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Abstract

Let G be a connected reductive linear algebraic group over the complex numbers. For any
element A of the Lie algebra of G , there is an action of the Weyl group W on the cohomology
Hl(38A) of the subvariety 3SA (see below for the definition) of the flag variety of G . We study
this action and prove an inequality for the multiplicity of the Weyl group representations which
occur ((4.8) below). This involves geometric data. This inequality is applied to determine the
multiplicity of the reflection representation of W when A is a nilpotent element of "parabolic
type". In particular this multiplicity is related to the geometry of the corresponding hyperplane
complement.
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Introduction

Let G be a connected reductive linear algebraic group over the complex
number field C, let B be a Borel subgroup of G and A a nilpotent element
in the Lie algebra 3? of G. Consider the subvariety 3SA of the flag variety
SB = G/B defined by SBA = {gB e SB \A € AdgLietf} .
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450 G. I. Lehrer and T. Shoji [2]

It is well-known from the work of Deligne, Lusztig, Springer and Kazhdan
that the cohomology theory of the varieties 3SA enters the representation
theory of reductive groups over finite fields. The connection arises as follows.
Think of G as a group scheme over Z, and let G {p a prime) be its group
G(¥p) of ¥p points, with a Frobenius endomorphism F, corresponding to
an ¥q-structure on Gp (where q is a power of p). Assume for simplicity

that Gp is ¥q -split, and write GF for GF
p .

Deligne and Lusztig [1] have defined virtual Q/-modules R^.(6) of GF

(where / is a prime distinct from p), where T is an F-stable maximal
torus of G and 6 € (TF)~, whose characters are given by a formula which
essentially reduces the computation of all character values to that of values
on unipotent elements of GF .

Take a unipotent element UGGF . Then B%.(0)(u) is independent of 6,
and we may write R^.(6)(u) = 0^(w). The functions Q^(u) are called the
Green functions of GF and a part of the character theory of GF has been
reduced (cf. Lusztig [14]) to their explicit computation.

Now for p and q sufficiently large, the nilpotent classes in & = &c have

the same classification as the unipotent classes in Gp . Further the GF-classes

into which the G -class of u e GF splits are classified by F-conjugacy classes

in C(u) = ZG(u)/ZG(u)° (see, for example, [27]). Write {uc \ c e C(u)} for

a representative set of elements of the GF-classes of G^-conjugates of u in
GF and let A e & be in the nilpotent orbit corresponding to u (see above).
It follows from the work of Shoji [18] and Spaltenstein [24] that when G is
not of type E%, in each F-stable Gp-conjugacy class of unipotent elements,

there is an element u e GF such that F acts trivially on C(u) and on the
set of irreducible components of &u (= {gB 6 3S \ u e gBg~1}). These
elements are called "split" (or, in [18], "distinguished") and we shall choose
notation so that u (above) = u{ ( l e C(u)) is split.

The <jF-conjugacy classes of maximal tori T in Gp are parametrized
(canonically) by the conjugacy classes in the Weyl group W of G. Let
{Tw | w e W/~) be a set of representatives of these conjugacy classes. Thus
the Green functions Q°(v) may be written Qw(v) = Qj (u) (v e GF

ni).
The group ZG(u) acts on 3SU and induces an action of C(u) on 3§u and

hence on the cohomology H*(&u).
The connection between the cohomology and representation theory arises

from

(1.1) THEOREM (Kazhdan, Springer, Shoji, Spaltenstein [10, 25, 18, 24]).
Let notation be as above with ue GF split, and p and q sufficiently large.
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[3] Weyl groups 451

(i) There is an action of W on the (l-adic) cohomology H*(&u) (the
Springer action as defined by Lusztig) such that for any c e C(u), w GW

= °f°r al1') •
(ii) If A is a nilpotent element of S?c corresponding (see above) to ueGp,

there is an action of W on H*(&A) and H*(^A) s H*{&u) as complex (or
Qy) W-modules (see [20, §5.3]). In particular, for u split in GF, we have

In the statement of (1.1), we use Lusztig's construction [ 13] of the "Sprin-
ger action" of W on H\3SA , C), which differs slightly from Springer's orig-
inal definition (cf. Shoji [19, §5]). Moreover Lusztig's construction applies
for an arbitrary element A of & = LieG. The formulae in Theorem (1.1)
may be viewed as statements about a fixed G for varying q. Thus it makes
sense to say that for split u, Qw(u) e Z[q].

(1.2) DEFINITION. With G as above, let A € &. Write

where R(W) is the Grothendieck ring of W and q is regarded as a variable
in the sense of the above remark.

In this work we address the problem of determining the polynomials QA .
(1.3) PROBLEM. Let G be as above, A e &, and suppose x e W • Com-

pute the inner product

(QA . x) = £ < < ( * * . C), xW e z>0M.

In particular we obtain an explicit formula for (QA , p) in the case where
A is a regular nilpotent element in a Levi subalgebra of a parabolic subalgebra
of "§ (i.e. A is of "parabolic type") and p is the reflection character. Our
formula is in terms of the geometry of hyperplane complements (see Section 2
below) and applies to all the classical groups, except for a possible ambiguity
in the case of SO(4n + 2).

The existence of such a formula was first observed empirically by Orlik,
Solomon and Spaltenstein for the exceptional groups and subsequently for-
mulated as a conjecture by Spaltenstein [23].

The proof of the main theorem is essentially case by case. No direct con-
nection is established between the geometry of 3SA and the Coxeter arrange-
ment corresponding to G, although we make some speculations below. The
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basic tool is an extension to a theorem of Borho and MacPherson (see Section
3 below) which may be applied (Section 4) to give inequalities for (QA, p)
which are just sufficient for its determination. All cases except for the orthog-
onal groups are relatively straightforward, while the orthogonal case requires
the detailed computation of the cohomology with compact supports of some
subvarieties of complex projective space, which is carried out in Section 5.

In Section 2 we discuss hyperplane complements and state the main the-
orem, and in Section 6 we complete its proof for the linear and symplectic
cases, using the inequalities of Section 4, which in the symplectic case yield
{QA . P) for any nilpotent A, not only A of parabolic type.

In Section 7 we treat the orthogonal groups (type B and C) and complete
the proof of the main theorem. Also in Section 7 we apply "Ennola duality
of Green functions" (cf. [18], [24]) to determine (QA , p) for any nilpotent
element A e & when G is of type Bn (G = SO(2n + 1)) or D2n (G =
SO{4n)). This method does not apply to SO(4n + 2), but those of Section
4 do, and we are able to deal with A of parabolic type in SO(4n + 2) except
for an ambiguity in the case (*) (see (2.4) below and (7.24) and (7.25).)

Finally in Section 8 we make some remarks concerning interpretation of
the results of this work and conjecture a similar result for the compounds of
the reflection representation.

2. Hyperplane complements—Statement of the main theorem

Maintaining the above notion, we let / be the rank of W (or semisimple
rank of G) and let sf be the Coxeter arrangement (in the sense of Orlik
and Solomon [16]) consisting of the complexified reflecting hyperplanes of
W in C . Let L{W) be the lattice of intersections of hyperplanes in J / ,
ordered by the reverse of inclusion. For any element X e L(W) let sfx be
the arrangement of hyperplanes of X given by

Let Mx be the corresponding hyperplane complement:

MX = X- | J Y.

The empty hyperplane intersection is C; e L( W), and we write MQi —
Mw, the usual hyperplane complement studied in [17] and [12].

(2.1) THEOREM (Orlik and Solomon [16]). With the above notation, let
X eL(W). Consider the Poincare series Px(q) = £V>0 dimc H'(MX, C)q',
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[5] Weyl groups 453

where H' denotes ordinary (de Rham) cohomology. Then
dim*

Px{q) = Yl (1 + bj(X)q) for certain integers bj(X) e N.
>i

Furthermore Orlik and Solomon give the integers bj{X) explicitly.
The polynomials Px{q) are related to the polynomials Pw{i) (w e W)

which were discussed in [12].
The proof of (2.1) is case by case except when X — C1 or X = H &s>/ .

In the former case, we have
(2.2) Pc,(q) = (I + m{q)(l + m2q) • • • (I + m,q), where { m , , . . . , m,} are

the exponents of W,
while if X = H e stf , we have

(2.3) PH(q) = (1 + mlq)(l + m2q) • • • (1 + m^q), w h e r e {ml,...,ml}
are the exponents of W, written in ascending order.

The results (2.2) and (2.3) are due to Arnol'd and Brieskorn [4] and Orlik,
Solomon and Terao, respectively, 'On Coxeter arrangements and the Coxeter
number', Adv. Stud. Pure Math. 8 (1987), 461-477.

Our main result is the following.

(2.4) THEOREM. Suppose G is a connected reductive complex Lie group
with Borel subgroup B, Weyl group W and corresponding set of simple roots
II . Let J be a subset of U. and suppose Aj is a regular nilpotent element
in the standard Levi subalgebra Lie(L^) of the parabolic subalgebra Lie(Pj)
of 2? = Lie G. Write Xj = C\a€J a

± (where aL is the complex hyperplane
corresponding to a in the Coxeter arrangement srf of W). Then using the
above notation, we have

except possibly in the case (*) (see below).

Here, QA = 52i>QH2'(£?A, C)q' for A e & is the Green polynomial dis-
cussed in Section \. (QA e R(W)[q]) and p is the reflection representation
of W.

The excluded case is

(*) G — SO(4n + 2)(type D2n+l) and / is a parabolic subsystem

of type A. xA, x-xA. with 2 ^ / , < 2« + 1.
j

For further details concerning the ambiguity in the excluded case, see Sec-
tion 7 below (in particular (7.24) and (7.25)).
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The case / = n is well known. It asserts (cf. (2.2) above) that if 31 =
G/B

(2.5)

But H*{£lt, C) is well known: it is the (graded) regular representation
{S/1) of W where S is the symmetric algebra on V (the real representation
space for W) and / is the ideal generated by the fF-invariants of positive
degree (Borho-MacPherson [2], cf. Shoji [19]). Thus (2.5) reduces to a result
of Solomon [21] in invariant theory.

For the exceptional groups, (2.4) was observed empirically by Solomon and
Spaltenstein [20]; thus our theorem completes the proof of the corresponding
statement for all groups, except for the ambiguity (*).

The proof of (2.4) proceeds essentially in a case by case fashion; that is,
the two sides of the equation are computed and shown to be equal. However
the computation of the left hand side is to a certain extent common to all
classical groups G (cf. Sections 3, 4 below). Since we shall require the right
hand side of (2.4) explicitly we give it here.

(2.6) PROPOSITION. Suppose sf is of type Al, Bl or Ct and that / e n .
Then stfXj depends only on the cardinality \J\. Explicitly stfXj is of the
same type as J / , and has rank |I1| - \J\.

This may be found in Orlik and Solomon [16, §2] and is perfectly straight-
forward to prove. It shows that the integers bj(Xj) are the exponents of
Coxeter groups of lower rank, and so are known.

To discuss type Dt, we need the arrangements Dk (k < I) denned as
follows. Let V be an Euclidean space and let x{, ... , xl be a basis of V*,
dual to an orthonormal basis of V. Then W (of type Dt) has corresponding
arrangement {H^, HT. \ 1 < i < j < 1} where H+ = ker(jc( - Xj), H~j =
ker(x(. + Xj). Let Hj = ker xi and define (for 0 < k < I)

Dk
l={Hx,...,Hk,H+,H-\\<i<j<l}.

Thus D° = D,, while D\ = Bl.

(2.7) LEMMA [17, (2.5)]. If s/ is the complex hyperplane arrangement Dk,
then the Poincare" polynomial of the corresponding hyperplane complement is
given by
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[7] Weyl groups 455

Now suppose y e n (type Dt). Then J is either of type At x • •• x At

w i t h E k j = l ( i j + l ) < l , o r A i ] X - - x A i k x D m , m > 2 , £ j = 1 ( j , + 1 ) +

m < I. Here we use the following notation: n = {a{, ... , at}, where
af = Hf i+l (1 < / < / - 1) and a^ = H~_x n ; Dm is a subsystem of type
{an,an_ltan_2,...,an_m+l} (m>2).

(2.8) PROPOSITION. Let sf be an arrangement of type D{ and suppose
yen.

(i) / / J is of type Ai x • • • x At (ij > 1), then JnfXj is of type -Dp-|y| =

Dk

UI-\J\ •

(ii) / / / is of type Ai x • • • x A. x Dm (m > 2), then sfXj is of type
B\n\-\j\ = BI-\J\ •

P R O O F , (i) W e m a y t a k e / t o b e {a{, ... , a^ , a . + 2 , . . . , a , + , + 1 , . . . ,

a , | + , 2 + . . . + I / t + t _ 1 } in w h i c h ca se X} = { ( x , , . . . , x,) eV \ xx = •'•• = x , . + 1 ,

^ , + 2 = " • = * / 1 + ' 2 + > ' • • • * • T a k e c o o r d i n a t e s ^ i ( = x i ) ' ^ 2 ( = ^ , + 2 ) .

... ,yk,xl,xl_l, ..., xd+i in X 7 , where d = E;=i(^ + l) • Then the
restriction to X} of the linear form xi + x is 2ym for appropriate /, j
(any w, 1 < m < k). All other restrictions are of the form Hf. or H~ ,
which proves (i).

(ii) Clearly a^ n a^_{ = {{x{, ... , x{_2,0,0) e K}; the restriction of

Hu to a^C\a^_l is the same as that of Ht. It follows easily that in this case

We summarise the results of (2.6) and (2.8) explicitly in

(2.9) PROPOSITION. Let J / be a complete Coxeter arrangement of classical
type. Let J be a subset of some simple system of roots corresponding to stf .
Then the integers b^Xj) are given as follows:

(i) / / s/ is of type A,, {bt{Xj)} = {1,2, ... , I-\J\}.
{ii) If J* isoftypeB, or C,, {bt{Xj)} = {1, 3, 5, . . . , 2/ - 2\J\ - 1}.

(iii) If stf is of type D, then

( { 1 , 3 , 5 , . . . , 2 / - 2 | / | - 1 }
if J has a component of type D (m > 2).

if J has k components, each of type At, some i.
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3. An equivariant exact sequence in cohomology

The basic tool we shall use is the exact sequence for cohomology with
compact supports [8]: if X is a locally compact HausdorfF space and Y
is closed in X, then we have an exact sequence induced by the inclusion
Y <-> X as follows:

(3.1) • H'C(X) -> H'C(Y) - Hl
c
+\X - y ) - H'c

+l(X) - H'C
+1(Y) - . . .

where H'c denotes complex valued cohomology with compact supports.
Now take X = 38, Y = &A . Then there is an action of W on H*(38)

and on H*(38A) (the "Springer action" as denned by Lusztig; see below).

(3.2) PROPOSITION. (Hotta and Springer; Invent. Math. 41 (1977)). The
maps H\38) —• H'(&A) induced by the induction 38A <-• 38 are equivariant
with respect to the Springer and Lusztig W-action.

For a proof, see Spaltenstein [22].

(3.3) PROPOSITION. For any A e &, we have H\38A) = 0 / / /' is odd.

Combining (3.2) and (3.3), we obtain

(3.4) LEMMA. There is a canonically defined action of W on H*{38 -38A)
which makes the sequence (3.1) W-equivariant (where X = 38, Y = 38A) if
the W-action on H*(£8) and H*(38A) is the Springer and Lusztig action.

PROOF. By (3.3), we have for each / an exact sequence

(3.4.1) 0 -• H*(38 - 38A) A H2i(&) 4 H2i(^A) - i H2
c
i+X{38 -^A)^0

where by (3.2), the map ft is W-equivariant. Hence ker/? = ima is W-
stable, and since a is a monomorphism, there is a unique action of W on
H2\38 -38A) defined by the W-action on i m a . Similarly the requirement
of W-equivariance defines a unique H^-action on H2l+1(& - 38A) - imy.

Our aim is to compute the /?-isotypic part of the sequence (3.4.1). This will
be achieved by taking the JFj-invariant part of (3.4.1) for Wx an appropriate
subgroup of W and using the simple

(3.5) LEMMA. Let M be a CW-module and let W{ be a subgroup of

W. Write Ind^(l) = £ 5 = o m £ (£, irreducible). Then dimcM
1*'1 =

£*=1 m^M, <*,). (Here MWi denotes {m e M \ wm = mVweWl}.)
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The subgroup W{ will be the Weyl group W(L) of a Levi subgroup L
of an appropriate parabolic subgroup P Z) B of G. Let P — LU be a Levi
decomposition of P, with L D T . The computation of the JT(L)-invariant
part of (3.4.1) has been partly carried out by Borho and MacPherson [3,
§§(2.8), (3.4)].

(3.6) PROPOSITION (Borho and MacPherson [2]). With the above notation
write 9s = G/P, 9°A = {xP e 9° \ A e Adx(LieP)}. Then we have isomor-
phisms

This gives the W(L)-invariant part of two of the four non-trivial terms in
(3.4.1). To obtain the others we require the following version of the Borho
and MacPherson result (for which we are grateful to the referee).

(3.7) PROPOSITION. With notation as in (3.6), the natural map 3§A -> &A

(xB •-> xP) induces for each i, a homomorphism H\0°A) —» H\38A). This
is a monomorphism with image H'{&A)W(L).

To see (3.7), we shall need to recall the Lusztig construction of the W-
action on H*(&A). Before doing this, however, we set out some conse-
quences of (3.7).

(3.8) PROPOSITION. With notation as above, we have diagrams

(3.8.1)

It l<

•-&>.) -> 0

- . 0
where the vertical arrows are isomorphisms and are induced by the projection
38 -> & and its various restrictions. Moreover the squares are all commuta-
tive.

PROOF. Since H\9>A) = H\^A)W(L), it follows from (3.2) that H\&A)
vanishes for / odd and hence the top row of the diagram (3.8.1) is just a part
of the cohomo/ogy long exact sequence of the pair (@, @A). Now it follows
by the functoriality of the cohomology long exact sequence of a pair, applied
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to the map of pairs defined by {<%, 3§A) - • {3s, 3S
A) (the projection), that

we have a diagram

0 -» H*'{&> - 3°A) — H2i(3°) -» H2i(0>A) -+ H2M{3° -3B
A)^0

(3.8.2) U |/?
0 — tf2'^ - 3SA) — i/2 '

in which the vertical arrows are induced by the various restrictions of the
projection & -+ 3s, the rows are part of the respective cohomology exact
sequences and each small square is commutative.

By (3.7), P2 and /?3 are isomorphisms onto the W(L)-invariant parts of
H2'{&) and H2'(&A) respectively. It is now straightforward to deduce that
/?, and fi4 are isomorphisms onto the W(L)-invariant parts of HC\3S-38A)
and H2l+X{3& —3SA) respectively. Hence we may take the FF-invariant part
of the second row of (3.8.2) to obtain the diagram (3.8.1).

We have as an immediate consequence

(3.9) COROLLARY. With the W-actionon H*{38-3SA) as defined in (3.4),
we have, for each i, an isomorphism

induced by the projection 38 - £%A -> & - £P
A

We now turn to a discussion of (3.7) and (3.2). For this we recall the
construction of Lusztig ([13], see also [19, §§4, 5]) and the proof of Borho
and MacPherson.

With the above notation, let # = {(x, gB) e & x 3S \ x e AdgLie^}.
Then the projection to the first coordinate n : & —> 2? is the well-known
"Grothendieck resolution", while the projection to the second coordinate is a
fibration with fibre Lie 5 , which shows that H*{§?) ~ H*(3S). Now let &n

be the set of regular semisimsple elements of 3? and write J^ = n~x{^^).
Then n_ — n\ ~ :&„—*&,, is an unramified covering with Galois group

is ' T& rS rs

W; in fact n^ (x) = {gwB \ w e W) , where gB is a fixed element of 3S
such that x e AdgLie5 (x € ^ ) . It follows that if C is the constant sheaf
on §?n, then i ? = (nn)tC is a locally constant sheaf (that is, a local system)
on J ^ which admits W as a group of sheaf automorphisms. The key to
Lusztig's construction is

(3.10) THEOREM (Lusztig [13]). With the above notation, we have

, S?) ^ RntC
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where IC denotes the intersection complex functor in 3^{&) and C (on the

right) denotes the constant sheaf on 3?.

The proof of (3.10) is achieved by characterising a shift of the complex
on the right as the perverse sheaf the cohomology of whose restriction to ^
coincides with £?.

The Lusztig definition of the Springer action is now clear. By the functorial
nature of IC, the left side of (3.10) admits W as a group of automorphisms
(in 31 c (!&)); hence the same is true of the right side.

Now apply the cohomology functor and take the stalk at A € .f to deduce
that there is a JF-action on ^ " ' ( R K . C ) ^ S H\TC\A), C) = H\3SA) since
n is proper. This is the "Springer action" we are concerned with.

Now let P = LU be a parabolic subgroup as in (3.4). Write 2? —
{{x, gP) e 9 x &> | x e AdgLieP} and define y : § -> § by y(x, gB) =
(x, gP) and £, : & -* 9 by £(x, gP) — x. Then we have a commutative
diagram

which induces

where t,n, J ^ and yn are defined in the obvious way. Borho and MacPher-
son observe [2, §2.5] that yK is also a covering projection, this time with
group W(L). They deduce from this [2, §2.7] that

(3.11) PROPOSITION (Borho and MacPherson). With the above notation,
we have R£,C = ( R T T . C ) ^ ' in 2b

Applying the cohomology functor and taking stalks at A e & gives (3.6).
(3.12) PROOF OF (3.7). We recall the following standard results in ho-

mological algebra. If / : X —* Y is a continuous map of locally compact
Hausdorff topological spaces, then there is a natural isomorphism of functors
(cf. Hartshorne [9, Proposition 5.2])

(3.12.1) RTy o R, •=; RTj

where Tx and YY denote the global section functors (this is just the Leray
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spectral sequence). Taking cohomology of both sides of (3.12.1), we obtain

(3.12.2) For y e 3C (X), we have a natural isomorphism

Next, maintaining the above notation, it follows from the fact that Rft is
an adjoint of / * , that for y e 3*{Y) we have

(3.12.3) T * V

Hence there is a distinguished element fif e Mor^»(;r)(y, K / t / * y ) ,
namely the morphism corresponding to idy.^ on the left side of (3.12.3).
This is called the "natural map": y -> R / , / * y . Applying the cohomology
functor, we get maps

The composite

(3.12.4) B

is called the map in cohomology which is naturally induced by / .
Now consider a commutative triangle

X
(3.12.5)

where n, £, y are proper maps of locally compact Hausdorff spaces.
For y e 2lb

c{Z), apply the functor E ^ to the natural map y -+
Ry .y 'y , obtaining

(3.12.6) R ^ y - ^ E ^ E y , y * y - K7rty*y

and taking stalks at y e Y, we have maps

(3.12.7) (R£.y)y * tf^'M, D - (XxSDy * W*(n~\y), ?T) •

This map is precisely the map (3.12.4) in cohomology induced by the
restriction y: n~\y) -* £~l(y) (n(x) = y implies y(x) = y).

Now consider the situation of (3.11). We have

Take y to be the constant sheaf C in dimension 0 and zero elsewhere
in (3.12.6). Then y^C = C and from (3.12.6) we obtain the natural map
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and then clearly the image of n\ is the W(L)-invariant part of (?trs)tC. Thus
we have the commutative diagram

where / is an isomorphism and j is a monomorphism (cf. local systems on
S?n). Applying the functor IC to this diagram, we obtain

*£.C -^ ^ R n C
(3.12.8) >

Moreover f\ is precisely the map of (3.12.6), applied with F = C to the
diagram

§

This is because R£,C and Rn^C are semisimple perverse sheaves which
are induced from local systems on ^ by IC, from which it follows that
any morphism: R£tC —> R ^ C is determined by its restriction to R£,C| s .
Since our two maps clearly have the same restriction, they coincide.

Now taking stalks in (3.12.8) at A € 9, we get

H\&A , C) n- - ^ H\3BA , C)

A
v\W{L)

and tj' is the map induced by y : 38, —* £PA . This proves (3.7).

4. Some basic inequalities

In this section we develop briefly a "calculus" of polynomials whose co-
efficients are (virtual) representations of a finite group H. The method of
proof of our main result depends on using exact sequences in cohomology to
establish inequalities for (HP(&A), p) which in general are sufficient for its
determination. Our purpose here is to encode the inequalities in such a way
as to make the argument mechanical in each case.

(4.1) DEFINITION. Let H be a finite group. Then R{H) will denote the
Grothendieck ring of isomorphism classes of complex (virtual) representa-
tions of H. We write H for the set of isomorphism classes of complex
irreducible representations of H.
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Since C-representations are completely reducible, the additive group of
R{H) is free abelian, with basis H. We have on /?(//) the^usual inner prod-
uct (M, N) = (M, N)H (M, N e /?(//)) which makes H an orthonormal
basis. If q is an indeterminate, denote by -R(H)[q} the ring of polynomi-
als in q, with coefficients in /?(//) . Then we can extend to R(H)[q] the
operations on /?(/ /) , as follows.

For a subgroup K < H and //-module A , denote by AK the set of Af-
fixed points of A, and extend to R(H) by linearity. Similarity if £, e H,
A^ denotes the £-isotypic part of A and we extend to R{H) in the obvious
way.

(4.2) DEFINITION. Let Q = £"=0Af,V € R(H)[q], let AT be a subgroup
of H and let N e R(H) and £eH. Then we define

(i) {Q,N) =

(ii) QK = JZ M?J e R(NH(K))[q].
;=0

(=0

(iv) dim Q = ^(dim Mt)q', where dim : /?(//) -» Z
/=o

is the dimension homomorphism.

Given polynomials f = J2 aflX > 8 = Yl btq
l in Z[q], we say f < g if

a, < b{ for each i. If Qe R(H)[q], we say Q > 0 if (£?, ^-) > 0 for all

(4.3) LEMMA. W/Y/? notation as in (4.2) afove, suppose Q > 0;

(i) dim(2^ = (Q, l"), where \" = IndJ( l ) .

(ii) 7/<f eHand(Z,l")?0, then (Q,Z)< di

PROOF, (i) For any //-module M, we have

d i m M * = (M, l)K = (M, l"K),

the latter being Frobenius reciprocity. The result follows.
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(ii) From (i), dimQK = (Q, l"); writing l" = Y.^HmAi' w e s e e

dim QK = J2( e// mj(Q > £,) • The result is now clear since (Q, £() > 0 for all
i .

Now recall the exact sequence (3.4.1) of ^-modules:

(4.4) 0 -+ H2
C\^ -&A)-+ H A A

To express the exact nature of this sequence in terms of an equation in
R{W)[q], we make the following

(4.5) DEFINITION (cf. Definition 5.1 below). Let M be a complex variety
whose cohomology H*(M) (with compact supports) has a JT-action. Define

Qe(M) = _
€R(W)[q]./=0

oo

;=0

Then Qe{&A) = QA (the Green polynomial of A), and from (4.4) it
follows that

(4-6) Qe{& - &A) + Qe(&A) = Qei&) + Qo(^ ~ ^A> •

(4.7) PROPOSITION. With notation as in Section 3 and above, let x s W
be an irreducible constituent of Ind^( L )( l) . Then

< in y\ < in

where Qo = Qe(SB) = Qe(&0).

PROOF. Take inner products of both sides of (4.6) with / :

whence

Moreover from (4.3)(ii), we have (Qo(& -<@A), X) < dim Qo(
and (Qe(3B -38A),%)< d i m 0 e ( ^ - & A ) W { L ) . The stated inequalities fol-
low.

With M as in (4.5), write (consistently with (5.1) below)

Pe(M) - dimQe(M), P0{M) = dim Q0(M).

For polynomials f-J2 atq', g = X) btq
l € Z[<?], write

sup(/ , g) = J2max(a., bt)q
l and inf(/ , g) = ^ m i n ( a . , 6(.)^'.

,W(L)
^^

https://doi.org/10.1017/S1446788700032444 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032444


464 G. I. Lehrer and T. Shoji [16]

Then we have

(4.8) COROLLARY. Let A, P, L and x^W be as above (in 4.7)). Then
(writing 3s = G/P etc. as in Section 3) we have

sup{0, « 2 0 , X) - Pe(& -&A)} ^ (QA > X)

< inf{Pe(<?>A), (Qo, X) + Po(& -&A)}.

PROOF. In addition to the inequality of (4.7), we have also 0 < (QA , x) <
d i m Q j ( L ) . But by the Borho and MacPherson theorem (3.5), dim<2^(L)

= Pe(&A) and further, by Corollary (3.7), dim<2e(^ - &A)W(L) =
Pe(9° - &>A) and d i m e o ( ^ - &A)W(L) = Po(&> - 3°A). Putting together

the two inequalities with the above facts gives (4.8).
In practice, (4.8) is sufficient to determine (QA, p) for the linear and

symplectic groups, while for the orthogonal groups we also require

(4.9) PROPOSITION (cf. Alvis and Lusztig [1]). Suppose A eg is parabolic
of type J c PI (that is, A is a regular nilpotent element in a Levi subalge-
bra of a parabolic subalgebra of type J). Then for x £ W, (QA , x)q=i —

£ ( l ) , x > {that is, ( f i ^ ^

5. Some cohomology computations

Our purpose in this section is to assemble several results concerning the
cohomology (with compact supports) of certain complex varieties which arise
elsewhere in our discussion. The basic tool for the proofs of the results below
is the exact sequence for cohomology with compact supports and since many
of the proofs are similar, we shall suppress some details. In this section kk

(respectively r ) denotes A>dimensional complex affine (respectively projec-
tive) space. All cohomology is complex, with compact supports. Throughout
this chapter we use without comment some obvious embeddings, such as
A*"1 ^Ah, P*-1 «-»P* etc.

In the interests of efficiency for the statements, and with a view to our
applications, we make the following definitions.

(5.1) DEFINITION. Let M be a complex variety. Define
oo

Pe(M) = ^ dim H^i(M)qi e Zfe]

and

f>mtfc
2'+I(vwy e z[q].

/=0
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Thus the Poincare series

P(M) = f^dimH'(M)qi/2 = Pe{M) + qm

(=0

The following lemma is basic and elementary.

(5.2) LEMMA, (i) Suppose X is a complex variety of (complex) dimension
k and Y is a closed subvariety of dimension r <k, such that H'C(X -Y) = 0
for i<2k. Then

"<m" {% (X-Y) ifi = 2k,

(Y) otherwise {i < 2k).

(ii) /»(A*) - Pe(A
k) = qk .

(iii) P(fk) = Pe(F
k) = \ + q + q

2
 + ... + q

k .

(iv) P(Pk-p') = Pe(F
k-P') = qM+ql+2 + • • • + qk (I < k).

(v) Pe(A
k - A') = qk , Po(A

k-Al) = ql (I < k).

(5.3) PROPOSITION (Fary [7, Theorem 3, page 35]). Let Sfk be the complex

variety defined by Sfk = { ( z , , . . . , zk)eAk \ l j = 1 z) = 1}. Then we have,

for k>\, P(^k) = q(k~m + qk~l .

(5.4) COROLLARY. Let

{ k+\

Then the cohomology of £Pk is given by

The corollary is proved by induction on k, using the exact sequence of
the filtration &k D &>k_x, &k - 3?>k_x ~ 8?k , together with (5.3).

We shall also require the following result of Fary.
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(5.5) PROPOSITION (Fary [7, page 52]). Let yk = {(z,, . . . , zk) e A

ave, for k > 1,

q ifkis odd,

£=I Z) = ° } • Then we have, for k > \ ,

(5.6) PROPOSITION. Let

(where s > 0 , r > 0 , but we exclude r = s = 0 ) . Then

(i)

for s odd, P{^(r, S)) = l+q + q 2 + --- + q r + s ~ 2 = Pe(V(r, s ) ) ,

for s even, P{T(r, s)) = \+g + ... + qr+s~2 + qr+s/2~l = Pe(^(r, s)).

PROOF. If s is odd, we use induction on r , noting that ^ ( O , s) — &s_x,
for which the result is true by (5.5). Moreover "V(r, s)-T~(r-1, s) ~ Ar~' x
^ whose cohomology is given by (5.5), (5.2) and the Kiinneth formula. It
is now routine to complete the proof using the cohomology exact sequence
of the filtration T~(r, s) D V~(r - 1 , 5 ) .

If s is even, we may assume s > 0, for if s = 0 the result is trivial.
Then use the filtration T~(r, s) D ^(r, s - 1) and the fact that T~{r, s) -
'Vir, s - 1) ~ Ar x%?s_,, together with the result for odd s (already proved).

(5.7) COROLLARY. For integers a, b,s>0 with (a, b, s) ^ (0 , 0 , 0) , let

^{a ,b,s) be the variety {[vl, ..., v2, « , , . . . , ub, z , , . . . , z j € P

vxva + v2va_i H h Y?i=i z] = 0} • Then

(i)
a+b+s-2

if a + s is odd, then P(^(a, b, s)) = 1 + q + • • • + qa

= Pe{T{a,b,s)),

if a + s is even, then P(T~(a, b,s))

This is clear, since a linear automorphism of Pa+ +s~2 takes "V(a, b, s)
into T~(b ,a + s) (in the notation of (5.6)).
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(5.8) LEMMA. Let

If s is odd, then

P(W(d,e,s)) = qD~e+1 + g°-e+2 + ••• + qD(= Pe(W(d, e, s)))

where D = d + s-2 = dim W(d, e, s) (as complex variety).

PROOF. If e = 0 then W{d, e, s) = T(d, s) and the result follows from
(5.6). If e > 1, then W(d, e , s) D W(d - I, e - I, s) (equation: M, = 0)

and W(d, e, s)-W(d-1, e-1, s) ~ hd~x x ^ . Repeating this procedure,
we get a nitration of W(d, e, s) whose final term is W(d - e + 1, 1, s) ^
A ~e x J< . The result now follows by repeated application of Lemma 5.2(i).

When 5 is even, the argument of (5.8) breaks down. However we shall
prove

(5.9) PROPOSITION. Let

i = i

( « , , . . . , u e ) ^ ( 0 , . . . , 0 ) 1

If s is even and non-zero, and e > 1, then [writing D = d + s -2 as above)

Pe(W) = qD-e+l + qD~e+1 + • • • + qD + q0'^'2

(that is P(w) = qD~e+l + --- + qD + qD^-^2 + f—C

PROOF. Consider the filtration W D W' = W(d, e, s - 1) (equation:
zs = 0). Then W - W' s (kd - Ad~e) x / ,_ , and one easily sees that
H'c(W - W') vanishes except in degrees ID - s - 2e + 3 , ID + 1 - 2e,
2D-S + 2, 2D (where it is C). Using (5.8), one obtains the exact sequence

0 -» H2i(W - W') -> H2i(W) -* H2
C\W')

H2
c
i+\W - W') -» H]M
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s

After a bookkeeping exercise in dimensions, one obtains the result that
either (5.9) holds, or else

and
P (<w~\ — aD~e+i 4- -+- D 4- D ~ ( i ~ 2 ) / 2 i D~e

To resolve the ambiguity, we consider

and the corresponding exact sequence; here H*{W) is known (by (5.8)) and
we have

^H2i{W)^H*i+1

where <W:'— 'W^ ~ (A'' — A^~e) x 3?
Putting i = D-e in the above sequence and using the information above

gives, after collecting terms, H*D~e)(W) = 0 if e £ {s - 2)/2. If e =
{s — 2)/2 one again enumerates the possibilities for non-zero terms in the
sequence above, finally concluding that H^D~e){W) = C in this case, as
stated in (5.9).

We summarise the previous two results in

(5.10) THEOREM. Let

\ i=i

and{Ul,...,ue)?{0,0,...,0)\.

Assume that 1 < e < d {if e = 0 cf. (5.6)). Then {writing D = d + s-2 =
dim W) we have

(i) if s is odd, Pe{W) = qD~e+l + qD~e+2 + ... + qD and P0{W) = 0 ,

(ii) if s is even and ^0, Pe{W) = qD~e+l + • • • + qD + q
D-0-W

andP0{W) = qD-e-{s-1]l\

(iii) if s = 0 , then (i) holds, with D - dim W = d + s - 1 =d - 1 .
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Finally, we need to investigate the varieties

W{a,b,e,s) = {[vx,...,va,va+x,...,va+b, z , , . . . , zs]

eT(a,b,s)\(vl,...,ve)?(0,...,0)}

(see (5.7)) where

(a ,b,s) = {[w, ,...,va, va+l,..., va+b, z , , . . . , zs)

and we assume s > 0, 0 <e <a + b.
First observe that for e — 0, W(a, b, e, s) = y(a, b, s), whose coho-

mology has already been described. Also, if a = 0 then

which is treated in (5.10) above. Moreover if e = 1, W{a, b, e, s) is easily
recognised: we have

2T(1, b, l , 5 ) ~ A 6 x ^ ,

while
W{a,b, I, s) ~ Aa+b+s~2 ( a > l ) .

Thus we may suppose e > 1, a > 1 and reduce to the case e = 1.

(5.11) LEMMA. Suppose 1 < e < l+a/2. Then W(a, b, e, s) has a filtra-
tion with successive strata given by AD, AD~l, ... , AD~{e~2), W{a - 2e + 2,
b + e - 1, 1, s) {where D — a + b + s -2 = dim W{a, b, e, s) as complex
variety).

PROOF. Let W = {x e W = W(a, b, e, s)\vl = 0}. Then clearly
W' ~%r(a-2,b+l,e-l,s) and W-W1 ~ AD . Moreover if e - 1 > 1,
then we still have 1 < e - 1 < 1 + (a - 2)/2, so that we may repeat the above
procedure, obtaining W" ~ W{a - 4, b + 2, e - 2, s} and W' - W" ~
AD~'. The assumption on e proves that this procedure terminates with
W(a -2e + 2,b + e-\,\,s)a.s stated.

(5.12) COROLLARY. / / 1 < e < a/2 + 1, then

( C ifi = 2j, D>j>D-(e-2),

-2e + 2,b + e - l , 1, s))
Hl

c{W{a,b,e,s)) =

0 otherwise.

This follows from repeated application of Lemma (5.2)(i) to the filtration
of (5.11).
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Now if a > 2, then W(a, b, 1, s) ~ Aa+b+s~2. Hence as an easy conse-
quence of (5.12), we have

(5.13) COROLLARY. If 2e < a, then

and
Po(W(a,b,e,s)) = 0.

For in this case, a - 2e + 2 > 2.
Hence we are reduced to a consideration of the case 2e > a .

(5.14) LEMMA. Suppose a is even and that 2e > a. Then

C ifi = 2) , D>j>D-a/2+l,

H'c{W{a,b,e,s))={ H^(b + a/2, e-a/2,s)) ifi<2D-a,
0 otherwise.

PROOF. Using the same construction as for Corollary (5.12), we see that
W(a, b, e, s) has a filtration whose successive strata are

D D-l £>-f + l ~
A , A , . . . , A , /}

in the notation of (5.10). The result now again follows by applying (5.2)(i)
repeatedly.

In view of (5.10), this leaves only the case where a is odd and 2e > a.
For this case, we have, corresponding to (5.14), and with a similar proof,

(5.15) LEMMA. If a is odd and 2e > a then

(C ifi = 2j, D >j>D- s^ + l,

H^{a,b,e,s))=l H[(W(\, b + ^ , e - ^ , s)) ifi<2D-a+l,
{ 0 otherwise

(where D = a + b + s-2).

Thus we are reduced to the case a = 1 (and e > 1). For the remainder
of this section, write W = W( \,b,e,s).

(5.16) LEMMA. Suppose s is odd, e > 1. Then
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(ii) Pe{W) = qD~e+i + qD~e+1

where D = d i m ^ " = (b + I + s) -2 = b + s - l .

PROOF. Let W' = W(b, e - 1, s) c W (equation: w, = 0 ) . Then

W - W' ^ kb x 3?s, and so H'C(W -W') = C if i = 2D or 2D-S+1 and
zero otherwise. Since H'C{W') = 0 for / odd (see (5.10)), it follows from
the cohomology exact sequence of the inclusion W'<-^ W that P0{W) — 0.

Using this, another straightforward application of the cohomology exact
sequence gives the formula for Pe{JSf).

We treat the final case in

(5.17) LEMMA. With notation as in (5.16) suppose s is even, s > 0 and
e>\. Then

(i) D^2)/2e

PROOF. Let W[ = {[«,, u2, ... , ub+l, z , , . . . , z j e W\ u2 = 0} . Then
Wx ~ W{\, b - 1, e - 1, s) and W - Wx ~ A6"1 x ffs+l. Hence
H'C{W - Wx) = C if /' = ID and 0 otherwise, since s is even. Repeat-
ing this procedure and applying (5.2)(i) repeatedly, we obtain

{ C ifi = 2j,D>j>D-e + 2,

Hl
c{W{\ ,b-e+l,l,s)) ifi<2(D-e+l),

0 otherwise.

Moreover W(l, b-e+l, 1 , ^ ) ~ Ab~e+l x xs > whose cohomology is given
by (5.2) and (5.3). Collecting these facts, we obtain (5.17).

We collect the results of (5.11) to (5.17) in

(5.18) THEOREM. For integers a, b, e, s > 0, define the variety

W(a,b,e,s) = W

by

W = {[«, ,...,ua, ua+l,..., ua+b, z , , . . . , z j

(e<a

Write D = dimcW = a + b + s-2 and P0(W) = ^ ^ d i

and Pe{W) = £ ° ! 0 dim H2i(W)ql. Then the values of Po and Pe are given
in the following table.
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2e<a

2e> a
a even
5 even, > 0

2e> a
a odd
s odd

2e > a
a odd
5 even, > 0

2e > a
a even
s odd or 0

P0{W)

0

q*>-e->-¥

0

0

Pe{W)

gD.e+1 + gD_e+2 + +qD + q D _ ^

d-e+1 , D-e+2 , , D , D-^--^
q +q H bq +q ^^ ^^

D-e+1 . D-e+2 . , D
q +q H + q

D-e+\ , D-e+2 , , D
q +q +--- + q

6. The linear and symplectic groups

The proof of Theorem 2.4 for the linear and symplectic groups involves
an easy application of the inequality (4.8).

The linear case.
Here we suppose G is of type An_{ (G = GLn or SLn • • • ) ; the nilpotent

orbits in & correspond to ordered partitions X of n. All nilpotent orbits
are of parabolic type. Take P to be a parabolic subgroup corresponding to
a subsystem of type An_2 . Then Ind£(L)(l) = 1 + p and 3s = P"~l(C).

Now take A of type A = (A, > A2 > • • • > Xp > 0) . Then S°A = P(ker,4) =

P""1 and &> -&A = P""1 - P""1 . Moreover (Qo, p) = q + q2 + •• • + qn~l

(see (2.5)). From (5.2), it follows that (4.8) reduces (with X = P) m
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case to

sup{0, q + q2 + •• • + gn-l-(qP + gP+l + ••• + / " ' ) } <(QA,p)

<inf{l+q+-+qp-l,q + q2 + -- + q"-1}

from which it follows immediately that

(QA,p) = q + q2 + --- + <f~l.

Comparison with (2.9) completes the proof of (2.4) for type A.

The symplectic case (type Cn).
Suppose G = Sp(2/j, C) and take P (as in Section 3) to be the isotropy

subgroup of a line in the symplectic space C2" . Then &> = G/P = P2""1 ,
W(L) is a parabolic subgroup of type Cn_l and Ind|£(L)(l) = 1+/>+£, where
p is the reflection representation and £, is irreducible of degree n - 1 (it
is the reflection representation of the symmetric group Sn , lifted to W(Cn)
via the canonical surjection W{Cn) -+ Sn).

The nilpotent orbits in & are given (cf. [27]) by partitions X of 2n , such
that any odd part occurs an even number of times. Suppose 7 is a subset of
n which corresponds to a subsystem of type A, x As x • • • x As xCk . The

' l ' 2 ' ( K

corresponding partition (written in unordered form) is (i{ + 1 , i{ +1, . . . , /,+
1, it + 1, 2k, \s) where J2'j=i 2(*, + l) + 2k + s = 2n (k = 0 corresponds
to the case where there is no component of type C). Thus the number p of
parts of X is given by

{ 2t + s + 1 if / has a component of type C,

2t + s if / has no component of type C,
and for comparison with (2.9) it is useful to note that 2t + s = 2(M - | / | ) .

Again from (2.5) we have in this case

(6.2) (Q0,p) = q + q3 + --- + q2"~l.

Moreover since (<20, 1) = 1 and by (4.3)(i) we have dim(Q^(L)) =
(Qo, 1 +1, + p) (= Pe{&) by Borho and MacPherson), we have

(6.3) «2o,£> = <72 + <74 + --- + <?2".

Now take A nilpotent, with corresponding partition X. Write p for the
number of parts of X and s for the multiplicity of 1 in X. Then with the
above notation we have &>A = P(ker^) - P""1 and &> -9a

A = P2""1 -Vp~l.

Using (as above) the relation dim((2^(L)) = (QA, 1+ £ + p) = Pe{^°A), we
obtain (using the fact that (QA , 1) = 1 for all A)

(6.4) (QA, p) + (QA, Q = q + q2 + ... + qp~l.
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Next, apply (4.8) to p and to <*: we have

< (QA , p) < inf{l + q + • • • + / " ' , q + q3 + • • • + q2"'1}

whence (QA , p) <q + q3-\ \-qp~X (only odd powers occurring). Similarly,

(QA ,€) <Q2 + Q4 -\ 1- <f~X (only even powers occurring).
It follows from (6.4) that

\q + qi + - •• + / " ' if p i s even,

and that

, f q2+q* + --- + qp-2 i fpiseven,
(6.6) {QA,Q = \ 2 4 P-\ -c • AA

{ q + q ^ Yq if p is odd.
Combining (6.5) with (6.1) and comparing with (2.9) completes the proof

of (2.4) for the symplectic case. (One obtains, in the notation of (6.1), that

and 2t + s - 1 = 2(« - | / | - 1).)

7. The orthogonal groups

CASE 1. The group SO(2n + 1) (type Bn)
The nilpotent orbits in & correspond to partitions X — (Xt > X2 > • • • >

X > 0) of 2n+1 such that any even part occurs an even number of times (see
[27, page 259]). For a nilpotent element A corresponding to the partition X
we write

s — #{i \ Xt = 1}, p — number of parts of X (always odd here),

r — p - s , N — 2n + l-2.

Take P to be the maximal parabolic subgroup of G which is the isotropy
group of an isotropic line in the orthogonal space c2 n + 1 on which G acts
naturally. It is shown in [27] that given A, one can choose a basis of C2"+1

with respect to which the quadratic from Q which is left invariant by G has
the form

(7.1) <2(x, , . . . ,xN, zx, ... , zs) = xxxN + x2xN_x + • • • + z\ + z 2 + • • • + z]

and the spaces 3° = G/P and 9°A = {gP e 3° \ A e Adg UcP} are given
by

(7.2) J ̂  = {[*'' ''' ' *N' Zl' ''' ' Z$] = X G P

I CiO i Y C. Qfi I V V . . . V \W
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Suppose / is a subset of II which corresponds to a subsystem of type
At xA, x-xAi xB. . The corresponding partition is (/, + 1 , /. + 1 , . . . , /,+

\ A I 1 1 I

1, /, + 1, 2k + 1, 1J) where £ j = 1 2(/, + 1) + 2k + 1 + s = 2n + 1 (if there
is a component of type Bk). In this case it is easily verified that 2t + s =
2(n - \J\) — p - 1. Similarly if there is no component of type Bk , 2(n - \J\)
= 2t + s — \ — p — 1. Thus in analogy with (6.1), we have here

(7.3) if X is of parabolic type (corresponding to J CYl) then
_ j 2t + s if J has a component of type B,

1 2t + s - 1 if / has no component of type B.

Now let A be an arbitrary nilpotent element in S? with corresponding
partition X. From (7.2) it is clear that (in the notation of (5.7), (5.6) and
(5.18)) we have

(i) ^> a1fr{N,0,s), (ii) 3°A~'V{r , s ) ,

Here (ii) follows from the fact that since each of the r parts not equal to
1 has cardinality at least 2, we have r < N/2.

Again as in the case of type C, Ind^(L)(l) = 1 + p + £,, where p and £
are as in Section 6 above, and we have

Now N + s = 2n + 1, which is odd. Hence by (5.7) we have

(7.6) Pe(&>) = Pe(3r(N,0,s))= l+q+-+g2n~l.

Thus using (4.3)(i), we deduce

(^ 7^ if~\ J » \ si i si i i •»

Similarly it follows from (5.6) and (7.4)(ii) that

(7.8) P
e^A) = \ 2 ^ r+s-2

Moreover from (5.18) and (7.4)(iii) we have

0 if s is odd or 0,

and

In an analogous fashion to (6.4) we deduce from (7.8) that
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Now apply (4.8) to p and £ respectively; we obtain

A

inf{l +q + ... + qr+s~2, q + q3 + -- + q2"'1} its is odd• f M . r+5—2 , r+s/2— 1 3 2 n - l

int{l + # + • • • + q +q >q + q +--- + q
if 5 is even and > 0

• r>r | r—1 3 . , 2w—1 r—1-* *,p r\

that is,

(7.12) # + # + • • • + q

\ Q + 0* H 1- tfP~2 if •* is odd,

Similarly for <̂  we have

q2 + q4 + • • • + qp~3

(7.13) J q
2

 + q* + ... + qP-3 if 5 is odd
< \QA>€) < S 2 . 4 , p - 3 , r+ i /2 -1 - f

[ q +q -\ Vq + q if
The inequalities (7.12) and (7.13) are valid for all A. To resolve the

ambiguity when 5 is even in the parabolic case, apply (4.9): if A is parabolic
of type / e n , then using (7.3) we have

(7.14) (QA,p)q=i = (Ind^(l), , ) = „ - | / | = £Z_L.

Comparing with (7.12) we obtain
(7.15) if A € 2? is a nilpotent element of parabolic type and the corre-

sponding partition X has p parts, of which s are equal to 1, then

and
f q2 + q4 H 1- qp~3 if 5 is odd,

1 Q + Q + • • • + #P~ + <7P ~ if 5 is even.

(Note that 5 is even if and only if J has a component of type Bk .)
Comparing (7.15) with (2.9) (taking into account that p = 2(n - \J\) + 1

by (7.3)) completes the proof of (2.4) for the case of type Bn .
Finally, observe that (7.12) and (7.13) determine (QA, p) and (QA,t)

completely for s odd in the general (that is, not necessarily parabolic) case
while for s even there remains an ambiguity concerning the term qr+s/2~l

(cf. (7.11)). Below we indicate how an "Ennola-type" duality argument can
resolve this ambiguity.
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CASE 2. The group SO(2n) (type Dn).
Here the nilpotent orbits in & correspond to partitions k = (ki > • • • >

k > 0) of In such that any even part occurs an even number of times.
Define 5, p and r as at the beginning of this section and write N = 2n-s.
Choose P in the same way as in Case 1; then as above there is a basis of
C2" with respect to which the quadratic form Q which is left invariant by
G has the form

( 7 . 1 6 ) Q ( x x , . . . , x N , z , , . . . , z s ) = x l x N + x 2 x N _ l + --- + z 2 + --- + z 2

and here the spaces & - G/P and &A are given by

(7 17) i ^ = {[xl,...,xN,zl,...,zs] = xef;ln-i\Q(x) = 0}

\<?>A = {xe&>\xi=x2 = --- = xN_r = 0}(r

Thus in the notation of Section 5 we have again (as in (7.4))
(7.18)

,0,N-r,s).

Note that p — r + s is even in this case.
wAs above we have Ind^(L)( 1) = 1 + p + £, but

(7.19) {Uo>P/ = <] + Q + • • • + Q + q

Due to the different parities of the integers concerned, the cohomology spaces
are different. Since N + s(- In) is even, we have by (5.7) that

(7.20) Pt{&) = 1 + q + • • • + q2"-2 + q"~\

Thus, combining (7.19) and (7.20) we have

in -M \ //-> E\ 2 4 In—2

(7.21) \Qo,Q = q + q + ••• + q

As above, we have from (5.6)
is odd or zero,•{ i , , 2 , , r+s-2 . r+s/2-l

l+q + q + -+q + q
and from (5.18) we have

{ 0 if s is odd or zero,

, ' « " - if , is even and > 0,

and

Moreover the equation (7.11) remains valid in the case under consideration
(in view of (7.22)).
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As in the above case we apply (4.8), obtaining
(7.24)

3 p-3 ,„ . f q + q3+-+q" 3 if s is odd,
qW+-+qP <(QA,P)<{ 3 p-3 r+,/2-1 ' •

[q + q +-- + qp + q ' if 5 is even,

unless n is odd and « < p in which case we have

( q + q* + • •• + qp~3 + q"~l if 5 is odd,

q + q3 + --- + qp-3 + gn-l+qr+s/2-1

if s is even.

Also we have

i q2 + qA + --- + qp~3 if 5 is odd,

q*+g*+-+q>-2+<r/2-1

if s is even,
unless n is odd and « < p in which case we have

( q2 + q4 + • • • + q"'2 + q"~l if 5 is odd,

if 5 is even.

For the moment, exclude the case where n is odd and n < p . Then
(7.26) if s i s o d d , (QA,p) = q + q3 + --- + qp~3 a n d (QA,Q = q2 + q* +

To resolve the ambiguity here when s is even, we apply (4.9) to the
parabolic case. (Below we sketch how to apply the "Ennola-type" duality
method to the case where n is even to determine (QA, p) and (QA, ^) for
s even in general.)

Suppose A is of type / , a parabolic subsystem of Dn of type A( x At x
•xAjxDk (k > 2). Then the corresponding partition k{J) is (/, + 1 , /, +

1, . . . ,'i, + l , it + l,2k-l, Is) where 21£'j=l(ij+l) + 2k-l+s = 2n. Thus
if / has a component of type Dk (k > 2), s is odd and p = 2t+1 +s, while
if J has no component of type Dk then s is even and p = 2t + s. In the
former case n - \J\ — (p - 2)/2, while in the latter, we have n — \J\= p/2.
Thus

(7.27) for a parabolic subsystem of type J in Dn, suppose the corre-
sponding partition X(J) has p parts of which s are equal to 1; then

(i)

w ( (p -2)/2 if J has a component of type D (s odd),
WJ ' \ p/2 if / has no component of type D (s even),
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The equation (7.27)(ii) follows, for example, from (i) by putting q — 1 in
(7.11) and subtracting (use (4.9)).

In the case under consideration (that is, we exclude the case n odd and
less than p), (7.27) is sufficient to determine (QA , p) for s even. We have

(7.28) Suppose J is a parabolic subsystem of Dn with corresponding
partition A(/) having p parts of which 5 are equal to 1. Exclude the case
where n is odd and less then p. Then for a parabolic nilpotent A of type
/ , we have

(i) {QA,p = g2 + g4 + -- + 9p-2.
(ii) if s is odd (that is, J has a component of type D) then

(iii) if s is even (that is, / has no component of type D) then

Moreover the following is an easy consequence of (7.27)(ii) and (7.25).
(7.29) Using the notation of (7.28), suppose that n is odd and less than

p . Then for odd 5 (that is, when J has a component of type D), (i) and
(ii) remain valid.

Comparing with (2.9)(iii), this completes the proof of Theorem (2.4).
Note that the case excluded above is where / is a subsystem of type A{ x

•••xAi of Dn where n is odd and n < 2t+s (where s = 2n-2^2 (/. +1)) .
This is precisely the case (*) in the statement of (2.4).

The non-parabolic case for G of type Bn (any n) or Dn (n even).
We maintain the above notation and discuss the two cases simultaneously,

since the notation in Cases 1 and 2 above are consistent with each other. In
view of (7.12), (7.13), (7.24) and (7.25) the determination of {QA, p) and
{QA, £) for all nilpotent AeS? reduces to the determination of the p- and
<^-isotopic components of Hlr+S~2(&A) (= Hp+r~2(&A)) when 5 is even.
The four equations just mentioned show that if s > 0, Hp+r~2(£8A)p { = 2p
or 2£, or p + £, (where M . denotes the sum of the p- and ^-isotopic

components of the module M), while if s — 0, H2r~2(&A)p { = p or £,.
For the rest of this section write G — O(2n + 1) or O(2n), according to

the case being considered, and write G1 — SO(2n + 1) or SO(2n) corre-
spondingly. Define

CG(A) = ZG(A)/ZG(A)° and CG(A)' = ZG,(A)/ZG,(A)°.
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Then CG(A)' has index 2 in CG(A) and the structure of CG(A) is well
known (cf. Shoji [18, §1]). If the partition X corresponding to A is written
I = (I"1, 2"2 , . . . ) (so that n, = s) then CG(A) is an elementary abelian
2-group with involutory generators {a( | / is odd and n{ £ 0} .

If s > 0, write 6 for the (complex) character of CG(A) given by 0(a,) =
- 1 , 0(a() = 1, (/ ^ 1). We also regard 6 as a character of CG(A)' by
restriction.

Now ZG(A) acts naturally on ^ and &A , whence there is an induced ac-
tion of CG{A) on H*{&A) and / f * ( ^ ) , which turns out to be commutative
with the PF-action. Since the natural map 3SA —* £PA is ZG(,4)-equivariant,
the induced map H*(£PA) -* H*[3§A) is CG(^4)-equivariant. Moreover the
isomorphism in (3.7) is CG(/l)-equivariant.

(7.30) LEMMA. Let i = r + s / 2 - l .

(i)Ifs>0, H2i{&>A) = 1 + 6 as CG(A)-modi

(ii) 7 / 5 - 0 , H2I(0>A) = 1 as CG{A)-module.

PROOF. Suppose s > 0. By (7.9) and (7.23), the natural map H2'(&>) -*
i / 2 l ( . ^ ) induced by the inclusion &>A <-» 3P has a non-trivial image for
/ = r + j — 1 . Since this map is CG(/l)-equivariant and CG(^4) acts trivially on
H2'(£P), it follows that 7 f 2 ' ( ^ ) contains a copy of the trivial representation
of CG(A).

Now identify &A as 2^(r, 5) as above, with notation for the coordinates
as in (5.6). Using the explicit description of the action of ZG(A) on &A

given in [18], we see that ai (j ^ 1) acts on &>A via aj(uk) = -uk (some
k) while a,(z,) = - z t (the a fix all other coordinates). Using the filtration
V(r, s) - 'Vir, s - 1) a Ar x %?_, as before, one sees easily that a,. (; ^ 1)
acts trivially on H2l(£PA). It remains only to show that a, acts non-trivially
on H 2 ' ( ^ ) . In. view of the above (CG(A)-stable) filtration, it is enough to
show that a, acts non-trivially on / f^~ 2 (^_ , ) . Changing coordinates, a?k

may be written as Sfk = {(z, , ..., zk) e A1 \ z2 -\ 1- zk_lzk = 1} with

a,-action zt •-> — z t . We show that a, acts non-trivially on Hk
c~

x{8?k) for
any A: > 1. For this, observe that zk — 0 defines a subvariety of 8?k which

is isomorphic to J^_2 x A1 and 3Tk - {3?k_2 X A ' ) ^ A * " ' - Afc~2. Using
this filtration repeatedly, one reduces to the case k = 1 or k — 2, where an
easy verification finishes the proof. The case s = 0 is similar and easy.

To deduce (QA, p) from this, we need a property of "Ennola duality of
Green functions" (cf. [18, §4]). The following formula, which is a simplified
version, is due to Spaltenstein [24].
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(7.31) PROPOSITION (Spaltenstein [24]). Let W be a Weyl group contain-
ing -1 and let x be an irreducible character of W. Define the parity p(x)
by

ro *y*(-i) = x(i) ,
I 1 ifx(-l) = ~X(l).

For any 4> £ (CG(A))~ write xA $ for the character of W corresponding
to {A, <j>) under the Springer correspondence. Then

Hlt^A W ^0=>i = dA +p{X) + p{XAJ (mod 2)

(where dA = di

Note that the hypotheses apply to our case, type Bn (any n), type Dn (n
even).

In our case it is easily verified that p(p) = 1 and p(£) = 0.

(7.32) LEMMA. Let 6 e CG(Ay be as above. Then

)=(P(XA,i) if s/2 is even,
P{XA'e)~\p{XAA) + \ ifs/Hsodd.

This follows from the explicit description of the Springer correspondence
given in [18, §1].

(7.33) PROPOSITION. Maintaining the above notation, let i — r+s/2- 1. If
M ^ denotes the sum of the p- and %-isotypic components of the W-module
M, we have

(i) ifs/2 is odd, H2i(^A)pi = p + Z,

ifs/2 is even, ^ 0 then H2\3SA)p ^

= iU ifGisoftypeBn,
1 2p ifG is of type Dn (n even),

a,,) jr.-o.ta,«"(*„),<-{« if
rV

sof
f
typeB-\ ,

Ap'i (p ifGisoftypeDn(neven).
PROOF. (We assume (7.30), (7.31) and (7.32).) Suppose first s > 0. From

(7.30) we have

as CG(A) x W-module, with X\ > X2
 e {P > £} • Suppose first that s/2 is

odd; then p{xA,e) ¥> P(XA>]) by (7.32). Hence by (7.31) XX^X2, whence
(i) follows. If s/2 is even, then p(xA ,) = p(xA e) by (7.32) and again
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by (7.31), xx = X2- Write x = Xx = X2- By (7.9) and (7.31), the map

H 2 i { & > ) -* H2J(&>A) i s s u r j e c t i v e f o r j ^ i = r + s/2-l. I n p a r t i c u l a r ,

if CG(A) acts trivially on H2i{3SA) ^ 0 for some j ^ i, we have j = i

(mod 2) by (7.31). But for j # i, we know H2i{&A)Pti by (7.12), (7.13)
and (7.24), (7.25); moreover r is even when G is of type Dn and odd when
G is of type Bn . The result (ii) follows.

Note that only case (i) occurs for A of parabolic type. The proof of (iii)
is the same as that of (ii).

We summarize the results above in terms of the polynomials {QA , p) and

(7.34) THEOREM. Suppose G is of type Bn or Dn {with n even in the
latter case). Let A be a nilpotent element of & with corresponding partition
X, which has p parts of which s have cardinality one. Write r—p-s. Then,
with p, £ € W as defined above, we have the following.

(i) If s is odd

(ii) If s is even

The proof is a straightforward translation of the results of (7.33) using
(7.12), (7.13), (7.24) and (7.25). It seems noteworthy that in spite of the
detailed information concerning the fF-structure of H*{3§A) which is used
to prove (7.34), the formulae for (QA , p) and {QA, E) in the case 5 even
are uniform.

8. Complements and concluding remarks

Besides the main theorem (2.4) which describes the occurrence of the re-
flection representation of W in the "Springer representations" of parabolic
type in terms of the cohomology of complex hyperplane complements, our
methods have produced the (QA, p) for arbitrary nilpotent A for all cases
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except S0(4n + 2). In addition, whenever (QA , p) is known, so is {QA , £)
wwhere £ is the other non-trivial component of Ind^(L)(l) (see (6.6) for

Sp(2«), (7.34) for SO(2n + l) and SO(4n), (7.28) and (7.29) for SO(4n+2)
and A of parabolic type.)

The basic thrust of this work is that the polynomials {QA , R) should have
a description in terms of the geometry of the representation R of W.

(8.1) PROBLEM. Find such a description.
It is possible that work such as that of Tanisaki [28] and De Concini, Pro-

cesi and Kraft [6, 11] on the representations of W on the scheme theoretic
intersection of a Cartan subalgebra of & with a nilpotent orbit might provide
such a link.

Consider the special case of (8.1) where R — p{ the j'th "compound" (that
is, exterior power) of the reflection representation. In the special case A = 0,
the method of Solomon [21] may be applied to show that

(8.2) ( £ H2i{<%, C)ql , P j ) = (Qo

/=o

where a- is the 7th elementary symmetric function.
In view of (8.2) one might conjecture as follows.
(8.3) CONJECTURE. For A of parabolic type / , we have

where the notation is as in (2.4).
We know (8.3) is true for A = 0, for j = I (in which case p = e, the

sign representation), for j = 1 (the present work) and for certain cases in
type A .

Here also, in addition to a verification of the conjecture, a geometric ex-
planation would be desirable.

Note added in proof

We now have an argument which eliminates the exception in Theorem 2.4,
and therefore completes the computation of {QA , p) for A of parabolic type.
The argument uses a transverse slice to the orbit of A in &. Spaltenstein,
in a recent preprint ("On the reflection representation in Springer's theory"),
has refined and simplified our method to obtain (QA, p) for any nilpotent
A when G is classical.
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