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Abstract
This work presents visual morphological and dynamical classifications for 637 spatially resolved galaxies, most of which are at intermediate
redshift (z ∼ 0.3), in the Middle-Ages Galaxy Properties with Integral field spectroscopy (MAGPI) Survey. For each galaxy, we obtain a
minimum of 11 independent visual classifications by knowledgeable classifiers. We use an extension of the standard Dawid-Skene bayesian
model introducing classifier-specific confidence parameters and galaxy-specific difficulty parameters to quantify classifier confidence and
infer reliable statistical confidence estimates. Selecting sub-samples of 86 bright (r < 20 mag) high-confidence (> 0.98) morphological clas-
sifications at redshifts (0.2≤ z ≤ 0.4), we confirm the full range of morphological types is represented in MAGPI as intended in the survey
design. Similarly, with a sub-sample of 82 bright high-confidence stellar kinematic classifications, we find that the rotating and non-rotating
galaxies seen at low redshift are already in place at intermediate redshifts. We do not find evidence that the kinematic morphology–density
relation seen at z ∼ 0 is established at z ∼ 0.3. We suggest that galaxies without obvious stellar rotation are dynamically pre-processed
sometime before z ∼ 0.3 within lower mass groups before joining denser environments.
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1. Introduction

Galaxies are routinely classified by visual inspection of their
appearance. Astronomers have devised and improved classifica-
tion schemes since the 1900’s. Amongst the first and most popular
classification schemes is that devised by (Hubble 1926, the so-
called ‘tuning fork’) and subsequent expansions suggested by de
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Vaucouleurs (1959), Sandage & Tammann (1981) and others (see
Sandage 2005 for a historical review).

Visual classifications are not just helpful in grouping galaxies
into families, but a broad body of literature has shown that these
visual characteristics of galaxies encode important information
about internal and external physical processes. This is evidenced
by the fact that visual morphology has been linked to many other
properties: colour (e.g. Taylor et al. 2015; Correa et al. 2017), star
formation rate (Sandage 1986; Kennicutt 1998; Wuyts et al. 2011),
galaxy interactions (Lotz et al. 2008; Kannan et al. 2015), environ-
ment (Dressler 1980; Goto et al. 2003, i.e. the morphology–density
relation) and secular processes such as internal perturbations,
torques from bars, spiral scattering, etc (e.g. Buta 2013; Sellwood
2014).
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The overall structural makeup of the galaxy population has
been shown to have evolved both visually (e.g. Abraham & van
den Bergh 2001; Conselice 2014) and dynamically (e.g. Wisnioski
et al. 2015; Bezanson et al. 2018; D’Eugenio et al. 2023b). This
points to the importance of careful morphological and dynamical
classifications of galaxies in studies comparing samples at different
redshifts.

As such, the literature on visual classifications is broad and his-
torically rich. Studies pertaining to visual classification of galaxies
range from historical surveys of nearby galaxies (e.g. Nilson et al.
1973; Sandage & Tammann 1981; Vaucouleurs 1991) to modern
large imaging surveys such as e.g. the Sloan Digital Sky Survey
(SDSS, Abazajian et al. 2009) and the Dark Energy Survey (Cheng
et al. 2021b).

As samples of galaxies to visually classify have grown in pro-
portions, the required individual efforts for obtaining reliable
visual classification have become intractable. Astronomers are
now turning to citizen science projects (e.g. Willett et al. 2017;
Vázquez-Mata et al. 2022; Porter-Temple et al. 2022) and routinely
use automated classification techniques (e.g. Huertas-Company
et al. 2011; Huertas-Company et al. 2015; Sanchez et al. 2019;
Martin et al. 2020; Cavanagh, Bekki, & Groves 2021; Cheng et al.
2021a; Walmsley et al. 2022; Omori et al. 2023; Desmons, Brough,
& Lanusse 2024) to handle the deluge of data.

Morphological classification of galaxies at higher redshift is
complicated by a number of confounding factors including the
unavailability of similar rest-frame band filters, shallower relative
depth and typically lower spatial resolution (see e.g. Ren et al.
2024; Salvador et al. 2024). Visual classifications may thus need
adapting for higher redshift samples (e.g. Masters et al. 2011;
Kartaltepe et al. 2023; Tohill et al. 2023; Conselice et al. 2024).
Indeed, faint features such as tidal features Bílek et al. (2020),
Desmons et al. (2023), as well as comparatively small features such
as central bars or spiral arms (e.g. Masters et al. 2021) may bemore
difficult to identify at high redshift depending on image quality
and depth. High redshift galaxies (beyond z ∼ 2) may be morpho-
logically and structurally different from their local counterparts,
often not having bulges and discs (e.g. Sweet et al. 2020).

As with morphology, visual classification of the dynamics of
galaxies through careful inspection of kinematic maps may help
identify internal sub-structure, signatures of past interactions or
secular processes and environmental effects. As such, modern
spatially resolved spectroscopic surveys have relied on visual clas-
sification of galaxy kinematic maps to identify dynamical families
of galaxies. This approach was pioneered by the SAURON and
ATLAS3D surveys (e.g. Emsellem et al. 2007; Emsellem et al. 2011;
Cappellari et al. 2011; Krajnović et al. 2011) and expanded to
e.g. the MASSIVE Survey (e.g. Veale et al. 2017), the Sydney
Australian astronomical observatory Multi-object Integral-field
spectrographGalaxy Survey (SAMI, e.g., Cortese et al. 2016; van de
Sande et al. 2017a; Foster et al. 2018; van de Sande et al. 2018), the
Mapping Nearby Galaxies at Apache Point Observatory (MaNGA,
e.g. Greene et al. 2017; Masters et al. 2021; Vázquez-Mata et al.
2022) and simulations (e.g. Naab et al. 2014; Lagos et al. 2022).
As with morphology, computational and statistical tools have also
been employed to efficiently sort galaxy kinematics into objective
classes (e.g. Kalinova et al. 2017; van de Sande et al. 2021a; Sweet
et al. 2020).

One may expect that certain kinematic features, especially faint
ones or those on small spatial scales, may be difficult to iden-
tify in shallower or lower spatial resolution higher redshift data.
Such features might include central 2σ (i.e. double maxima in

the velocity dispersion map) or central kinematically decoupled
cores (KDCs). Statistical samples of galaxies with sufficient spa-
tial resolution spectroscopic data at intermediate redshifts are only
just becoming available to make comparisons of kinematic visual
classifications possible (e.g. Guérou et al. 2017; Foster et al. 2021;
Muñoz López et al. 2024).

The Middle-Ages Galaxies Properties with Integral field
spectroscopy (MAGPI) Survey1 is a medium-deep Very Large
Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) sur-
vey of 60 massive (> 7× 1010 M�) central galaxies at redshifts
0.25< z < 0.35 (primaries) and their immediate environment.
The MAGPI sample was selected from the Galaxy and Mass
Assembly (GAMA) survey (Driver et al. 2011) to span a broad
range of environments halo masses (i.e. 11.35≤ log (Mhalo/M�)≤
15.35). This is achieved through dedicated observations of 56× 1
arcmin2 fields and supplemented with 4 massive centrals from
archival observations of Abell 370 (Program ID 096.A-0710; PI:
Bauer) and Abell 2744 (Program IDs: 095.A-0181 and 096.A-
0496; PI: Richard).2 At the time that the visual classifications used
herein were performed, only 35 of the 56 MAGPI fields had been
completely observed and reduced. The remaining fields will be
processed in due course.

The MAGPI survey is thus intermediate to data used in past
visual classification studies. It is a relatively small survey (<1 000
individual galaxies to classify), making careful visual inspection by
a set of expert team members possible. However, MAGPI images
and kinematic maps have respectively lower than and compara-
ble spatial resolution to other z ∼ 0 comparable surveys such as
MaNGA and SAMI. We thus expect that morphological classifica-
tions in MAGPI will be intermediate in detail and accuracy, lying
between high redshift and local surveys, while kinematic classi-
fication will be of similar quality and accuracy to MaNGA and
SAMI, but with the advantage of not being restricted to a fixed
field-of-view/size.

In this work, we present morphological and dynamical visual
classifications for all spatially resolved targets in 35 MAGPI fields.
We endeavour to identify and quantify the dynamical state of
MAGPI galaxies and compare our visual dynamical classification
with published results from local surveys. In Section 2, we present
the MAGPI data used in this work. Section 4 presents our statis-
tical analysis of the collected visual classifications. Our results are
outlined in Section 5 and discussed in Section 6. We present our
conclusions in Section 7.

We assume a �CDM universe with H0 = 70 kms−1 Mpc−1,
�M = 0.3 and �� = 0.7.

2. Data

2.1 Data reduction

The data used herein are taken from the MAGPI Survey. Survey
strategy, sample description and science goals are described in
Foster et al. (2021) along with a description of the initial data
reduction. Detailed data reduction, curation and quality control
will be discussed in Mendel et al. (in preparation).

Briefly, raw MUSE data cubes are reduced using the ESO
MUSE pipeline (Weilbacher et al. 2012; Weilbacher et al. 2020) via
the PYMUSEPIPE3 interface. Basic data reduction steps performed

1http://magpisurvey.org/.
2Archival fields are not included in this work.
3https://github.com/emsellem/pymusepipe.
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include bias and overscan subtraction, flat-fielding, wavelength
calibration, telluric correction and cube reconstruction. Sky
subtraction is further improved using the Zurich Atmosphere
Purge (ZAP, Soto et al. 2016) package.

Individual objects within the MAGPI cubes are detected on the
white light image from the MUSE data cube using the PROFOUND
R package (Robotham et al. 2018). PROFOUND is used to define
the edges (i.e. segmentation maps) for every source.

Reduced MUSE data cubes are then cut into ‘minicubes’ fol-
lowing the individual segmentation maps for every object using
MPDAF.4 MPDAF is further used to produce synthetic Sloan Digital
Sky Survey (SDSS) filter images in g, r and i. We note that
because of the nominal MUSE wavelength and the notch filter
that obscures the Na laser, the wavelength ranges of the g and r-
bands are only partially covered. These MAGPI synthetic images
are used to produce RGB colour images for classification. The
default image scaling from MAGICAXIS/MAGIMAGERGB5 is used
for visual classification and throughout this work.

2.2 Galaxy property estimates

2.2.1 Redshifts

For each detected object within the MAGPI field-of-view, a 1 arc-
sec aperture spectrum is created for each object. The finalised
redshift is measured on this aperture spectrum using MARZ
(Hinton et al. 2016) with visual inspection. We use a modified
template set provided by M. Fossati.6 This set includes templates
with higher spectral resolution and out to higher redshifts, as well
as a variety of source types representative of the range found in
MAGPI.

2.2.2 Structural parameters

Basic structural parameters (e.g. effective radius Re, photomet-
ric position angle PAphot, Sérsic indices n, etc) in all three syn-
thetic bands g, r and i are obtained using both PROFOUND and
GALFIT (Peng et al. 2002; Peng et al. 2010). Except for the ini-
tial selection described in Section 3, GALFIT measurements are
used. PROFOUND further provides integrated magnitudes in g, r
and i.

2.2.3 Stellar masses

Stellar masses are derived in a method consistent to that used
for the GAMA survey (Bellstedt et al. 2020; Driver et al. 2022)
using the PROSPECT SED-fitting code (Robotham et al. 2020).
We use images that are pixel-matched to the MAGPI minicubes
from the Kilo-Degree Survey (KiDS, de Jong et al. 2017) and
VISTA Kilo-degree Infrared Galaxy (VIKING, Edge et al. 2013) in
9 bands (u-Ks) to apply forced photometry based on the MAGPI
segmentation maps. We assume a skewed-normal star formation
history with a linearly evolving metallicity, a Chabrier (2003) ini-
tial mass function (IMF) and use the Bruzual & Charlot (2003)
stellar population templates.

2.3 Kinematic maps and parameters

Stellar and ionised gas kinematic velocity (v) and dispersion (σ )
maps are obtained independently using the penalised pixel fitting

4https://github.com/musevlt/mpdaf.
5https://github.com/asgr/magicaxis.
6https://matteofox.github.io/Marz/.

PYTHON package (PPXF, Cappellari & Emsellem 2004; Cappellari
2017) via the Galaxy Integral field unit Spectroscopy Tool GIST7

(Bittner et al. 2019; Fraser-McKelvie et al. in preparation) as
described in e.g., Foster et al. (2021), Bagge et al. (2023), D’Eugenio
et al. (2023a), Battisti et al. (in preparation).

Briefly, stellar kinematics are obtained by fitting the stellar con-
tinuum from individual spaxels with a signal-to-noise ratio above
3 per pixel after masking spectral regions of possible nebular emis-
sion and strong skylines using a series of stellar templates from
the IndoUS stellar template library (Sánchez-Blázquez et al. 2006).
Our method is similar to that used for the SAMI Galaxy Survey
(van de Sande et al. 2017b; Croom et al. 2021). Specifically, PPXF
is first fit to elliptical annular bins to determine an optimal sub-
set of templates before individual spaxels are fit with subsets from
their respective and adjacent radial bins (see Foster et al. 2021 and
D’Eugenio et al. 2023a for further detail). Only spaxels with valid
values (i.e. excluding NaN or Inf) are presented for visual classi-
fication purposes. Stellar velocity and dispersion maps presented
to classifiers were scaled between the 5th and 95th percentiles, but
users are able to interactively modify those bounds and zoom in or
out. This default scaling is used for plotting purposes throughout.
Only classifications associated with stellar kinematic maps with a
minimum of 15 valid spaxels are considered (231 galaxies).

Similarly, ionised gas kinematics are obtained through fitting
and subtracting the stellar continuum using GIST and PPXF with
light-weighted stellar templates ssp_mist_c3k_salpeter (Charlie
Conroy, private communication) before using a customised ver-
sion of PYGANDALF (Sarzi et al. 2006; Falcón-Barroso et al. 2006)
for emission line modelling. For visual classification purposes,
we presents/plot only spaxels where the brightest emission line
has a signal-to-noise ratio > 3. Ionised gas kinematic maps have
been used and described by the MAGPI team in e.g. Foster et al.
(2021), Bagge et al. (2023) and Chen et al. (2024), and full detail
of their production will be provided in Battisti et al. (in prepa-
ration). As for the stellar kinematics, gas velocity and dispersion
maps presented to classifiers were scaled between the 5th and 95th
percentiles by default (also used for plotting purposes through-
out this paper), with users able to interactive change those bounds
and zoom in or out. Only classifications associated with ionised
gas kinematic maps with a minimum of 15 valid spaxels are
considered (402 galaxies).

For MAGPI data, we use the corrected spin parameter proxy
values determined by Derkenne et al. (2024). Briefly, the spin
proxy parameter λr is computed based on the stellar kinematic
maps following the definition of Emsellem et al. (2007):

λr =
∑N

i=1 FiRi|vi|
∑N

i=1 FiRi
√
v2i + σ 2

i
, (1)

where Fi, Ri, vi, and σi are the flux, galactocentric radius, reces-
sion velocity corrected for the systemic velocity and the velocity
dispersion measured in the ith spaxel within an aperture of size r,
respectively. For our purposes, this quantity is measured within
the r = Re elliptical aperture closely following the methodology
of (Fraser-McKelvie & Cortese 2022). Seeing and aperture correc-
tions are applied following Harborne et al. (2020). More detail on
the calculation of the corrected λRe values used herein can be found
in Derkenne et al. (2024).

7https://pypi.org/project/gistPipeline/; https://github.com/geckos-survey/ngist.
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Figure 1. From left to right: Redshift (z), stellar mass (M�/M�), group mass proxy (Mgroup/M�), effective radius (Re) and Sérsic index (n) distributions for the visually classified
(aquamarine filled histogram) and bright (r< 20 and 0.2≤ z≤ 0.4, green lined histogram) MAGPI samples. Distributions for the compared SAMI sample discussed in Section 6 are
shown as orange lined histograms. The bright MAGPI sample is offset to higher stellar masses and effective radii than the SAMI galaxies. The ranges of Sérsic indices and group
masses probed are similar between the MAGPI bright and SAMI samples, suggesting a comparable mix of morphologies and environments.

2.4 Environment metrics

Environmental metrics for MAGPI are calculated using PAR-
LIAMENT8 (Harborne et al. in preparation) following the
methodology of Knobel et al. (2009) and Robotham et al. (2011).
Based on galaxy groups identified with PARLIAMENT, we make use
of the total number of group members (Ngroup), the group mass
proxy (assuming a multiplicative factor of A= 10, see Robotham
et al. 2011) and the computed distance to the first nearest neigh-
bour (d1) as described in Bagge et al. (2023).

3. Sample selection for classification

MAGPI teammembers were invited to visually inspect and classify
galaxies from theMAGPIMaster Catalogue (Mendel et al. in prep)
that satisfy the following criteria:
1. Re,ProFound > 0.75× FWHMr (i.e. source is extended in the r-

band according to PROFOUND),
2. Re,GalFit > 0.75× FWHMr (i.e. source is extended in the r-

band according to GALFIT), and
3. i< 26 mag (AB).

This selection is deliberate, yielding 637 galaxies that are poten-
tially resolved across a redshift range of 0.08≤ z ≤ 5 to visu-
ally classify (from 3 970 MAGPI detections). We consider both
Re,ProFound and Re,GalFit sizes for selection purposes to ensure that
the majority of unresolved targets are removed. Only GALFIT val-
ues are used elsewhere in this work. Despite the above criteria
and due to PROFOUND and GALFIT sometimes failing in similar
ways for targets near the edge of the MAGPI Fields where back-
ground noise dominates, a significant fraction of the faintest 637
objects are seemingly unresolved. These are small round objects
with associated PROFOUND and GALFIT sizes extending beyond
their visible extent on the image.

We further compile and discuss a ‘bright sample’ of 86
intermediate redshift galaxies (0.2≤ z ≤ 0.4) with r < 20 mag.
Classifications for galaxies fainter than this threshold apprecia-
bly increase in difficulty and decrease in reliability (refer to
Section 4, Appendix B). Stellar mass, effective radius and Sérsic

8A commonly used collective noun for a group of magpies is a ‘parliament’.

index histograms for the visually classified and bright MAGPI
samples are shown in Fig. 1.

3.1 Collection of independent opinions

We use a bespoke online application to collect individual and
independent classifications. Each classifier receives their own
randomised list of galaxies to classify. As a result, although there
were 15 classifiers, each galaxy was independently assessed by
11–13 individuals.

The R code for the visual classification web application is pub-
licly available on GitHub.9 The MAGPI visual classification web
application was deployed on Data Central’s SHINY10 server.

Briefly, volunteers from the MAGPI team (henceforth ‘clas-
sifiers’) were asked to give their opinion based on the MAGPI
synthetic colour image, stellar and gas kinematic (velocity and dis-
persion) maps. Example images and kinematic maps presented to
classifiers are shown in Fig. 2. Relevant information regarding the
questions and options provided to classifiers are summarised in
Table 1. These questions reflect the classifications used in SAMI
(van de Sande et al. 2021a).

Visual classifications were performed on the team data for the
35 science-ready MAGPI fields. A compilation of the raw out-
put from individual visual classifications is presented in Fig. 3,
showing the range of opinions across the sample. The distribution
of responses varied substantially between classifiers, with some
exhibiting more confidence in assigning a category than others,
who conversely prefer either not to select a category (NS) or
explicitly state they do not know (IDK). Section 4 describes how
these categories are treated within our Bayesian inference. Given
that all classifiers are astronomers (graduate astronomy students
and beyond), we assume that all approaches are equally valid and
that this diversity of opinions reflects the inherent subjectivity of
visual classifications. Therefore, in what follows, we assume that
there is no individual whose opinion holds the ‘ground truth’ and
that the decision of the majority should be preferred over that
of individuals. Indeed, we find only very weak and incoherent
trends (not shown here for privacy reasons) between the year of

9https://github.com/MagpiSurvey/MAGPIClassApp_public.
10https://www.rstudio.com/products/shiny/.
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Table 1.Summary of questions (Column 1) and possible user input (Column 4) included in the R-SHINY web applicationa. Parameter and corresponding numerical
values are given in Columns 2 and 3, respectively. Column 5 lists relevant instructions to classifiers provided within the application.

Question Parameter Numeric value Corresponding option Relevant instructions

(1) (2) (3) (4) (5)

Morphological classification Morph 0 None selected (NS)

1 Elliptical (E) smooth, featureless

2 Lenticular (S0) obvious disk, no evidence for spiral arms,
substantial bulge

3 early Spiral (eSp) evidence for spiral arms and a bulge

4 late Spiral (lSp) prominent spiral arms andminimal/ no bulge

5 Irregular (Irr) no distinct regular shape

6 Merger (Mer) visual evidence of ongoing merger

7 I don’t know (IDK)

This galaxy is barred BarFlag 0 Not selected

1 Selected the galaxy has an evident bar

There are other features in the image VisFeatFlag 0 Not selected

1 Selected unlisted features in the image

Stellar kinematics classification StellOR 0 None selected (NS)

1 Obvious Rotation (OR) clear rotation, possibly accompanied by peaked
or flat sigma

2 No obvious Rotation (NOR)

3 I don’t know (IDK)

Stellar kinematics features StellFeat 0 None selected (NS)

1 Without feature(s) (WOF)

2 With feature(s) (WF) unusual features in the kinematic maps such as
2 velocity dispersion peaks, changes in the
kinematic position angle such as kinematically
decouple cores (KDC) or kinematic twists (KT)

3 I don’t know (IDK)

There are issue(s) with the stellar StellKinFlag 0 Not selected

kinematic maps 1 Selected issues may limit stellar kinematic data’s
usability for science

Gas kinematics classification GasOR 0 None selected (NS)

1 Obvious Rotation (OR) clear rotation, possibly accompanied by peaked
or flat sigma

2 No obvious Rotation (NOR)

3 I don’t know (IDK)

Gas kinematic features GasFeat 0 None selected (NS)

1 Without feature(s) (WOF)

2 With feature(s) (WF) unusual features in the kinematic maps such as
2 velocity dispersion peaks, changes in the
kinematic position angle such as kinematically
decouple cores (KDC) or kinematic twists (KT)

3 I don’t know (IDK)

There are issue(s) with the gas GasKinFlag 0 Not selected

kinematic maps 1 Selected issues may limit gas kinematic data’s usability
for science
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Figure 2. Example MAGPI galaxies in each of the rotational classes. From top to bottom as labelled on the left: MAGPI2301064121 with obvious stellar and gas rotation (i.e. Stars
OR, Gas OR); MAGPI1527067139 with non-obvious stellar and obvious gas rotation (i.e. Stars NOR, Gas OR); and MAGPI1529198197 with non-obvious stellar and gas rotation (i.e.
Stars NOR, Gas NOR). There is no galaxy with reliable Stars OR and Gas NOR. From left to right: synthetic g, r, i-band colour image of the galaxy based on the MUSE data; stellar
velocity map; stellar dispersion map; gas velocity map; and gas dispersion map. The PSF is shown as a white or black circle in the bottom-left corner of each panel. All panels
within a row are on the same scale, and an arrow representing the physical scale (in kpc) is shown on the left-most panel for each galaxy. Red ellipses represent 1Re.

a classifier’s first publication (as a proxy for reverse expertise) and
their willingness to assign a visual classification.

4. Analysis

For each galaxy, visual classifications for each collected parameter
(i.e. Morph, StellOR, StellFeat, GasOR, and GasFeat) are aggre-
gated as follows. First the modes (M) of the relevant distributions
are computed after excluding NS (none selected). We exclude
from subsequent analysis classifications based on stellar (399
galaxies) or gas (122 galaxies) kinematic maps where 3 or more
classifiers raised the ‘there are issue(s)’ flags (i.e. StellKinFlag or
GasKinFlag, respectively).

Statistical inferences on galaxy parameters are then derived
using a modified Dawid–Skene model (Dawid & Skene 1979),
extended to allow for NS and IDK responses. The standard
Dawid–Skene model posits that, given a galaxy with true param-
eter z, the classification provided by classifier i is drawn from
a categorical distribution with probability vector θ iz , which rep-
resent classifier-specific response tendencies for galaxies of that
type. By considering the concordance and discordance between
classifiers’ classifications of the same galaxies, and assuming that
the classifiers are generally accurate (i.e. high probability of pro-
viding correct classifications), the classifier tendencies and true
parameters that are most compatible with the observed pattern of
classifications can be identified.

Our extended model – the full details of which are provided
in Appendix A – introduces classifier-specific confidence parame-
ters and galaxy-specific difficulty parameters, which influence the
rate at which classifiers respond NS or IDK. Further, the model
assumes that classifier accuracy (the probability of providing the
correct classification) is lower for galaxies with higher difficulty.

Bayesian inference is performed by modifying the RATER pack-
age (Pullin, Gurrin, & Vukcevic 2023) to implement the extended
model in RSTAN (version 2.32.6; Stan Development Team 2024),
which uses a dynamic HamiltonianMonte Carlo algorithm to esti-
mate the posterior distribution. Weakly informative priors are
used for all parameters. In particular, for classifier tendencies θ

related to a parameter with K possible values, we use a Dirichlet
prior with concentration parameter 7(K − 1)/6 on the correct
classification and 1/2 on each incorrect classification, such that
the probability of a correct classification for each true parameter
has an expected value of 70% but could range from 8% to 99.9%
when K = 2, or from 37% to 94% when K = 6, with 95% prior
probability.

For each galaxy and for each parameter, we obtain the vector
of posterior probabilities Pk that the underlying truth corresponds
to each option k. The largest of these defines the posterior mode,
denoted μMorph, μStellOR, μStellFeat, μGasOR and μGasFeat, respectively.
We also extract the posterior mean of the difficulty of classifying
each parameter for each galaxy, denoted DMorph, DStellOR, DStellFeat,
DGasOR and DGasFeat, and representing the expected probability of
a IDK or NS response from the average classifier. There were no
explicit instructions on how to treat IDK vs. NS classifications.
Given that individual choices on how to treat those options dif-
fered across raters and that neither response provides additional
information, we decided not to distinguish them in the model and
instead interpret both answers as reflecting hesitation in rating a
given property. Fig. 4 shows how the difficulty of classifying the
different features of a galaxy strongly depends galaxy brightness,
size and the number of available pixels (for the kinematic maps).

Fig. 5 compares the distributions of the Bayesian posterior
modes (μ) with that of themore commonly used simplemode (M)
for each parameter. The cumulative distribution function of the
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Figure 3. Posterior mode (μ) observed proportions (black histograms) with superim-
posed raw observed proportions for individual classifiers shown as different coloured
histograms prior to applying quality cuts. These histograms illustrate the range of
responses received as input for our Bayesian modelling. Parameters are as per Table 1
formorphology (Morph, top row), stellar kinematic (StellOR and StellFeat, middle row)
and gas kinematics (GasOR and GasFeat, bottom row). There are broad differences in
the shape of the distributions from classifier to classifier. The individual distributions
also illustrate how different classifiers favoured ‘IDK’ or ‘NS’ and the high proportion
of each features that were difficult to classify.

posterior probabilities for the bright and whole samples are also
shown. For most parameters, the bright sample of galaxies have a
higher proportion of reliable (Pμ > 0.98) classifications.

Examples of the most uncertain visual morphological and
dynamical classifications (Pμ < 0.55) are shown in Appendix B.
Uncertain morphologies are usually associated with galaxies of
intermediate morphological types or merging systems, uncertain
stellar dynamics are usually associated with complex kinematic
maps, while uncertain ionised gas dynamical classifications are
associated with sparsely sampled and/or noisy maps. For most
science cases, we recommend such low Pμ classifications be
removed.

Example galaxies spanning the range of StellOR, StellFeat,
StellKinFlag, GasOR and GasFeat categories are shown in
Fig. 2.
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Figure 4. Dependence of the ‘difficulty’ parameter for morphology (DMorph), stellar
rotation (DStellOR), stellar features (DStellFeat), ionised gas rotation (DGasOR) and features
(DGasFeat) with r-band magnitude (left), effective radius (middle), and the number of
good pixels in the relevant map shown to classifiers (Npix). Points are colour-coded
according to the posterior mode of each galaxy as per the legend shown on the right-
most panel of each row. Red dashed lines show the threshold for the ‘bright sample’
at r= 20 mag. Because stellar kinematics require comparatively higher surface bright-
nesses than images and gas kinematics, stellar kinematic maps are not available to
visually classify galaxies fainter than r∼ 23, explaining the shorter rangeofmagnitudes
covered by StellOR and StellFeat. In general, fainter and smaller galaxies are more dif-
ficult to classify. Galaxies with obvious rotation (StellOR and GasOR) and dynamical
features (StellFeat and GasFeat) are easier to classify (i.e. lower mean/median D).

Finally, we compute the fraction of classifiers who have seen
the relevant map and raised specific flags (i.e. BarFlag, VisFeatFlag,
StellKinFlag and GasKinFlag):

fBarFlag = NBarFlag = 1, Morph �=NS

NMorph�=NS
, (2)

fVisFeatFlag = NVisFeatFlag = 1, Morph�=NS

NMorph�=NS
, (3)

fStellKinFlag = NStellKinFlag = 1, StellOR �=NS

NStellOR �=NS
, (4)

fGasKinFlag = NGasKinFlag = 1, GasOR �=NS

NGasOR �=NS
(5)
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Figure 5. Comparison of the output distributions (left) for the Bayesian and simple
consensus approaches for (from top to bottom) Morph, StellOR, StellFeat, GasOR and
GasFeat. Raw (M, magenta) and posterior (μ) modes for the whole (black) and bright
(r< 20, cyan) samples as per the legend. Empirical cumulative distribution functions
(CDF, right) for the posterior mode probability PμMorph for the whole (black) and bright
(cyan) samples as per the legend.

These may be used to determine samples of galaxies where
visual signs of a bar (fBarFlag �= 0), visual features/issues on the
galaxy image (fVisFeatFlag �= 0) or issues with the kinematic maps
(fStellKinFlag �= 0 or fGasKinFlag �= 0) have been raised. Example barred
galaxies (fBarFlag �= 0) are shown in Fig. 6.

Free-form comments are also collated, although those are not
used in this work.

In what follows, we refer to and generally consider ‘reliable’
classifications as those with posterior mode probabilities Pμ >

0.98, indicating we ascribe less than a 2% chance that the feature is
wrongly classified.

5. Results

Basic descriptive statistics for galaxies in each category are sum-
marised in Table 2. A brief summary of salient outcomes is given
below.

Fig. 7 shows example galaxies in each morphology category.
Very few classifiers selected the Morph = 4 (late spiral/lSp, see
Fig. 3) overall, suggesting that late and early spirals are difficult to
delineate in MAGPI-resolution images. We thus henceforth com-
bine the lSp and eSp categories into a single Sp category. Our
sample spans a broad range of morphologies (see Figs. 5, 6 and 7),
confirming that the range of morphological classes is represented
in MAGPI. Out of the 86 bright sample galaxies within our sam-
ple, 56 have reliable morphologies (i.e. PμMorph > 0.98), of which 52,
11, 29 and 5% are classified as E, S0, Sp and Mergers, respectively.
While 5merging galaxies are identified, there is no irregular galaxy
in our bright sample.

Similarly, of the 82 (95% of the bright sample) galaxies with
a reliably assigned stellar kinematic classification (PμStellOR > 0.98),
85% show obvious rotation (see Table 2). For the gas kinematics,
this fraction is 90%, with 87% of galaxies showing obvious rota-
tion in both maps. In other words, most galaxies in our sample
rotate and when both gas and stars are present, both tend to rotate.
There is however one exception where the stars do not show obvi-
ous rotation while the gas does (MAGPI1527067139), which is
shown in the second row of Fig. 2. There are only four galaxies
(MAGPI1206110186, MAGPI1503197197, MAGPI1507084083
and MAGPI1529198197) for which there is no obvious rotation
in either the stars or the gas (the latter is shown in Fig. 2).

Of the 61 (38) bright galaxies with reliable stellar (gas) kine-
matic feature classifications, 5 (4) galaxies have μStellFeat =WF
(μGasFeat =WF) (see Table 2). Kinematic features are propor-
tionally slightly more common in the ionised gas kinematic
maps and coexist in only 2 galaxies (MAGPI2310167176 and
MAGPI2310199196). Example galaxies with stellar and gas kine-
matic features are shown in Figs. 8 and 9, respectively. Most show
evidence of ongoing interaction, suggesting complex dynamics
in MAGPI are usually associated with galaxy-galaxy interactions.
As well as signs of interactions, a transition in the amplitude of
rotation is sometimes seen in galaxies with μStellFeat =WF.

Fig. 10 shows the distribution of MAGPI galaxies with
log10 (M�/M�)> 10 in the spin-ellipticity parameter space as per
Derkenne et al. (2024). Most slow rotators (galaxies within the
black lines) are classified as ellipticals and many show no obvious
rotation (NOR) in either the gas (when available) or stars. There
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Figure 6. The z∼ 0.3 Hubble Tuning Fork using example MAGPI synthetic g, r, i-band colour images.
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Figure 7. Gallery of MAGPI synthetic g, r, i-band colour images of a selection of bright (r< 20 mag) MAGPI galaxies with reliable visual morphologies. From left to right: example
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panel for reference.
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Table 2.Number (N, Column 2) and fraction (f , Column 3) of galaxies with r< 20
mag (bright sample) and relevant PμClass > 0.98 in each morphological and kine-
matic category (Column 1). In each category, the proportion is calculated against
the number of galaxies with comparable classification.

Category N f

(1) (2) (3)

r< 20 mag, 0.2≤ z≤ 0.4 (bright sample) 86 1

Morphology

PμMorph > 0.98 56 56/86= 0.65

μMorph = E 29 29/56= 0.52

μMorph = S0 6 6/56= 0.11

μMorph = Sp 16 16/56= 0.29

μMorph = Irr 0 0/56= 0

μMorph =Mer 5 5/56= 0.089

Obvious rotation

PμStellOR > 0.98 82 82/86= 0.95

μStellOR = OR 70 70/82= 0.85

μStellOR = NOR 12 12/82= 0.15

PμGasOR > 0.98 42 42/86= 0.49

μGasOR = OR 38 38/42= 0.9

μGasOR = NOR 4 4/42= 0.095

(PμStellOR > 0.98) & (PμGasOR > 0.98) 39 39/86= 0.45

(μStellOR = OR) & (μGasOR = OR) 34 34/39= 0.87

(μStellOR= OR) & (μGasOR = NOR) 0 0/39= 0

(μStellOR = NOR) & (μGasOR = OR) 1 1/39= 0.026

(μStellOR = NOR) & (μGasOR = NOR) 4 4/39= 0.1

Kinematic Features

PμStellFeat > 0.98 61 61/86= 0.71

μStellFeat =WOF 56 56/61= 0.92

μStellFeat =WF 5 5/61= 0.082

PμGasFeat > 0.98 38 38/86= 0.44

μGasFeat =WOF 34 34/38= 0.89

μGasFeat =WF 4 4/38= 0.11

(PμStellFeat > 0.98) & (PμGasFeat > 0.98) 32 32/86= 0.37

(μStellFeat =WF) & (μGasFeat =WF) 2 2/32= 0.062

are some remarkable exceptions to these trends. There are also
2 GasOR=NOR galaxies that are outside the slow rotator region
in Fig. 10: MAGPI1534176099 and MAGPI2306197198. As indi-
cated by the symbol transparency, neither of those classifications
are deemed reliable, both having PμGasOR < 0.98.

Fig. 11 and Appendix C show that MAGPI galaxies have a mix
of visual and kinematic morphologies, with sometimes contrasting
gas and stellar kinematic morphologies (also see Fig. 2). Figs. 11,
12 and Appendix C suggest that while the kinematic diversity of
galaxies is already in place 3.5 billion years ago, the kinematic
morphology–density relation is either too weak to be detected,
yet to be established or possibly opposite to what is seen in local
surveys. These options are considered in detail in Section 6.

6. Discussion

Given the inherent subjectivity of visual classifications, we have
chosen to collect multiple independent classifications on each
galaxy and considered parameter. Each of the 637 galaxies
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Figure 8. Example MAGPI galaxies with stellar kinematic feature(s). From top to bot-
tom as labelled on the left: MAGPI1203305151 (E with radial change in rotation);
MAGPI1507084083 (Merger with complex velocity field); and MAGPI2305197198 (E with
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Figure 9. Same as Fig. 8, but with gas kinematic feature(s). From top to bottom
as labelled on the left: MAGPI1207128248 (Sp); MAGPI1507084083 (Merger); and
MAGPI2304216163

included for visual classification has been classified by a minimum
of 11 raters. We have found that there is important information
in the spread of selected classifications and in the frequency of
classifier hesitation to provide a classification that reflect the data
quality and some properties of galaxies (i.e. how often classifiers
leave a classification as ‘NS’ or deliberately choose ‘IDK’). Studies
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Figure 10. Seeing-corrected spin-ellipticity diagram (λRe,corr vs. ε) for MAGPI (circles) galaxies as per Derkenne et al. (2024) and SAMI (squares) galaxies as per van de Sande et al.
(2017b). SAMI visual morphological and kinematic classifications are taken from Cortese et al. (2016) and van de Sande et al. (2021a), respectively. Data are colour-coded by
visual morphology (left), stellar rotation (middle) or gas rotation (right) as per the inset legend. Symbol transparency is inversely proportional to the respective posterior mode
probability in each panel (left: PμMorph , middle: PμStellOR , and right: PμGasOR ). The black lines outline the division between fast and slow rotators suggested by van de Sande et al.
(2021a). The magenta line shows the semi-empirical prediction for edge-on axisymmetric galaxies with anisotropy parameter β = 0.70εintr, where εintr is the intrinsic ellipticity
(e.g., Cappellari et al. 2007; Cappellari 2016). Themajority of galaxies that lie within the black lines are ellipticals with a high proportion of galaxies with NOR stars and gas. Hollow
symbols are used when a classification is not available (NA).
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Figure 11. MUSE synthetic g, r, i images for three MAGPI fields included in this work with superimposed gas (small & thin symbols, when present) and stellar (large & thick) visual
kinematic morphologies: OR (circles), NOR (squares), WOF (hollow), WF (cross). Colours correspond to the mode of the posterior morphological classification μMorph (see legend
on the right). Galaxies have a mix of visual and kinematic morphologies, with sometimes contrasting gas and stellar kinematic morphologies. A gallery of all fields is included in
Appendix C.

using visual classifications involving few classifiers are thus sub-
ject to biases that are hard to quantify. Bayesian inference provides
a statistically coherent way of quantifying our confidence in the
true galaxy properties by combining a prior belief of classifier
competence with the observed data via an explicit data-generating
process. This analysis has also allowed us to quantify some of the
conditions that make visual classifications more difficult.

Previous local IFS surveys with comparable spatial resolution
in physical units have available ancillary imaging with better spa-
tial resolution and depth than the spectroscopy (e.g. SAMI Cortese
et al. 2016 and MaNGA Vázquez-Mata et al. 2022). This is not the
case for MAGPI, where both images and spectroscopy have the
same spatial resolution, MAGPI data themselves usually represent
the deepest and best images available for our targets. Difficulties
associated with visual classification of small and/or faint galaxies

has been raised in the literature (see Vázquez-Mata et al. 2022;
Tohill et al. 2023; Medina-Rosales, Cabrera-Vives, & Miller 2024,
for recent examples). The comparatively coarser spatial resolution
of MAGPI images (in physical units) used to perform the visual
morphological classifications has led to more uncertain morpho-
logical classifications in MAGPI compared to local surveys where
comparatively higher quality images are available for visual classi-
fication. This has resulted in our inability to reliably differentiate
between late and early spirals and difficulties in classifying faint
and/or small objects, possibly leading to a bias towards classify-
ing more amorphous earlier type morphologies. The difficulties
associated with recognising small structural features in low res-
olution images is not limited to the current study and should
be born in mind for future studies using visual morphological
classifications.
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Figure 12. Proportion of early- (red) vs. late- (green) type galaxies (top), stellar (middle) and ionised gas (bottom) with (purple) vs. without obvious (black) rotation (see legend
at the top) for the bright sample. Plots show stellar mass (left) and environmental bins for three separate proxies: 1- divided according to the distance to their nearest neighbour
(d1, middle left): densest neighborhood (d1 < 60 kpc, within the range of commonly used thresholds, e.g. Robotham et al. 2014) and lowest density neighborhood (d1 ≥ 60 kpc);
2- divided according to the number of galaxies in their group (middle right): isolated and/or small group (Ngroup < 5) and larger groups (Ngroup ≥ 5); and 3- group dynamical mass
proxy divided at the median group mass of (logMgroup/M� = 12.85, right). The number of galaxies in each environment bin is shown in white and Bayesian 95% credible intervals
are shown as white errorbars (see Table 3).

Despite these difficulties, for our bright sample (r < 20 mag),
we find that earlier types have higher Sérsic indices than later
types (Fig. 13) as expected. This is evidence that despite their
higher uncertainties, the morphological classifications are infor-
mative, especially when considered as a sample. The distributions
in posterior mode probabilities shown in Fig. 5 and sample sizes
listed in Table 2, along with the dependence of the difficulty on
brightness and size (Fig. 4), suggest that at comparable data qual-
ity and spatial resolution, bulk rotation is easier to identify than
visual morphology. We find that kinematic features (StellFeat and
GasFeat), which often represent small scale kinematic anomalies
are easier to visually identify than the absence of rotation (i.e.
the mean difficulty of StellOR=NOR and GasOR=NOR is higher
than the mean difficulty for StellFeat=WF and GasFeat=WF,
respectively), although Npix > 100 appears to be a lower threshold
for identifying StellFeat=WF and GasFeat=WF. This has limited
our ability to quantitatively compare our kinematic morpholo-
gies of galaxies with samples at different depths and/or spatial
resolution (e.g. Krajnović et al. 2011; van de Sande et al. 2018).
Qualitatively, we were able to identify reliable (Pμ > 0.98) repre-
sentatives of nearly all classes within MAGPI (exceptions being
irregular and late type spiral morphologies, see examples in Figs. 2
and 7).
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Figure 13. Box and whiskers plot showing the quartiles of the distributions of Sérsic
indices (n) for bright (r< 20 mag) E, S0 and Sp (including both eSp and lSp categories)
MAGPI galaxies. As expected, the distribution for elliptical galaxies is skewed towards
higher Sérsic indices, while that of Spiral galaxies is skewed towards lower values.
Colours are consistent with those of the left-panel of Fig. 10.
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The spatial resolution of MAGPI and SAMI kinematic maps
are comparable (SAMI median is ∼ 1.9 kpc/FWHM, while the
MAGPI bright sample hasmedian∼ 2.7 kpc/FWHM) andwe have
closely followed the methodologies used in SAMI for stellar kine-
matic visual classifications (i.e. StellOR and StellFeat). We thus
compile a methodologically comparable dataset of local (z ∼ 0)
galaxies with log10 (M�/M�)> 9.5 dex from the SAMI Galaxy
Survey (Croom et al. 2012; Croom et al. 2021). We use visual
morphologies from Cortese et al. (2016), spin values from van
de Sande et al. (2017a) and visual stellar kinematic morphologies
from van de Sande et al. (2021a). We combine this with GAMA
group masses and environment metrics based on Robotham et al.
(2011) (assuming A= 10 for consistency). Fig. 1 compares the
stellar mass, group mass, effective radius and Sérsic index distri-
butions of SAMI and MAGPI galaxies. We note that given the
differences in stellar mass distributions, the properties of galaxies
in the SAMI sample are not representative of those of the descen-
dants of MAGPI galaxies, thus a direct evolutionary link cannot be
inferred between the two samples.

Without referring to evolution, we note that there are distinct
similarities between the distributions of SAMI and MAGPI galax-
ies in the spin-ellipticity parameter space (see Fig. 10), with ellipti-
cal galaxies dominating the slow-rotator area (i.e. black lines) and
later-types (S0s and Sps) occupying the fast-rotator areas. This
shows that locally observed trends with visual morphologies are
broadly established 3.5 billions years ago. Indeed, van Houdt et al.
(2021) have shown that a comparable trend with Sérsic index is
noticeable in v/σ − ε space at even higher redshift (z ∼ 0.8) in the
LEGA-C survey using dynamical Jeans models of slit spectra.

Similarly, as seen in SAMI, MAGPI galaxies with/without
obvious stellar rotation tend to occupy or lie near the fast-/slow-
rotator area in the middle panel of Fig. 10. A study of the spin-
evolution of galaxies through comparing carefully selected sub-
samples of MAGPI descendent-like MaNGA galaxies is presented
in Derkenne et al. (2024).

In what follows, we implicitly assume that an ‘evolved’ galaxy is
a massive, old, quenched, non-rotating galaxy. We note that evo-
lution to this state needs not be linear (apart for mass) and the
order in which those attributes appear will likely depend on the
individual galaxy’s merger and star formation history.

While earlier studies of the kinematics and morphologies of
galaxies at cosmic noon (z ∼ 1− 3) found a predominance of star
forming clumpy and discy rotating systems (e.g. Wuyts et al. 2011;
Wisnioski et al. 2015; Huertas-Company et al. 2016; Stott et al.
2016, but see Rodrigues et al. 2017), most of dynamical studies
necessarily focused on ionised gas as the dynamical tracer. In the
local universe, ionised gas and active star formation are predom-
inantly found in late-type systems with discy dynamics. We will
briefly assume that a similar link between star formation, mor-
phology and dynamics holds in the early Universe. Recent studies
from the James Webb Space Telescope images suggest spheroidal
morphologies are the dominant type for masses log10 M�/M� >

11 galaxies in the early Universe (up to z < 8, see e.g. Lee et al.
2024), and a quiescent system was found at z ∼ 11 (Glazebrook
et al. 2024). If seemingly ‘evolved’ spheroidal and/or quiescent
systems are in place early (i.e. at z >> 0.3) in the history of the
Universe, and broadly assuming visual structure mirrors their
dynamics as seen in local galaxies, it follows that a commensu-
rate population of dynamically evolved potentially non-rotating
galaxies is found in our z ∼ 0.3 sample. Indeed, Lagos et al. (2018)
show that the median spin of slow rotators at redshift z ∼ 0.3 is

Figure 14. Group mass cumulative density function (top) and whiskers plot (bottom)
for the MAGPI bright sample (left) and SAMI GAMA sample (i.e. excluding cluster galax-
ies, right). For MAGPI, we use only galaxies with reliable μStellOR (i.e. PμStellOR > 0.98),
while for SAMI we use galaxies with M� > 109.5 M� and available kinematic morphol-
ogy from van de Sande et al. (2021a). We show the original SAMI sample in lilac (OR)
and light grey (NOR) as well as a sample mass-matched to the MAGPI sample in purple
(OR) and black (NOR). The relative Mgroup distributions for NOR (black) and OR (pur-
ple) galaxies suggest that galaxies without obvious stellar rotation prefer lower group
masses than galaxies with obvious rotation in intermediate redshift MAGPI galaxies,
while the opposite is true for low redshift SAMI galaxies.

only marginally higher than that at z ∼ 0.We note that when com-
paring the distribution of λRe as a function of redshift in three
separate cosmological simulations, Foster et al. (2021) find that
different cosmological simulations obtain distinct predictions at
z ∼ 0.3.

The following discussion focuses on stellar kinematics because
there is comparable work in the literature. While a population of
non-rotators is present at z ∼ 0.3 (also see Derkenne et al. 2024),
the fraction of NOR galaxies in environmental bins parametrised
by Ngroup and Mgroup (in stars) is marginally higher in lower den-
sity environment bins (see Figs. 12 and 14). This is in agreement
with Muñoz López et al. (2024), who did not find evidence that
galaxies with higher spins prefer less dense environments at inter-
mediate redshift, but in contrast to that found in local surveys (e.g.
Cappellari et al. 2011; D’Eugenio et al. 2013; Fogarty et al. 2014;
Brough et al. 2017; Greene et al. 2017). We note that the kine-
matic morphology–density relation was first found at z ∼ 0 in the
ATLAS3D survey (Cappellari et al. 2011) in a sample roughly 2.5
times the size of that presented here, and with better spatial res-
olution than that of MAGPI. Fogarty et al. (2014) did detect the
kinematic morphology–density relation in Abell 85 using SAMI
data, but not in the Abell 168 and 2 399 clusters. We next discuss
the statistical significance of this result and ascertain whether the
differences in resolution and sample size could explain the absence
of the stellar kinematic morphology–density relation inMAGPI or
whether this result is robust.

The stellar kinematic morphology–density relation has been
shown to be of secondary importance, after the mass (e.g. Greene
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Table 3.Inferred percentage (%NOR) and respective 95% credible interval (CrI)
of galaxies without obvious stellar rotation (i.e. StellOR=NOR) in high- (column
3) and low-density environments (column 5) in MAGPI. For each environment
parameter and environmental bin the number N of galaxies is given in columns 2
and 4. The test is performed on both the whole and bright (r< 20 mag) samples
(column 1). The Pr (High> Low) value given in column 6 is the posterior prob-
ability that there is a higher prevalence of non-rotating galaxies in the denser
environment, as seen in the local universe.

Sample High density Low density

N fNOR (CrI) N fNOR (CrI) p	fNOR<0

(1) (2) (3) (4) (5) (6)

d1 < 60 d1 ≥ 60

All 62 0.318 (0.208–0.438) 73 0.287 (0.183–0.403) 0.65

Bright 43 0.170 (0.074–0.295) 40 0.178 (0.076–0.310) 0.46

Ngroup ≥ 5 Ngroup < 5

All 84 0.269 (0.177–0.372) 72 0.436 (0.318–0.555) 0.015

Bright 52 0.159 (0.074–0.268) 34 0.210 (0.091–0.360) 0.28

log10 Mgroup ≥ 12.85 log10 Mgroup < 12.85

All 69 0.249 (0.152–0.360) 66 0.355 (0.240–0.479) 0.091

Bright 43 0.112 (0.038–0.218) 40 0.241 (0.119–0.388) 0.056

et al. 2017; van de Sande et al. 2021b; Vaughan et al. 2024) and age
(Croom et al. 2024) in local samples. Nevertheless, when one does
not account for stellar mass or age (as done here), the environmen-
tal trend is clear locally, e.g. using the SAMI dataset (Brough et al.
2017, and Fig. 14 of the current work).

However, since there is in fact a lower fraction of NOR in high
mass groups, the proportions of stellar NOR galaxies with group
mass is reversed in MAGPI compared to SAMI. We want to ascer-
tain our confidence in this result in a way that accounts both for
the data and sample size. For each environment tracer (d1, Ngroup
and Mgroup) and environmental bin (low- and high-density), we
calculate the posterior distribution of the prevalence of galaxies
with StellOR=NOR, based on a non-informative Beta(1, 1) prior
distribution (i.e. we assume a completely non-informative prior
belief that the prevalence of NOR galaxies in each bin could be
anywhere between 0 and 1) and the Bayesian model for their
classifications. This accounts for sampling because as the sam-
ple size gets larger, the posterior shifts away from the prior and
puts more weight on the observed data. From this, we calcu-
late the posterior probability that the prevalence of galaxies in
the low-density bin (fNOR,LD) with StellOR=NOR is higher than
that in the high-density bin (fNOR,HD). When dividing galaxies
by group mass, the probability of there being either no or an
inverse trend in MAGPI (p	fNOR>0 = 1− p	fNOR<0 where 	fNOR =
fNOR,LD − fNOR,HD) in Table 3) is 90.9 and 94.4% for the whole
and bright samples, respectively. When galaxies are split by the
number of group members, the probabilities are 98.5 and 72%
for the whole and bright samples, respectively. When galaxies are
split by d1 and all galaxies are included, the posterior probability
is higher still. This suggests there is some evidence that galaxies
with StellOR=NOR may be more common or present in simi-
lar proportions in the low-density environment bins in MAGPI
when galaxies are divided by group mass or number of group
members.

To test the significance of the seeming discrepancy between
the kinematic morphology–density relation seen at low redshift
and our MAGPI results, we obtain 100 000 samples of 83 SAMI

galaxies with agreed upon stellar kinematic morphology classifi-
cations taken from van de Sande et al. (2021a). Each sample is
matched to the mass distribution of MAGPI. For each sample,
we record fNOR,HD and fNOR,LD with a division between high and
low density at log (Mgroup/M�)= 12.85. This implicitly assumes
no evolution between SAMI and MAGPI. Since SAMI did not use
a Bayesian framework as used here to obtain posterior probabili-
ties for each classification, we assume that the posterior probability
for all SAMI kinematic morphology classifications is uniformly
1. We note that the different choices of methodologies limit our
ability to perform a fair comparison and this must be taken as a
caveat (also relevant to Fig. 14). We then take 1 000 000 samples
of the posterior distributions and find a median and 95% credi-
ble interval for 	fNOR = −0.24(− 0.46− −0.01). The posterior of
the probability p	fNOR>0 that 	fNOR is positive as seen in MAGPI
is strongly skewed at 0 with median 0.019 and 95 percentile 0.33,
suggesting that an equal or higher fraction of NOR in low group
mass bins would typically randomly occur ∼ 1.9% of the time in
SAMI.

We also look for how often we find a difference in the NOR
fraction that is opposite and as or more extreme as that measured
in MAGPI. Again, we find that p	fNOR>0.129 is strongly peaked at 0,
with a median of = 0.00070 and 95 percentile of 0.061, suggest-
ing strong tension between MAGPI and SAMI in the proportions
of NOR in low vs. high mass groups. These results qualitatively
hold if we exclude cluster galaxies from the SAMI sample (median
p	fNOR>0 = 0.0082, and p	fNOR>0.129 = 0.00016); when using a sam-
ple size comparable to that expected for the complete MAGPI
survey (i.e. sampling 136 galaxies, median p	fNOR>0 = 0.0040 and
p	fNOR>0.129 = 0.000023); or when matching both the MAGPI stel-
lar mass and Sérsic index distributions simultaneously (median
p	fNOR>0 = 0.025 and p	fNOR>0.129 = 0.00092). In other words, if the
kinematic morphology–density relation was similar in both SAMI
and MAGPI, we would very likely have detected it. Furthermore,
it is highly unlikely that a SAMI-like kinematic morphology–
density relation at z ∼ 0.3 would lead to the result found in
MAGPI.

Simulations also are equivocal about the role of environment
in producing slow rotators. Using over 10 000 simulated galaxies
in the Horizon-AGN simulation, and echoing the results found
in this work, Choi et al. (2018) found similar proportions of slow
rotators across all environmental bins, with slow rotation typically
resulting from non-merger tidal perturbations in lower density
environments. They do however see a weak trend with satellites vs.
centrals. While some residual environmental effects were detected
after accounting for mass, Lagos et al. (2018) find that ∼ 30% of
slow rotators in over 16 000 EAGLE and HYDRANGEA galax-
ies have not experienced a recent merger, but their slow rotation
can be instead attributed to their residing in lower spin halos than
slow rotators formed throughmajor mergers. The multiple forma-
tion pathways in simulations indicate that environmental effects
need not be the only driver of slow rotation. Comparison of the
specific angular momentum of the dark matter halo to that of the
stars and HI gas in observed and simulated galaxies confirm that
the dynamics of dark matter halo impact those of baryons (e.g.,
El-Badry et al. 2018; Romeo, Agertz, & Renaud 2023, also see Fall
& Rodriguez-Gomez 2023).

Relating the 3D shape of slow rotators to their environments,
Lagos et al. (2022) find that intrinsically flat satellite slow rotators
are more common in low mass halos, while prolate slow rota-
tors are more common in high mass halos. It may be that the
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MAGPI selection has favoured flat slow rotators over prolate or
round ones. Distinguishing intrinsically prolate, spherical and flat
galaxies is challenging observationally (e.g. Méndez-Abreu 2016;
Bassett & Foster 2019; Yong et al. 2024) and beyond the scope of
this work.

The theoretical results outlined above do not rule out the pos-
sibility that the preponderance of slow rotation in satellite galaxies
may be distinct from that in centrals. The MAGPI selection of
fields centered on massive centrals may have skewed the sample
towards more massive centrals and less massive satellites than in
the general population. This in turn could prevent a fair compar-
ison should slow rotation strongly depend on central vs. satellite
status. Indeed, Croom et al. (2024) found that the spin of cen-
trals and satellites had distinct dependencies on environment. We
state this as a possible caveat of our analysis. In Foster et al. (2025),
we separately account for satellite and central status and find that
the impact of environment on centrals and satellites can differ
depending on the dynamical parameter studied.

We note that while d1 is helpful in identifying potentially
interacting galaxies, it is not otherwise a recommended tracer
of environment density. Instead, the distance to the Nth nearest
neighbour (which is not used here as it is not yet available for
a large proportion of our galaxies), where N ∼ 5 is more com-
monly used (e.g. Muldrew et al. 2012; Brough et al. 2013; de
Vos, Merrifield, & Hatch 2024). This may further explain why
results for d1 differ from other measures of environment densities
considered herein (i.e. Ngroup andMgroup).

If we take the absence of a stellar kinematic morphology-
relation in MAGPI at face value, our findings could indicate a
scenario in which many non or slowly rotating MAGPI galax-
ies have yet to join or their surrounds have yet to grow into
high density environments, where such galaxies tend to prefer-
entially be at z ∼ 0. In other words, we speculate that galaxies
may grow their mass first and spin down sometime before z ∼ 0.3,
they subsequently either join dense environments or their envi-
ronment becomes denser over time. Similarly, Muñoz López et al.
(2024) found that spin is not correlated with environment in an
independent sample of fast rotators (they did not find any slow
rotators) at intermediate redshift (0.1≤ z ≤ 0.8). Their sample did
not however include the highest density environments.

Under the�CDMparadigm, the largest structures are the latest
to form. (Amoura et al. 2021, see their figure 3) show galaxy clus-
ters (M > 1015 M�) reach 50% of their present day (z = 0) mass
around z ∼ 0.35. Massive galaxy groups (M > 1013 M�) reach 50%
of their present day mass around z ∼ 0.6. Thus, at intermediate
redshift z ∼ 0.3, a large proportion of the most massive clusters
are yet to form.

Environment was already shown to be a second-order effect
on determining the rotation state of galaxies, with age being the
strongest determinant for stellar spin in local galaxies (Croom
et al. 2024). In the scenario painted above, if galaxies spin down
as they age and grow before their environment is fully assembled,
the emerging environmental trend seen in local surveys could be
weaker than the mass trend and will likely get stronger as the
Universe continues to evolve and structures continue to assemble.

This scenario is reminiscent of the pre-processing (usually
referring to star formation quenching) of galaxies in groups
or cosmic filaments prior to joining clusters (e.g. Fujita 2004;
Sarron et al. 2019; Sengupta et al. 2022). We suggest that galax-
ies without obvious rotation may have experienced ‘dynamical

pre-processing’ in lower mass halos before progressively being
added to higher mass halos after z ∼ 0.3.

7. Conclusions

In this work, we present the results of morphological and dynam-
ical visual classifications for 637 spatially resolved galaxies within
35 MAGPI fields. From this initial sample, we select sub-samples
of bright (r < 20 mag) high-confidence (> 0.98) morphological
(86 galaxies) and stellar kinematic (82 galaxies) classifications at
redshifts (0.2≤ z ≤ 0.4). Our aim is to identify and quantify the
dynamical state of galaxies at intermediate redshifts and look for
signs of evolution through comparing with the comparable IFS
SAMI Galaxy Survey at z ∼ 0.

Our conclusions are as follows:
1. Despite the difficulty of detecting small scale structures in

moderate spatial resolution data, we find examples of a range
of morphological types present at intermediate redshift cor-
responding to ∼ 3.5 Gyr lookback time.

2. Similarly, galaxies with and without obvious rotation are
already in place at intermediate redshift. The fractions of
galaxies with and without obvious rotation mirror those of
fast and slow rotators, respectively.

3. We do not find a positive trend in the fraction of non-
rotating galaxies with group mass (i.e. the stellar kinematic
morphology–density relation) within the studied sample in
contrast to local studies.

An important caveat is that the MAGPI selection favours lower
mass galaxies being satellites of massive centrals, which may have
an impact on the dynamical flavours of galaxies included in the
sample, especially at lower masses.

If taken at face value, we suggest that the absence of an envi-
ronmental trend with stellar rotation at z ∼ 0.3 (compared to local
studies) is consistent with results indicating at most a secondary
role for environment. Indeed, environment has been shown to be
secondary after mass (e.g. Greene et al. 2017; Brough et al. 2017;
van de Sande et al. 2021b; Vaughan et al. 2024) and potentially stel-
lar age (Croom et al. 2024) for low redshift IFS surveys.We further
expect that environmental trends becomemore prominent as large
scale environments continue to build up as the Universe evolves.
In other words, the presence and similar proportions of non-
rotating galaxies in both environment bins suggest that galaxies
with no obvious stellar rotation were dynamically pre-processed at
an earlier epoch. The kinematic morphology–density relation has
not yet emerged by z ∼ 0.3, suggesting the non-rotating galaxies
already present have yet to join denser environments. This will be
contrasted with theoretical expectations using mock observations
of cosmological simulations.
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Appendix A. Extended Dawid–Skenemodel

We suppose that the given property of galaxy j has true category
zj ∈ {1, . . . ,K}, where the prevalence of categories in the popu-
lation is characterised by the vector π = (π1, . . . , πK) such that
zj ∼Categorical(π).

Let dj ∈ (0, 1) denote a measure of ‘difficulty’ in visually clas-
sifying galaxy j, and ci ∈R a measure of relative ‘confidence’ for
classifier i to provide a classification. We model the probabil-
ity that classifier i’s response Yij when shown galaxy j is NS or
IDK as

Pr (Yij ∈ {NS, IDK})= dj exp (− ci)
1− dj(1− exp (− ci))

,

such that dj can be interpreted as the probability that the ‘average’
classifier (with ci = 0) would not provide a classification, and ci
is the logarithm of the odds ratio comparing the probability that
classifier i provides a classification for a given galaxy to that of the
average classifier.

When providing a classification, classifier i’s response when
shown a galaxy with true parameter z is characterised by the
‘response tendency’ vector θ iz = (θiz1, . . . , θizK) ∈ 	K . Specifically,

Pr (Yij = k | Yij /∈ {NS, IDK})= δ(θizjk, dj)
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Figure B1. Example MAGPI galaxies (as labelled on the left) where PP,Morph < 0.55 (i.e.
a reliable morphology could not be assigned). Left: MAGPI synthetic g, r, i-band colour
images with white line (bottom right) showing a 5kpc physical scale and white circle
(bottom left) showing the FWHM of the PSF. Right: Histogram showing the num-
ber of individual choices for the morphology of each galaxy. The mode of the input
(ignoring IDKs) and posterior distributions are shown as vertical purple and red lines,
respectively. Most galaxies without a reliable posterior mode morphology are either
intermediatemorphologies, poorly resolved or have complex (sub-)structures. In some
cases, and depending on the individual classifier’s performance, themodel favours the
relative abundances for the whole sample and assigns ‘E’ (e.g. MAGPI1207227102).

where δ:[0, 1]2 	→ [0, 1] is a function which describes how these
tendencies approach a uniform distribution as difficulty increases:

δ(θ , d)= θ(1− d)+ dα
1− d(1−Kα)

such that δ(θ , 0)= θ (so θ iz can be interpreted as the response
tendencies for classifier i when shown a galaxy of type z with
hypothetical zero difficulty), δ(θ , 1)= 1/K and α > 0 controls
how quickly the diffusion towards uniformity occurs as difficulty
increases.

For Bayesian inference, we used weakly informative priors.
For π we used a symmetric Dirichlet prior with all parameters
equal to 1. For each θ iz we used a Dirichlet prior with parameter
equal to 7(K − 1)/6 on the correct classification and 1/2 on each
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Figure B2. MAGPI galaxies (as labelled on the left) where PP,StellOR < 0.55 and PP,StellFeat < 0.55 (i.e. reliable StellOR and StellFeat could not be assigned). Stellar velocity (Vstar, left)
and dispersion (σ , left-centre) kinematic maps with black circle (bottom left on each panel) showing the PSF. Histogram showing the number of individual choices for StellOR
(centre-left) and StellFeat (centre-right) for each galaxy. The mode of the input (ignoring IDKs) and posterior distributions are shown as vertical purple and red lines, respectively.
Galaxies without reliable posterior modes for StellOR and StellFeat have complex stellar kinematic maps.

incorrect classification. Each difficulty dj was modelled as being
drawn from a Beta distribution, with a Uniform(0, 1) hyperprior
on the mean parameter and a Pareto(0.1, 1.5) hyperprior on the
‘sample size’ parameter (Gelman et al. 2013, Chapter 5). Each rel-
ative confidence ci was modelled as being drawn from a normal
distribution, with zero mean and a half-normal hyperprior with
scale 3/(�−1(0.975)�−1(0.995))= 0.594 on its standard devia-
tion. For the logarithm of α, we used a half-normal prior with scale
2/�−1(0.995)= 0.776.

For each parameter, we ran 8 Markov chains each for at least
13 000 steps following 2 000 steps of adaptive burn-in. We per-
formed diagnostic checks to ensure that the algorithm successfully
explored the posterior and that posterior quantities were well-
estimated. For each classifier, for each galaxy, and overall, we
compared the posterior predictive distribution of responses to the
observed data in order to confirm the adequacy of the model
(Gelman et al. 2013, Chapter 6). For each galaxy j, we extracted the
posterior mean of the difficulty parameter, D=E(dj | Y), and the
posterior probabilities that the true category corresponded to each
option k, Pk = Pr (zj = k | Y). The posterior mode was the category
with the largest posterior probability, μ = argmaxkPk.

Appendix B. Failed classifications

In this section, we show example galaxies for which reliable clas-
sifications could not be obtained. Fig. B1 shows example galax-
ies with PμMorph < 0.55, illustrating that most galaxies for which

a reliable morphology classification could not be obtained are
either intermediate morphologies, poorly resolved or have com-
plex structures.

Fig. B2 shows all galaxies for which PμStellOR < 0.55 and PμStellFeat <

0.55. In those cases, the stellar kinematic maps show complex
stellar kinematic maps.

Fig. B3 shows all galaxies for which PμGasOR < 0.55 and PμGasFeat <

0.55. In those cases, the ionised gas kinematic maps are sparsely
sampled.

In Fig. 4, we show that the difficulty in classifying galaxies cor-
relates with their brightness, size and the number of pixels shown
in the relevant maps. Similarly, in Fig. B4 we compare the poste-
rior mode probabilities with the brightness and size of galaxies. In
all but StellFeat and GasFeat and consistently with results shown
in Fig. 4, there is more scatter towards low posterior probabilities
as the magnitude increases (i.e. faint galaxies have more low poste-
rior probabilities classifications than bright ones). Similarly, there
are proportionally more high confidence classifications for galax-
ies with larger apparent sizes (Re in arcsec) than for their smaller
counterparts.

Appendix C. Kinematic Classifications Summary

This section shows a gallery of theMAGPI synthetic colour images
for the MAGPI fields included in this work with visual and kine-
matic morphologies superimposed (Fig. C1). A small subset of
these is shown in Fig. 11 in the main body of the manuscript.
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Figure B3. Same as Fig. B2, but for the ionised gas kinematics. Galaxies without reliable posterior modes for StellOR and StellFeat have sparse ionised gas kinematic maps.
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Figure B4. Percentile function for the posterior mode probability PF(μ) for Morph, StellOR, StellFeat, GasOR and GasFeat (top to bottom) on galaxy luminosity (i.e. r-bandmagni-
tude, left) and apparent effective radius (Re,profound, middle) as per PROFOUND. Points are colour coded according to their posterior mode as per the legend in the right-most panel
of each row. The distributions of PM are shown as vertical histograms (right). Red dashed line shows the bright galaxies threshold r∼ 20 mag. The scatter towards lower values of
Pμ increases dramatically for objects fainter than r∼ 20 mag and at small sizes (Re,profound ∼ 1− 1.5 depending on the feature).
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Figure C1. Same as Fig. 11, but for all MAGPI fields included in this work. For each field, a MUSE synthetic g, r, i image is superimposed with gas and stellar visual kinematic
morphologies: μStellOR = OR (large thick circles), μGasOR = OR (when available, small thin circles), μStellOR = NOR (large thick squares), μGasOR = OR (when available, small thin
squares), μStellFeat = WOF and μGasFeat =WOF (hollow symbols), μGasFeat = WF and/or μStellFeat = WF (thick and/or thin cross). Colours correspond to the mode of the posterior
morphological classification μMorph (see legend on the next page). In contrast to local surveys, there are many cases of NOR satellites and OR centrals, suggesting that while the
kinematic diversity of galaxies is already established, the kinematic morphology–density relation is yet to be established.
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Figure C1. Continued.
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