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ON THE LOWER CENTRAL FACTORS OF A 
FREE ASSOCIATIVE RING 

ROBERT TYLER 

Let R be a free associative ring with identity freely generated by r\, r2 , . . . , rk. 
In analogy to group theory the lower central series for R is defined inductively 
by 

7o = R and yn = |/yn_i, R], 

where yn is the ideal generated by the indicated ring commutators. Using P. 
Hall's collection process [2; 1, Chapter 11] yjln+i will be shown to be free 
as a Z-module and as an R/R''-module for each non-negative integer n. In each 
case a basis will be exhibited. 

Definition 1. Commutators of order zero are the free generators of R. A 
commutator, c, of order n (denoted by o(c) = n) is of the form [x, y], where 
x and y are commutators and o(x) + o(y) = n — 1. 

The commutators of R are ordered in any manner respecting the condition 
that x preceed y whenever o(x) < o(y). 

Definition 2. Basic commutators of order zero are the commutators of order 
zero. A basic commutator of order n is of the form [x, y] ; where x and y are 
basic commutators, o(x) + o{y) — n — 1, y precedes x in the ordering on the 
commutators, and if x = [r, s], where r and s are basic commutators, then 
either 5 — y or s precedes y in the ordering. 

Definition 3. Basic products of order k in R are defined to be products of 
the form b^b^ . . . bim1 where the bi} are basic commutators ordered by their 
subscripts, i\ ^ i2 ^ . . . ^ im, and 

m 

£ o(bti) = *. 

Recall that the identity together with the basic products of R form an 
additive basis for R[l,p. 172, Theorem 11.2.3]. 

Definition 4. The order, 0, of an element r of R is the least of the orders of 
the basic products which appear when r is expressed in terms of the basis 
described above. 
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S. A. Jennings has shown that for non-negative integers p, q, r, and 5 

[TP, 7 J £ 7P+Q+I and 7,7, Ç yr+s 

[3, p. 345, Theorems 3.3 and 3.4]. It follows from the definition of basic com­
mutators and his first result that basic commutators of order n belong to yn. 
Then it follows from his second result that basic products of order n belong 
to yn. 

Thus elements of R of order at least n belong to yn. The problem is to show 
that the non-zero elements of yn are of order at least n. To this end we will use 
the fact that a commutator of order n may be expressed as a sum of basic 
commutators each of order n [4, p. 327, Theorem 5.9]. 

Consider the product (not necessarily basic) 

bplbp% . . . bPk} 

where the bPj are basic commutators. The pseudo-order, 0, of this product is 
defined to be the sum of the orders of the bVj. 

L E M M A l.o~(bP1bP2 . . . bvk) S o(bP1bP2 . . . bPk). 

Proof. The deficiency of a factor in a product of basic commutators is defined 
to be the number of succeeding factors in the product that have lower sub­
scripts. The deficiency, d, of a product of basic commutators is the sum total of 
the deficiencies of its factors. 

For each non-negative integer i and positive integer j let A (i, j) represent 
the following statement: If b = bPlbP2 . . . bPj is a product of basic commutators 
and d(b) = i then 5(b) ^ o(b). Note that A (i, 1) is true for each i and A (0, j) 
is true for each j since the order and pseudo-order of a basic product are the 
same. We proceed by double induction. 

A (m, n) represents the statement that 

ô(bplbP2 . . . bPn) S o(bplbP2 . . . bPn), 

where the deficiency of bP1bP2 . . . bPn is m. If A (in, n) is not vacuously true, 
then there are adjacent bvi and bpi+1 with pt > pi+i. Since 

bpibpi+l = bPi+1bvi + [bPl,bPi+l] 

it follows that 

bplbP2 . . . bPn = bplbP2 . . . bpi+lbPi . . . bPn + bvlbV2 . . . [bpi, bPi+l] . . . bPn. 

It follows from the assumption that A (m — 1, n) is true that the first term 
on the right of this equation is of order greater than or equal to the pseudo-
order of bPlbP2 . . . bPn. Furthermore, since [bpi, bpi+1] is a commutator of order 
°(bPi) + o(bPi+l) + 1 it may be expressed as a sum of basic commutators 
each of order o(bPi) + o(bpi+l) + 1. Hence by an application of the distribu­
tive law and the assumption that A (i, n — 1) is true it follows that we may 
express the second term on the right as the sum of terms each of order greater 
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than or equal to o(bplbP2 . . . bPn) + 1. Hence 

ô(bplbP2 . . . bPn) ^ o(bibPi . . . bPn). 

LEMMA 2. If x and y are basic products and [x,y] ^ 0, then o([x, y]) > o(x) + 
o{y). 

Proof. Let x = bubi2 . . . bu and y = bhbj2 . . . bjt. It follows from the dis­
tributive law and successive applications of the identities 

[a, bplbP2 . . . bpk] = [a, bpl]bP2 . . . bPk + bpl[a, bP2 . . . bpk] 

and 

[a, 6] = —[bt a], 

where a and b are elements of R, that [x, y] may be written as the sum of terms 
of the form 

A[bubj]B} 

where bt and bj are factors of x and y respectively, and A and B are monomials 
in the remaining bk. Then since \bu bj] may be written as a sum of basic com­
mutators each of order o(bt) + o{bf) + 1 we have from an application of the 
distributive law that [x, y] may be expressed as a sum in which each term has 
pseudo-order o(x) + o(y) + 1. Hence, from Lemma 1 it follows that 

o[x,y] > o(x) + o(y). 

LEMMA 3. Nonzero elements of yn are of order at least n. 

Proof. For n = 0 the result follows trivially. Proceeding by induction let x 
be a nonzero element of yn. It follows from the identity 

a[b, c]d = [b, ac]d — [b, a]cd, 

where a, b, c and d are elements of R, and from the definition of yn, that x may 
be expressed as the sum of nonzero elements of the form 

[gn_i, r]s, 

where gn-\ is a nonzero element of 7n_i and r and s are elements of R. Then 
from the induction hypothesis and the linearity of the bracket operation 

lgnr-i, r]s = I YJ Bu r\s = Z) [Bu r]s, 

where the Bt are basic products of order at least n — 1. It then follows from 
the linearity of the bracket operation, the distributive law, and the fact that r 
and 5 may be expressed as sums of basic products and constants that 

E [Bi9r]s= Z [BuCYD*, 
i i,j,k 
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where the B{ are basic products of order at least n — 1, the Cj are basic pro­
ducts, and the Dk are basic products or constants. 

Assume, without loss of generality, that none of the terms in ^i,j,k[Bu Cj]Dk 

are zero. Then by Lemmas 1 and 2 

o([Bit Cj]Dk) ^ n 

for all i, j , and k. Thus 

o(x) ^ n 

and the proof is complete. 

Note that R/R' is just the polynomial ring with identity in the k com­
muting variables fi, f2, . . . , fk, where ft = rt + y\. In other words, 70/71, is 
a free Z-module with the identity and basic products of order zero for a basis. 
This observation will be generalized in the theorem below. 

For notational convenience we identify the basic products of order n with 
the basic products of order n modulo 7n+i. 

THEOREM. For each positive integer n, 7^/7^+1 is free as a Z-module and as an 
R/R'-module with bases given respectively by the basic products of order n and the 
basic products of order n without factors of order zero. 

Proof. It follows from Lemma 3 that the basic products of order at least n 
span yn/yn+\ as a Z-module. Then since basic products of order greater than n 
belong to yn+\ it follows that the basic products of order exactly n span 7n/7w+i. 

To show that this set is linearly independent let 

X KiBi = 0 mod 7w4i, 
i 

where the nt are integers and the Bt are distinct basic products of order n. 
Then by Lemma 3 

Z ntBt = 0. 
i 

But since the Bt are elements of an additive basis for R this implies that nt = 0 
for each i. 

Similarly, since the elements of R/R' are linear combinations of the identity 
of R and basic products of order zero it follows that the basic products of order 
n without factors of order zero, form an R/R' basis for yn/yn+\. In particular, 
lJln+i has a finite basis. 

From Jennings' results and Lemma 3 it follows that for n greater than zero, 
R/yn is a free Z-module with the identity and the basic products of order less 
than n for a basis. Thus R/yn provides a natural prototype for a finitely 
generated ring of finite class [3, p. 343]. 
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