggestions.

References

- [1] C. T. Chuang and C. C. Yang, Fixed points and factorization theory for meromorphic functions (World Scientific, Singapore, 1990).
- F. Gross, Factorization of meromorphic functions and some open problems, Lecture Notes in Math. 599 (Springer, 1977).
- [3] Y. X. Gu, 'A normal criterion of meromorphic families', Scientia Sinica 1 (1979), 267-274.
- [4] G. G. Gundersen, 'Meromorphic functions that share four values', Trans. Amer. Math. Soc. 277 (1983), 545-567; 'Correction to 'Meromorphic functions that share four values', Trans. Amer. Math. Soc., 304 (1987), pp. 847-850.
- [5] W. K. Hayman, Meromorphic functions (Clarendon Press, Oxford, 1964).

[13] On Rosenbloom's fixed-point theorem and related results

- [6] P. C. Rosenbloom, 'The fix-points of entire functions', Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), Tom Supplementaire, 186–192.
- [7] J. Schiff, Normal families (Springer, Berlin, 1993).
- [8] L. Yang, 'Normal families and fix-points of meromorphic functions', Indiana Univ. Math. J. 35 (1986), 179–191.
- [9] H. X. Yi, 'A question of Gross and uniqueness of meromorphic functions', Nagoya Math. J. 33 (1995), 521-527.
- [10] H. X. Yi and C. C. Yang, Unicity theory of meromorphic functions (Science Press, Beijing, 1995).
- [11] L. Zalcman, 'A heuristic principle in complex function theory', Amer. Math. Monthly 82 (1975), 813–817.
- [12] J. H. Zheng and C. C. Yang, 'Further results on fixpoints and zeros of entire functions', Trans. Amer. Math. Soc. 347 (1995), 37-50.

State Key Laboratory of millimetre wavesDepartment of MathematicsSoutheast UniversityGuan Zhou Normal UniversityNanjing 210096Guan Zhou, 510405orP. R. ChinaDepartment of Mathematicse-mail: gzywj@163.netNanjing Normal UniversityNanjing 210097P. R. Chinae-mail: mlfang@seu.edu.cn