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Abstract

For n independent, identically distributed uniform points in [0, 1]d , d ≥ 2, let Ln be the
total distance from the origin to all the minimal points under the coordinatewise partial
order (this is also the total length of the rooted edges of a minimal directed spanning tree
on the given random points). For d ≥ 3, we establish the asymptotics of the mean and
the variance of Ln, and show that Ln satisfies a central limit theorem, unlike in the case
d = 2.
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1. Introduction and statement of results

For d ≥ 2, let ‘≺’ denote the coordinatewise partial order on R
d : x ≺ y if and only if all

coordinates of y − x are nonnegative and x �= y. For S ⊂ R
d and x ∈ S, we say that x is a

minimal element of S if no y ∈ S satisfies y ≺ x, and that x is a maximal element of S if no
y ∈ S satisfies x ≺ y. Let M(S) denote the set of minimal elements of S. In this paper, our
major interest is in M(S), where S is a random set Xn consisting of n independent, identically
distributed uniform points in [0, 1]d , d ≥ 3. More precisely, we study the asymptotics of the
random variables Ln given by

Ln :=
∑

x∈M(Xn)

|x|, (1)

where | · | denotes the Euclidean norm.
The quantity Ln arises in the context of a certain spanning tree problem, which we now

describe. Suppose that S is a finite subset of [0, 1]d and let 0 denote the origin of R
d . Then 0

is the only minimal element of S ∪ {0}. A directed spanning tree on S ∪ {0} is a directed graph
G with vertex set S ∪ {0}, such that (i) all directed edges are of the form (x, y) with y ≺ x,
and (ii) for every x ∈ S there is a unique directed path in G from x to 0. The length of G,
denoted L(G), is the sum of the Euclidean lengths of its edges. A minimal directed spanning
tree on S ∪ {0} is a directed spanning tree G with the property that L(G) ≤ L(G′) for every
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other directed spanning tree G′ on S ∪ {0}. It can be shown that the minimal directed spanning
tree on Xn ∪ {0} is almost surely unique.

The study of minimal directed spanning trees on random points was initiated by Bhatt and
Roy [6], motivated by applications to communications and drainage networks. The construction
of the minimal directed spanning tree resembles that of other graphs in which edges are drawn
between nearby points in Euclidean space, such as the ‘ordinary’ minimal spanning tree, the
nearest-neighbor graph, and the geometric graph. The probability theory of graphs of this type
on random points is well developed; see, for example, [12], [13], [15], [16], [17], and [18].
However, the minimal directed spanning tree has some distinctive features, notably that there
is no uniform bound on vertex degrees, and the presence of significant boundary effects. In
view of these features, it is a reasonable first step to consider the rooted edges of the minimal
directed spanning tree, i.e. those edges that are incident at the origin.

For x ∈ M(S), the edge (x, 0) is in any directed spanning tree on S ∪ {0}. Conversely, if
x ∈ S with (x, 0) an edge of a minimal directed spanning tree G on S ∪ {0}, then x must be
in M(S) (since otherwise we could find a y ∈ M(S) with y ≺ x and improve on the length of
G by replacing the edge (x, 0) by the edge (x, y)). Consequently, the set of rooted edges of a
minimal directed spanning tree on S ∪ {0} is precisely the set of edges (x, 0), x ∈ M(S).

The number of rooted edges is hence precisely the number of minimal elements of S, which
we denote |M(S)|. This quantity is of interest in multivariate extreme-value theory, and the
probability theory of |M(Xn)| has received a degree of recent attention (see [1], [3], and
references therein). In particular, Bai et al. [2] recently established that |M(Xn)| satisfies a
central limit theorem for d ≥ 2. (Actually, they considered the number of maxima in Xn,
which obviously has the same distribution as the number of minima.)

In the present work, we are instead concerned with the quantity Ln defined in (1), which is
the total length of the rooted edges of the minimal directed spanning tree on Xn. In the case
d = 2, Bhatt and Roy [6] showed that the distribution of Ln converges weakly to a certain
limiting distribution, with corresponding convergence of all moments; subsequently, Penrose
and Wade [14] identified the limiting distribution as a type of Dickman distribution. It is clear
that this limiting distribution is nonnormal since it is supported on the half-line [0, ∞) (no
rescaling or centering of Ln is required in Bhatt and Roy’s result).

Thus, for d = 2 there is a distinction between the limiting distribution of Ln, which is
not normal, and that of a renormalized version of |Mn|, which is normal. This distinction is
essentially due to the effect of long edges. It is natural to ask whether this distinction persists in
higher dimensions, and in this paper we answer this question in the negative by showing that,
for d ≥ 3, the limiting distribution of Ln (suitably scaled and centered) is indeed normal, using
a method related to that of [2]. Moreover, we give precise asymptotic expressions for the mean
and variance of Ln.

As a final introductory remark, we note that there is a resemblance between the study of
minimal elements of a random sample, as in the present paper, and the study of convex hulls
of random samples. In the latter subject, quite a lot is known [7], [8], [10] for d = 2, but much
less is known in higher dimensions, as far as the authors are aware.

In this paper, we write An � Bn to express the fact that An = Bn(1 + O((log n)−1)).

Here are the precise asymptotic expressions for the mean and variance of Ln.

Theorem 1. For d ≥ 3, as n → ∞,

E(Ln) � d

(d − 2)! (log n)d−2. (2)
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Theorem 2. For d ≥ 3, as n → ∞,

var(Ln) �
(

1

2

d

(d − 2)! + 2
d−1∑
k=1

(
d

k

)
khk − γd

)
(log n)d−2, (3)

where hk , 1 ≤ k ≤ d − 1, and γd (γd < d/(2(d − 2)!)) are strictly positive finite constants:
for k = 1,

h1 =
∫ 1

0
dw1

∫ 1

0
dw2 w1((w1 + w2 − w1w2)

−2 − (w1 + w2)
−2)

× 1

2

1

(d − 2)!
(− log w2)

d−2

(d − 2)! , (4)

for 2 ≤ k ≤ d − 1,

hk =
∫ 1

0
du1

∫ u1

0
dw1

∫ 1

0
dw2((w1 + w2 − w1w2)

−2 − (w1 + w2)
−2)

× 1

2

1

(d − 2)!
(− log w1 + log u1)

k−2

(k − 2)!
(− log w2)

d−k−1

(d − k − 1)! , (5)

and

γd = d

((d − 2)!)2

(∫ 1

0
dv1

∫ 1

0
ds

1

(1 + v1s)2

(
log

1

s

)d−2

v1

)

<
d

((d − 2)!)2

(∫ 1

0
dv1

∫ 1

0
ds

(
log

1

s

)d−2

v1

)

= 1

2

d

(d − 2)! .

Our final result, Theorem 3, is a central limit theorem for Ln. To state it, we introduce the
following notation: we write Yn ∈ CLT(rn) if

sup
x

∣∣∣∣P
(

Yn − E(Yn)

(var(Yn))1/2 ≤ x

)
− �(x)

∣∣∣∣ = O(rn) and rn → 0, (6)

where �(x) is the cumulative distribution function for the standard normal distribution.

Theorem 3. For d ≥ 3, as n → ∞,

Ln − E(Ln)

(var(Ln))1/2 → N(0, 1)

in distribution. In fact, we have

Ln ∈ CLT((log n)−(d−2)/4(log log n)(d+1)/2).

In Sections 2 and 3 we prove Theorems 1 and 2, respectively. We write the mean and
the variance of Ln exactly as integrals and, using two elementary but useful inequalities,
(9) and (10), approximate the exact integrals by more tractable ones. By evaluating the tractable
integrals we obtain the asymptotic expressions (2) and (3).
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In Section 4 we prove Theorem 3. With the help of a certain transformation, we approx-
imate Ln by a space-truncated random variable conditioned on a highly probable event. We
then approximate this conditioned, space-truncated random variable by a random variable L′′

n

generated by a Poisson point process. By decomposing L′′
n as a sum of locally dependent

random variables, we can apply Stein’s method to L′′
n to obtain the central limit theorem for L′′

n.
Since our approximation errors turn out to be small, we can extract the central limit theorem
for Ln (Theorem 3) from the central limit theorem for L′′

n. Throughout the paper many strictly
positive, finite constants whose specific values are irrelevant will appear; we generically denote
them by C.

Full details of our calculations can be found at http://math.yonsei.ac.fr/sungchul.

2. Expectation

Let Xn be the collection {x1, . . . , xn} of independent, identically distributed uniform points
on [0, 1]d , d ≥ 3. Given Xn, denote the event that xi is minimal in Xn by Gi . Then we can
rewrite Ln as

Ln =
n∑

i=1

|xi |1Gi
, (7)

where 1A is the indicator function for the set A.
In this section we prove Theorem 1. Using (7) we write E(Ln) as an explicit integral, (8).

Using two elementary but useful inequalities, (9) and (10), we approximate the explicit integral
as a more tractable integral. By evaluating this integral we recover Theorem 1.

By (7) and the exchangeability of the xi , we have

E(Ln) = n E(|x1|1G1).

For x1 := (x1, . . . , xd) to be a minimal point (i.e. 1G1 = 1), all the other points xj , 2 ≤ j ≤ n,
should avoid the region ‘south-west’ of x1. The probability of this occurring is

(
1 −

d∏
i=1

xi

)n−1

.

Hence,

E(Ln) =
n∑

i=1

E(|xi |1Gi
)

= n E(|x1|1G1)

= n E(|x1|) E(1G1 | x1)

= n

∫ 1

0
· · ·

∫ 1

0
(x2

1 + · · · + x2
d )1/2

(
1 −

d∏
i=1

xi

)n−1

dx1 · · · dxd. (8)

To estimate the above integral, we use the following two elementary inequalities:

( d∑
i=1

xi

)(
1 −

∑
i �=j xixj

(
∑d

i=1 xi)2

)
≤

( d∑
i=1

x2
i

)1/2

≤
d∑

i=1

xi, xi > 0, (9)

(1 − nx2)e−nx ≤ (1 − x)n ≤ e−nx. (10)
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By applying the second inequality of (9) to (8), we have

E(Ln) ≤ n

∫ 1

0
· · ·

∫ 1

0
(x1 + · · · + xd)

(
1 −

d∏
i=1

xi

)n−1

dx1 · · · dxd (by symmetry)

= dn

∫ 1

0
· · ·

∫ 1

0
x1

(
1 −

d∏
i=1

xi

)n−1

dx1 · · · dxd

≤ dn

∫ 1

0
· · ·

∫ 1

0
x1 exp

(
−(n − 1)

d∏
i=1

xi

)
dx1 · · · dxd (by (10))

= dn

∫ 1

0
dx

∫ ∞

0
· · ·

∫ ∞

0
dy2 · · · dyd

× x exp

(
−(n − 1)x exp

(
−

d∑
j=2

yj

))
exp

(
−

d∑
j=2

yj

)

= dn

∫ 1

0
dx

∫ ∞

0
xe−(n−1)xe−z

e−z zd−2

(d − 2)! dz

= d
n

n − 1

∫ 1

0
dx

∫ ∞

− log(n−1)x

e−e−u

e−u (u + log(n − 1)x)d−2

(d − 2)! du

= d
n

n − 1

∫ 1

0
dx

∫ (n−1)x

0
e−v (− log v + log(n − 1)x)d−2

(d − 2)! dv. (11)

Here we have made the following changes of variable, in the order listed:

• x1 =: x and xi =: e−yi , i = 2, . . . , d,

• ∑d
j=2 yj =: z,

• z − log(n − 1)x =: u,

• e−u =: v.

Now we expand the term

(− log v + log(n − 1)x)d−2 = (− log v + log(n − 1) + log x)d−2

and integrate term by term. We can then easily see that integration of the (log(n − 1))d−2 term
gives the leading term and that the other terms are all smaller than the leading term at least by
a factor of (log n)−1. Hence, as n → ∞,

E(Ln) ≤
(

d
n

n − 1

∫ 1

0
dx

∫ (n−1)x

0
e−v dv + O((log n)−1)

)
(log(n − 1))d−2

(d − 2)!
=

(
d

n

n − 1

∫ 1

0
dx

∫ ∞

0
e−v dv + O(n−1) + O((log n)−1)

)
(log(n − 1))d−2

(d − 2)!
=

(
d

∫ 1

0
dx

∫ ∞

0
e−v dv + O(n−1) + O(n−1) + O((log n)−1)

)
(log(n − 1))d−2

(d − 2)!
� d

(d − 2)! (log n)d−2. (12)
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Before we continue , we would like to point out that many integral calculations in Sections 2
and 3 follow a procedure very similar to that in (11) and (12); namely change (1 − a)b to
e−ab using (10), change the product

∏d
j=2 xj to the sum exp(− ∑d

j=2 yj ) using a change of
variable, use the hyperplane parameter

∑d
j=2 yj =: z, modify the hyperplane parameter to

simplify the exponent, expand the integrand, and find the leading term. Thus, we refer to
integral calculations similar to those in (11) and (12) as the usual argument and sometimes
denote the usual argument as ‘· · ·’ in equations.

Recall that, to obtain an asymptotic upper bound (12) of E(Ln), we used two elementary
but useful inequalities: the second inequality of (9) and the second inequality of (10). The
difference between E(Ln) and the asymptotic upper bound (12) thus consists of two parts: the
error caused by the use of the second inequality of (10) and the error caused by the use of the
second inequality of (9).

By the usual argument, we see that the error caused by the use of the second inequality of
(10) is bounded by

dn(n − 1)

∫ 1

0
· · ·

∫ 1

0
x1

d∏
i=1

x2
i exp

(
−(n − 1)

d∏
i=1

xi

)
dx1 · · · dxd

= O(n−1(log n)d−2) (13)

(using the difference between the upper and lower bounds of (10)).
Again by the usual argument, we also see that the error caused by the use of the second

inequality of (9) is bounded by

n

∫ 1

0
· · ·

∫ 1

0

∑
i �=j xixj∑d

i=1 xi

(
1 −

d∏
i=1

xi

)n−1

dx1 · · · dxd

≤ n

∫ 1

0
· · ·

∫ 1

0

∑
i �=j xixj∑d

i=1 xi

exp

(
−(n − 1)

d∏
i=1

xi

)
dx1 · · · dxd (by (10))

= d(d − 1)n

∫ 1

0
· · ·

∫ 1

0

x1x2∑d
i=1 xi

exp

(
−(n − 1)

d∏
i=1

xi

)
dx1 · · · dxd (by symmetry)

≤ d(d − 1)n

∫ 1

0
· · ·

∫ 1

0

x1x2

x1 + x2
exp

(
−(n − 1)

d∏
i=1

xi

)
dx1 · · · dxd

≤ d(d − 1)n

∫ 1

0
· · ·

∫ 1

0

√
x1x2 exp

(
−(n − 1)

d∏
i=1

xi

)
dx1 · · · dxd

(by the AM-GM-HM inequality)

...

= O((log n)d−3) (14)

(using the difference between the upper and lower bounds of (9)). Therefore, Theorem 1 follows
from (12)–(14).
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3. Variance

In this section we prove Theorem 2. The basic idea of the proof of Theorem 2 is the
same as that of Theorem 1. Using (15) we write var(Ln) as exact integrals. Using inequalities
(9) and (10) we approximate the exact integrals by more tractable integrals. Then, by evaluating
these tractable integrals, we recover Theorem 2. Compared to the proof of Theorem 1, in the
proof of Theorem 2 there are more complicated integrals. However, the basic idea of the
evaluation of the integrals is the same: we use the usual argument.

We start with an obvious observation; by (7),

var(Ln) =
n∑

i=1

var(|xi |1Gi
) +

∑
i �=j

cov(|xi |1Gi
, |xj |1Gj

)

= n var(|x1|1G1) + n(n − 1) cov(|x1|1G1 , |x2|1G2)

= n var(|x1|1G1) + n2(1 + O(n−1)) cov(|x1|1G1 , |x2|1G2). (15)

Since

n var(|x1|1G1) = n(E(|x1|21G1) − [E(|x1|1G1)]2),

we estimate n E(|x1|21G1) first. By the usual argument, calculations similar to (11) and (12)
yield

n E(|x1|21G1) = n

∫ 1

0
· · ·

∫ 1

0
(x2

1 + · · · + x2
d )

(
1 −

d∏
i=1

xi

)n−1

dx1 · · · dxd

= dn

∫ 1

0
· · ·

∫ 1

0
x2

1

(
1 −

d∏
i=1

xi

)n−1

dx1 · · · dxd

...

� 1

2

d

(d − 2)! (log n)d−2. (16)

Thus, by (16) and (2),

n var(|x1|1G1) = n E(|x1|21G1) − n[E(|x1|1G1)]2

= n E(|x1|21G1) − n

(
E(Ln)

n

)2

� 1

2

d

(d − 2)! (log n)d−2. (17)

Now let us look at the crossing term

n2(1 + O(n−1)) cov(|x1|1G1 , |x2|1G2).

Let us say that x dominates y if y ≺ x, and let

D = {(x, y) ∈ [0, 1]d × [0, 1]d : x does not dominate y and y does not dominate x}.
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Then by symmetry, with the notation x = (x1, . . . , xd) and y = (y1, . . . , yd),

n2 cov(|x1|1G1 , |x2|1G2)

= n2
(∫

D

|x| |y|
(

1 −
d∏

i=1

xi −
d∏

i=1

yi +
d∏

i=1

(xi ∧ yi)

)n−2

dx dy

−
∫

[0,1]d×[0,1]d
|x| |y|

(
1 −

d∏
i=1

xi

)n−1(
1 −

d∏
i=1

yi

)n−1

dx dy

)

= n2
(∫

D

|x| |y|f (x, y) dx dy

− 2
∫

x≺y

|x| |y|
(

1 −
d∏

i=1

xi

)n−1(
1 −

d∏
i=1

yi

)n−1

dx dy

)

=: I1 − I2, (18)

where

f (x, y) =
(

1 −
d∏

i=1

xi −
d∏

i=1

yi +
d∏

i=1

(xi ∧ yi)

)n−2

−
(

1 −
d∏

i=1

xi

)n−1(
1 −

d∏
i=1

yi

)n−1

.

Since

1 −
d∏

i=1

xi −
d∏

i=1

yi +
d∏

i=1

(xi ∧ yi) ≥
(

1 −
d∏

i=1

xi

)(
1 −

d∏
i=1

yi

)
,

we have f (x, y) ≥ 0 and, hence, I1 ≥ 0. To obtain the asymptotics of I1, we decompose
D according to the number, k, of the components of x that are larger than the corresponding
components of y. Then, where in an obvious change of variable we write xi as a large component
of x or y and xiui as a small component of x or y, we have

I1 = n2
d−1∑
k=1

(
d

k

) ∫
[0,1]d×[0,1]d

( k∑
i=1

x2
i +

d∑
i=k+1

x2
i u2

i

)1/2( k∑
i=1

x2
i u2

i +
d∑

i=k+1

x2
i

)1/2

×
((

1 −
d∏

i=1

xi

d∏
j=k+1

uj −
d∏

i=1

xi

k∏
j=1

uj +
d∏

i=1

xi

d∏
j=1

uj

)n−2

−
(

1 −
d∏

i=1

xi

d∏
j=k+1

uj

)n−1(
1 −

d∏
i=1

xi

k∏
j=1

uj

)n−1) d∏
i=1

xi dx du.

We replace the product terms by exponential terms as we did in (11). With these replacements
there will be two errors of order n−1/2(log n)d−1. Using the difference between the upper and
lower bounds of (10), we see that the error caused by the replacement of

(
1 −

d∏
i=1

xi

d∏
j=k+1

uj −
d∏

i=1

xi

k∏
j=1

uj +
d∏

i=1

xi

d∏
j=1

uj

)n−2
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is bounded by

Cn3
∫

[0,1]d×[0,1]d

( d∏
i=1

xi

)3( d∏
j=k+1

uj +
k∏

j=1

uj −
d∏

j=1

uj

)2

× exp

(
−(n − 2)

d∏
i=1

xi

( d∏
j=k+1

uj +
k∏

j=1

uj −
d∏

j=1

uj

))
dx du

≤ Cn3
∫

[0,1]d×[0,1]d

( d∏
i=1

xi

)5/2( d∏
j=k+1

uj +
k∏

j=1

uj −
d∏

j=1

uj

)2

× exp

(
−(n − 2)

d∏
i=1

xi

( d∏
j=k+1

uj +
k∏

j=1

uj −
d∏

j=1

uj

))
dx du

...

≤ Cn−1/2(log n)d−1
∫

[0,1]d

( d∏
j=k+1

uj +
k∏

j=1

uj −
d∏

j=1

uj

)−3/2

du

= O(n−1/2(log n)d−1) (19)

(since x3 ≤ x5/2 for 0 ≤ x ≤ 1). Here, we have used the fact that

∫
[0,1]d

( d∏
j=k+1

uj +
k∏

j=1

uj −
d∏

j=1

uj

)−3/2

du

≤
∫

[0,1]d

(
2

( d∏
j=1

uj

)1/2

−
d∏

j=1

uj

)−3/2

du (since x + y ≥ 2
√

xy for x, y > 0)

≤
∫

[0,1]d

( d∏
j=1

uj

)−3/4

du < ∞ (since x ≤ √
x for 0 ≤ x ≤ 1).

Because ∫
[0,1]d

(
∏d

j=k+1 uj )
2

(
∏d

j=k+1 uj + ∏k
j=1 uj )7/2

du

≤ C

∫
[0,1]d

( d∏
j=k+1

uj

)−5/8( k∏
j=1

uj

)−7/8

du

< ∞ (20)

(since (x + y)4 ≥ 4xy3 for x, y > 0) and

∫
[0,1]d

(
∏k

j=1 uj )
2

(
∏d

j=k+1 uj + ∏k
j=1 uj )7/2

du < ∞ (by the argument of (20)),
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by the argument of (19) we see also that the error caused by the replacement of

(
1 −

d∏
i=1

xi

d∏
j=k+1

uj

)n−1(
1 −

d∏
i=1

xi

k∏
j=1

uj

)n−1

is of order n−1/2(log n)d−1.
We further replace the factors (n − 2) and (n − 1) by n in the corresponding exponents; as

we see in (11) and (12), this does not alter the leading term. We then replace

( k∑
i=1

x2
i +

d∑
i=k+1

x2
i u2

i

)1/2

and

( k∑
i=1

x2
i u2

i +
d∑

i=k+1

x2
i

)1/2

by ( k∑
i=1

xi +
d∑

i=k+1

xiui

)
and

( k∑
i=1

xiui +
d∑

i=k+1

xi

)
,

respectively. With this replacement there will be an error an. Thus,

I1 = n2
d−1∑
k=1

(
d

k

) ∫
[0,1]d×[0,1]d

( k∑
i=1

xi +
d∑

i=k+1

xiui

)( k∑
i=1

xiui +
d∑

i=k+1

xi

)

× exp

(
−n

d∏
i=1

xi

( d∏
j=k+1

uj +
k∏

j=1

uj

))

×
(

exp

(
n

d∏
i=1

xi

d∏
j=1

uj

)
− 1

) d∏
i=1

xi dx du

+ O(n−1/2(log n)d−1) + an

= n2
d−1∑
k=1

(
d

k

) ∫
[0,1]d×[0,1]d

[kx2
1u1 + k(k − 1)x1u1x2 + k(d − k)x1xd + (d − k)x2

dud

+ (d − k)(d − k − 1)xdudxd−1 + (d − k)kx1u1xdud ]

× exp

(
−n

d∏
i=1

xi

( d∏
j=k+1

uj +
k∏

j=1

uj

))

×
(

exp

(
n

d∏
i=1

xi

d∏
j=1

uj

)
− 1

)

×
d∏

i=1

xi dx du

+ O(n−1/2(log n)d−1) + an

=: H1 + H2 + H3 + H4 + H5 + H6 + O(n−1/2(log n)d−1) + an. (21)
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We first look at the terms with k ≥ 2 in H1. Starting with the obvious changes of variable

xi =: e−yi and ui =: e−vi , 2 ≤ i ≤ d,

and
d∑

i=2

yi =: z,

k∑
j=2

vj =: w1,

d∑
j=k+1

vj =: w2,

by the usual argument we obtain

n2
∫

[0,1]d×[0,1]d
x2

1u1 exp

(
−n

d∏
i=1

xi

( d∏
j=k+1

uj +
k∏

j=1

uj

))

×
(

exp

(
n

d∏
i=1

xi

d∏
j=1

uj

)
− 1

) d∏
i=1

xi dx du

...

=
∫ 1

0
dx1

∫ 1

0
du1

∫ nx1

0
dz

∫ u1

0
dw1

∫ 1

0
dw2x1e−zw2−zw1(ezw1w2 − 1)z

× (− log z + log nx1)
d−2

(d − 2)!
(− log w1 + log u1)

k−2

(k − 2)!
(− log w2)

d−k−1

(d − k − 1)!
=:

∫ 1

0
dx1

∫ 1

0
du1

∫ ∞

0
dz

∫ u1

0
dw1

∫ 1

0
dw2x1e−zw2−zw1(ezw1w2 − 1)z

× (− log z + log nx1)
d−2

(d − 2)!
(− log w1 + log u1)

k−2

(k − 2)!
(− log w2)

d−k−1

(d − k − 1)! + bn

�
∫ 1

0
dx1

∫ 1

0
du1

∫ ∞

0
dz

∫ u1

0
dw1

∫ 1

0
dw2x1e−zw2−zw1(ezw1w2 − 1)z

× (log n)d−2

(d − 2)!
(− log w1 + log u1)

k−2

(k − 2)!
(− log w2)

d−k−1

(d − k − 1)! + bn

=
∫ 1

0
du1

∫ u1

0
dw1

∫ 1

0
dw2((w1 + w2 − w1w2)

−2 − (w1 + w2)
−2)

× 1

2

(log n)d−2

(d − 2)!
(− log w1 + log u1)

k−2

(k − 2)!
(− log w2)

d−k−1

(d − k − 1)! + bn

=: hk(log n)d−2 + bn

� hk(log n)d−2 (since bn = O((log n)d−2n−1+ε) by (25), below). (22)

Now, let us check that
bn = O((log n)d−2n−1+ε).
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For 0 ≤ w1, w2 ≤ 1 and very small but strictly positive ε, we have

1 − (1 − w1)
1−ε ≤ w1(1 − w1)

−ε, (23)

w1 ≤ w1 + w2 − w1w2, w2 ≤ w1 + w2 − w1w2,

(w1 + w2)
−1 ≤ (w1 + w2 − w1w2)

−1.
(24)

Therefore,

|bn| =
∣∣∣∣
∫ 1

0
dx1

∫ 1

0
du1

∫ ∞

nx1

dz

∫ u1

0
dw1

∫ 1

0
dw2x1e−zw2−zw1(ezw1w2 − 1)z

× (− log z + log nx1)
d−2

(d − 2)!
(− log w1 + log u1)

k−2

(k − 2)!
(− log w2)

d−k−1

(d − k − 1)!
∣∣∣∣

≤ C(log n)d−2
∫ 1

0
dx1

∫ 1

0
du1

∫ ∞

nx1

dz

∫ u1

0
dw1

∫ 1

0
dw2

× e−zw2−zw1(ezw1w2 − 1)x1z

(
z

x1

)ε

w−ε
1 u−ε

1 w−ε
2

≤ C(log n)d−2
∫ 1

0
du1

∫ u1

0
dw1

∫ ∞

0

(
min

(
z

n
, 1

))1−ε

dz

∫ 1

0
dw2

× e−zw2−zw1(ezw1w2 − 1)z1+εw−ε
1 u−ε

1 w−ε
2

≤ C(log n)d−2n−1+ε

∫ 1

0
du1

∫ u1

0
dw1

∫ ∞

0
dz

∫ 1

0
dw2

× e−zw2−zw1(ezw1w2 − 1)z2w−ε
1 u−ε

1 w−ε
2

= C(log n)d−2n−1+ε

∫ 1

0
du1

∫ u1

0
dw1

∫ 1

0
dw2

×
(

1

(w1 + w2 − w1w2)3 − 1

(w1 + w2)3

)
w−ε

1 u−ε
1 w−ε

2

= C(log n)d−2n−1+ε

∫ 1

0
dw1

∫ 1

0
dw2(1 − (1 − w1)

1−ε)

×
(

1

(w1 + w2 − w1w2)3 − 1

(w1 + w2)3

)
w−ε

1 w−ε
2

≤ C(log n)d−2n−1+ε

∫ 1

0
dw1

∫ 1

0
dw2

w2−2ε
1 w1−ε

2 (1 − w1)
−ε

(w1 + w2 − w1w2)3(w1 + w2)
(by (23))

≤ C(log n)d−2n−1+ε

∫ 1

0
dw1

∫ 1

0
dw2

1

(1 − w1)ε(w1 + w2 − w1w2)1+3ε
(by (24))

= C(log n)d−2n−1+ε

∫ 1

0

1

(1 − w1)1+ε
(w−3ε

1 − 1) dw1

= O((log n)d−2n−1+ε). (25)

Now we consider the term with k = 1 in H1. From the above calculation, we see that in this
case there is no need to make the change of variable

∑k
j=2 vj =: w1. With this in mind we
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just follow the above calculation, to obtain

n2
∫

[0,1]d×[0,1]d
x2

1u1 exp

(
−n

d∏
i=1

xi

( d∏
j=2

uj + u1

))

×
(

exp

(
n

d∏
i=1

xi

d∏
j=1

uj

)
− 1

) d∏
i=1

xi dx du

�
∫ 1

0
du1

∫ 1

0
dw2u1((u1 + w2 − u1w2)

−2 − (u1 + w2)
−2)

× 1

2

(log n)d−2

(d − 2)!
(− log w2)

d−2

(d − 2)!
= h1(log n)d−2, (26)

and, hence, by (26) and (22),

H1 �
d−1∑
k=1

(
d

k

)
khk(log n)d−2, (27)

where the hk are given by (4) and (5). By similar, but somewhat simpler, calculations, we
obtain

H2 = O((log n)d−3) (28)

and
H3 = O((log n)d−3). (29)

By symmetry, we then have

H4 = H1, H5 = H2, H6 = H3. (30)

Therefore, by (21) and (27)–(30),

I1 � 2
d−1∑
k=1

(
d

k

)
khk(log n)d−2 + O(n−1/2(log n)d−1) + an

� 2
d−1∑
k=1

(
d

k

)
khk(log n)d−2 + an. (31)

Next we consider an. Since we will see a very similar calculation for I2 in great detail below,
here we just sketch how to estimate the error term an. By the argument used in the proof of
(14), we see that

an ≤ Cn2
d−1∑
k=1

(
d

k

) ∫
[0,1]d×[0,1]d

((x1x2)
1/2 + (x1xdud)1/2 + (xd−1ud−1xdud)1/2)

×
( k∑

i=1

xiui +
d∑

i=k+1

xi

)
exp

(
−n

d∏
i=1

xi

( d∏
j=k+1

uj +
k∏

j=1

uj

))

×
(

exp

(
n

d∏
i=1

xi

d∏
j=1

uj

)
− 1

) d∏
i=1

xi dx du. (32)
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Now we just follow the argument for (22)–(31). Since each term in the expansion of

((x1x2)
1/2 + (x1xdud)1/2 + (xd−1ud−1xdud)1/2)

( k∑
i=1

xiui +
d∑

i=k+1

xi

)

has at least two different xj , by the argument for (22)–(31) we see that each integral in (32) is
of order (log n)d−3, and that

an = O((log n)d−3). (33)

Let us now consider

I2 = 2n2
∫

x≺y

|x| |y|
(

1 −
d∏

i=1

xi

)n−1(
1 −

d∏
i=1

yi

)n−1

dx dy.

We make the following changes of variable: xi =: uivi and yi =: ui , i = 1, . . . , d. We also
replace (

1 −
d∏

i=1

xi

)n−1

and

(
1 −

d∏
i=1

yi

)n−1

by

exp

(
−n

d∏
i=1

xi

)
and exp

(
−n

d∏
i=1

yi

)
,

respectively. As we saw in (11), this approximation is valid. Also, by using (10) we replace
(
∑d

i=1 u2
i v

2
i )

1/2(
∑d

i=1 u2
i )

1/2 by (
∑d

i=1 uivi)(
∑d

j=1 uj ). Thus, we have

I2 � 2n2
∫

[0,1]d×[0,1]d

d∑
i=1

d∑
j=1

uiviuj exp

(
−n

d∏
i=1

ui

(
1 +

d∏
i=1

vi

)) d∏
i=1

ui du dv

= 2dn2
∫

[0,1]d×[0,1]d
u2

1v1 exp

(
−n

d∏
i=1

ui

(
1 +

d∏
i=1

vi

)) d∏
i=1

ui du dv

+ 2d(d − 1)n2
∫

[0,1]d×[0,1]d
u1v1u2 exp

(
−n

d∏
i=1

ui

(
1 +

d∏
i=1

vi

)) d∏
i=1

ui du dv

=: J1 + J2. (34)

We first consider J2, the simpler term:

J2 = 2d(d − 1)n2
∫

[0,1]d×[0,1]d
u1v1u2 exp

(
−n

d∏
i=1

ui

(
1 +

d∏
i=1

vi

)) d∏
i=1

ui du dv

≤ 2d(d − 1)n2
∫

[0,1]d×[0,1]d
u1u2 exp

(
−n

d∏
i=1

ui

) d∏
i=1

ui du dv

= 2d(d − 1)n2
∫

[0,1]d
u1u2 exp

(
−n

d∏
i=1

ui

) d∏
i=1

ui du.

https://doi.org/10.1239/aap/1143936137 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936137


Rooted edges of a minimal directed spanning tree SGSA • 15

Now we make the change of variables ui =: e−yi , i = 3, . . . , d. Then, by the usual argument,
we have

J2 ≤ 2d(d − 1)n2
∫ 1

0
du1

∫ 1

0
du2

∫
(R+)d−3

u2
1u

2
2

× exp

(
−nu1u2 exp

(
−

d∑
i=3

yi

))
exp

(
−2

d∑
i=3

yi

)
dy

= 2d(d − 1)n2
∫ 1

0
du1

∫ 1

0
du2

∫ ∞

0
u2

1u
2
2 exp(−nu1u2e−z)e−2z zd−3

(d − 3)! dz

= O((log n)d−3). (35)

For J1 we make the following changes of variable: ui =: e−xi , vi =: e−yi , i = 2, . . . , d,
z := ∑d

i=2 xi , and w := ∑d
i=2 yi . Then we have

J1 = 2dn2
∫

[0,1]d×[0,1]d
u2

1v1 exp

(
−n

d∏
i=1

ui

(
1 +

d∏
i=1

vi

)) d∏
i=1

ui du dv

= 2dn2
∫ 1

0
du1

∫ 1

0
dv1

∫∫
u3

1v1

× exp

(
−nu1 exp

(
−

d∑
i=2

xi

) [
1 + v1 exp

(
−

d∑
i=2

yi

)])

× exp

(
−2

d∑
i=2

xi −
d∑

i=2

yi

)
dx dy

= 2dn2
∫ 1

0
du1

∫ 1

0
dv1

∫ ∞

0

∫ ∞

0
u3

1v1 exp(−nu1e−z(1 + v1e−w))

× e−2z−w zd−2

(d − 2)!
wd−2

(d − 2)! dz dw.

Now, with the changes of variable z − log nu1 =: a and w − log v1 =: b, we have

J1 = 2d

∫ 1

0
du1

∫ 1

0
dv1

∫ ∞

− log nu1

da

∫ ∞

− log v1

dbu1

× exp(−e−a(1 + e−b))e−2a−b (a + log nu1)
d−2

(d − 2)!
(b + log v1)

d−2

(d − 2)!
= 2d

∫ 1

0
du1

∫ 1

0
dv1

∫ nu1

0
dα

∫ v1

0
dwu1e−α(1+w)α

× (− log α + log nu1)
d−2

(d − 2)!
(− log w + log v1)

d−2

(d − 2)! ,

where e−a =: α and e−b =: w. We now expand the term

(− log α + log nu1)
d−2 = (− log α + log n + log u1)

d−2
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and integrate term by term. Then, we easily see that integration of the (log n)d−2 term gives
the leading term. Thus, as n → ∞,

J1 � 2d

∫ 1

0
du1

∫ 1

0
dv1

∫ nu1

0
dα

∫ v1

0
dwu1e−α(1+w)α

(log n)d−2

(d − 2)!
(− log w + log v1)

d−2

(d − 2)!
� 2d

∫ 1

0
du1

∫ 1

0
dv1

∫ ∞

0
dα

∫ v1

0
dwu1e−α(1+w)α

(log n)d−2

(d − 2)!
(− log w + log v1)

d−2

(d − 2)!
= d

∫ 1

0
dv1

∫ ∞

0
dα

∫ v1

0
dwe−α(1+w)α

(log n)d−2

(d − 2)!
(− log w + log v1)

d−2

(d − 2)!
= d

∫ 1

0
dv1

∫ v1

0
dw

1

(1 + w)2

(log n)d−2

(d − 2)!
(− log w + log v1)

d−2

(d − 2)!
= γd(log n)d−2, (36)

where, recall,

γd = d

((d − 2)!)2

(∫ 1

0
dv1

∫ 1

0
ds

1

(1 + v1s)2

(
log

1

s

)d−2

v1

)
with w =: v1s.

By (34)–(36) we have
I2 � γd(log n)d−2, (37)

and from (17), (18), (31), (33), and (37) we recover Theorem 2.

4. Central limit theorem

In this section we prove Theorem 3. With the help of transformation (38), which appeared
in [5], we approximate Ln by a space-truncated random variable conditioned on a highly
probable event Vn that we define in (45). Then we approximate this conditioned, space-truncated
random variable by a random variable L′′

n generated by a Poisson point process. This Poisson
point process approximation idea has been successfully developed in [4]. By decomposing L′′

n

as a sum of locally dependent random variables, we can apply Stein’s method to L′′
n and obtain

the central limit theorem for L′′
n. Since our approximation errors turn out to be small, we can

extract the central limit theorem for Ln (Theorem 3) from the central limit theorem for L′′
n.

Let x1, . . . , xn be independent, identically distributed uniform points in [0, 1]d . We apply
the transformation g : x = (x1, . . . , xd) �→ y = (y1, . . . , yd) such that

yi = − log xi, i = 1, . . . , d. (38)

Then x is minimal if and only if y is maximal. Furthermore, the distribution of each component
of y is exponential with mean 1.

Define Aζ and Bζ as

Aζ =
{
(y1, . . . , yd) ∈ R

d+ :
d∑

i=1

yi < ζ

}
, Bζ =

{
(y1, . . . , yd) ∈ R

d+ :
d∑

i=1

yi ≥ ζ

}
.

We would like to choose αn and βn, αn < βn, in such a way that there are not many maximal
points in Aαn and not many points in Bβn . We let

αn = log n − log(a log log n), βn = log n + b(d − 1) log log n, (39)
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where

a > (d − 1) + 1

2
(d − 2), b > 1 + 3

d − 2

d − 1
. (40)

Then we see that

E

( n∑
i=1

1{yi maximal and yi ∈ Aαn}
)

= n

∫
Aαn

e−(y1+···+yd )(1 − e−(y1+···+yd ))n−1 dy

≤ n

∫
Aαn

e−(y1+···+yd ) exp(−(n − 1)e−(y1+···+yd )) dy

= n

∫ αn

0
e−s exp(−(n − 1)e−s)

sd−1

(d − 1)! ds (41)

≤ n
αd−1

n

(d − 1)!
∫ αn

0
e−s exp(−ne−s) ds

= n
αd−1

n

(d − 1)!
∫ 1

e−αn

e−nt dt

≤ αd−1
n

(d − 1)! exp(−ne−αn)

= O((log n)−(a−(d−1))) (by (39) and (40)) (42)

and

E

( n∑
i=1

1{yi ∈ Bβn}
)

= n

∫
Bβn

e−(y1+···+yd ) dy

= n

∫ ∞

βn

e−s sd−1

(d − 1)! ds

� ne−βn
βd−1

n

(d − 1)!
= O((log n)−(b−1)(d−1)) (by (39) and (40)). (43)

Define

L̃n :=
n∑

i=1

|xi |1Gi
1{yi ∈ Bαn ∩ Aβn}

and define L′
n as a conditional distribution of L̃n given Vn. In other words, with density function

fn(x) for L̃n, let

L′
n :=

{
L̃n with density function fn(x)/ P(Vn) if Vn occurs,

L̃n with density function 0 if Vn does not occur,
(44)

where

Vn :=
n⋂

i=1

{xi ∈ Aβn}. (45)

With these definitions, we have

P(L′
n ∈ A) = P(L̃n ∈ A | Vn). (46)
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By the estimates given in (42) and (43), and employing the δ-method (see [9]), the convergence
rate of the distribution of Ln should be the same as that of the distribution of L′

n. Furthermore,
the distribution of L′

n should be asymptotically equivalent to the distribution of

L′′
n :=

∑
y∈Wn

|g−1(y)|1{y is maximal in Wn},

where Wn is a Poisson process on Bαn ∩ Aβn with intensity ne−(y1+···+yd )/ P(Vn). Therefore,
our plan is to first prove the central limit theorem for L′′

n using Stein’s method. From this central
limit theorem we shall obtain the central limit theorem for L′

n and then Ln.
We rewrite Ln as

Ln = Kn,1 + Kn,2 = Jn,1 + Jn,2 + Kn,2,

where

Kn,1 =
n∑

i=1

|xi |1Gi
1{yi ∈ Bαn}, Kn,2 =

n∑
i=1

|xi |1Gi
1{yi ∈ Aαn},

Jn,1 = Kn,11(Vn), Jn,2 = Kn,11(V c
n ). (47)

Then, since by (42), (43), and (40) we have

P(Kn,2 �= 0) ≤ E

( n∑
i=1

1Gi
1{yi ∈ Aαn}

)
≤ O((log n)−(a−(d−1))),

P(V c
n ) ≤ E

( n∑
i=1

1{yi ∈ Bβn}
)

= O((log n)−(b−1)(d−1)),

by (46) we have the following upper bound for the total variation distance, dTV(Ln, L
′
n),

between Ln and L′
n:

dTV(Ln, L
′
n)

= sup
A

| P(Ln ∈ A) − P(L′
n ∈ A)|

= sup
A

| P(Ln ∈ A) − P(L̃n ∈ A | Vn)|

= sup
A

∣∣∣∣P(Ln ∈ A) − P(L̃n ∈ A, Vn)

P(Vn)

∣∣∣∣
= sup

A

∣∣∣∣P(Vn) P(Ln ∈ A) − P(L̃n ∈ A, Vn)

P(Vn)

∣∣∣∣
= sup

A

∣∣∣∣P(Vn)(P(Ln ∈ A, Vn) + P(Ln ∈ A, V c
n )) − (P(Vn) + P(V c

n )) P(L̃n ∈ A, Vn)

P(Vn)

∣∣∣∣
≤ sup

A

| P(Ln ∈ A, Vn) − P(L̃n ∈ A, Vn)| + sup
A

P(Ln ∈ A, V c
n ) + P(V c

n )

P(Vn)

≤ sup
A

| P(Ln ∈ A, Vn) − P(L̃n ∈ A, Vn)| + P(V c
n ) + P(V c

n )

P(Vn)

≤ P(Kn,2 �= 0) + 2
P(V c

n )

P(Vn)

≤ O((log n)−(a−(d−1)) + (log n)−(b−1)(d−1)). (48)
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Moreover, with the notation pn := P(Vn), we have

1 − pn = P(V c
n ) ≤ C(log n)−(b−1)(d−1),

1

pn

− 1 ≤ C(log n)−(b−1)(d−1), (49)

1

pn

+ 1 ≤ 2 + C(log n)−(b−1)(d−1) ≤ C. (50)

Next, we claim that

E(Jn,2) ≤ C(log n)(d−2)−(b−1)(d−1), (51)

E(Kn,2) ≤ C(log n)−(a−(d−1)), (52)

E(J 2
n,2) ≤ C(log n)−(b−1)(d−1)+2(d−2), (53)

E(K2
n,2) ≤ C(log n)−(a−(d−1)). (54)

Let

Fi := {yi ∈ Bβn}.
Since Ln−1 and Fn are independent and since, by (43),

P(Fn) ≤ Cn−1(log n)−(b−1)(d−1),

by Theorem 1 we have (51):

E(Jn,2) ≤ E

(
Ln

( n∑
i=1

1Fi

))

= n E(Ln1Fn)

≤ n E((Ln−1 + d1/2)1Fn)

= n E(Ln−1 + d1/2) P(Fn)

≤ C(log n)−(b−1)(d−1)+(d−2).

By the same argument, using Theorems 1 and 2 yields (53):

E(J 2
n,2) ≤ E

(
L2

n

( n∑
i=1

1Fi

))

= n E(L2
n1Fn)

≤ n E((Ln−1 + d1/2)21Fn)

≤ n E((Ln−1 + d1/2)2) P(Fn)

= n(E(L2
n−1) + 2d1/2 E(Ln−1) + d) P(Fn)

≤ C(log n)−(b−1)(d−1)+2(d−2).
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Furthermore, (52) follows from (42). To prove (54), we start with a simple observa-
tion. Let Qy be the first orthant of y, that is Qy = {z : z � y}. Then, with the notation
‖y‖ = y1 + · · · + yd , the probability that y1 lies in Qy is given by

P(y1 ∈ Qy) =
d∏

j=1

e−yj = e−‖y‖.

Now, using the fact that P(A ∪ B) ≥ (P(A) + P(B))/2 for any two events A and B, we find
that, given y1 and y2, the conditional probability that both y1 and y2 are maximal is bounded
by

(1 − 1
2 (e−‖y1‖ + e−‖y2‖))n−2 ≤ exp(−(n − 2) 1

2 (e−‖y1‖ + e−‖y2‖)).

Thus, by a computation similar to that of (41), we have (54):

E(K2
n,2) = E

(( n∑
i=1

|xi |1{yi is maximal and ‖yi‖ ≤ αn}
)2)

≤ C E(Kn,2) + Cn2 P(both y1 and y2 are maximal and lie in Aαn)

≤ C E(Kn,2) + Cn2
(

1

(d − 1)!
)2 ∫ αn

0

∫ αn

0
(xy)d−1 exp

(
−(n − 2)

e−x + e−y

2

)

× e−x−y dx dy

= C E(Kn,2) + Cn2
(

1

(d − 1)!
∫ αn

0
xd−1 exp

(
−(n − 2)

e−x

2

)
e−x dx

)2

≤ C E(Kn,2) + Cn2
(

1

(d − 1)!α
d−1
n

∫ αn

0
exp

(
−(n − 2)

e−x

2

)
e−x dx

)2

= C E(Kn,2) + Cn2
(

1

(d − 1)!α
d−1
n

∫ 1

e−αn

e−(n−2)t/2 dt

)2

≤ C(log n)−(a−(d−1)) + C(log n)−2([(n−2)/n]a−(d−1))

≤ C(log n)−(a−(d−1)).

Now, since by (44), (45), and (47) we have E(L′
n) = p−1

n E(Jn,1) and E(L′
n

2
) = p−1

n E(J 2
n,1),

by (49), Theorem 1, (51), and (52) we have

| E(Ln) − E(L′
n)| ≤

(
1

pn

− 1

)
E(Jn,1) + E(Jn,2) + E(Kn,2)

≤
(

1

pn

− 1

)
E(Ln) + E(Jn,2) + E(Kn,2)

≤ C(log n)(d−2)−(b−1)(d−1) + C(log n)−(a−(d−1)). (55)

By (50) and Theorem 1 we have

E(Ln) + E(L′
n) = E(Ln) + 1

pn

E(Jn,1) ≤
(

1 + 1

pn

)
E(Ln) ≤ C(log n)(d−2), (56)
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by (49), Theorems 1 and 2, (53), and (54) we have

| E(L2
n) − E(L′2

n )| ≤
(

1

pn

− 1

)
E(J 2

n,1) + E(J 2
n,2) + E(K2

n,2) + 2 E(Kn,1Kn,2)

≤
(

1

pn

− 1

)
E(J 2

n,1) + E(J 2
n,2) + E(K2

n,2) + 2(E(K2
n,1))

1/2(E(K2
n,2))

1/2

≤
(

1

pn

− 1

)
E(L2

n) + E(J 2
n,2) + E(K2

n,2) + 2(E(L2
n))

1/2(E(K2
n,2))

1/2

≤ C(log n)2(d−2)−(b−1)(d−1) + C(log n)(d−2)−(a−(d−1))/2, (57)

and by (55)–(57) we have

| var(Ln) − var(L′
n)| ≤ | E(L2

n) − E(L′2
n )| + |(E(Ln))

2 − (E(L′
n))

2|
= | E(L2

n) − E(L′2
n )| + | E(Ln) − E(L′

n)| | E(Ln) + E(L′
n)|

≤ C(log n)2(d−2)−(b−1)(d−1) + C(log n)(d−2)−(a−(d−1))/2. (58)

Now define
Ñn := |{yi , 1 ≤ i ≤ n} ∩ (Bαn ∩ Aβn)|

and define N ′
n as a conditional distribution of Ñn given Vn. In other words, with mass function

en(x) for Ñn, let

N ′
n :=

{
Ñn with mass function en(x)/ P(Vn) if Vn occurs

Ñn with mass function 0 if Vn does not occur.

Then, since P(L′
n ∈ A | N ′

n = m) = P(L′′
n ∈ A | N ′′

n = m), we have

dTV(L′
n, L

′′
n)

= sup
A

| P(L′
n ∈ A) − P(L′′

n ∈ A)|

= sup
A

∣∣∣∣
n∑

m=0

P(N ′
n = m) P(L′

n ∈ A | N ′
n = m) −

∞∑
m=0

P(N ′′
n = m) P(L′′

n ∈ A | N ′′
n = m)

∣∣∣∣
≤

n∑
m=0

| P(N ′
n = m) − P(N ′′

n = m)| + P(N ′′
n > n)

= 2dTV(Xn, Yn),

where Xn is the binomial distribution with n trials and success rate

qn =
∫ βn

αn
[xd−1/(d − 1)!]e−x dx∫ βn

0 [xd−1/(d − 1)!]e−x dx
= O(n−1(log n)d−1 log log n) (59)

and Yn is the Poisson distribution with mean λ = nqn. Since dTV(Xn, Yn) ≤ (λ∨1)−1nq2
n and

since λ = nqn is large for large n, we have

dTV(L′
n, L

′′
n) ≤ 2dTV(Xn, Yn) ≤ 2qn = O(n−1(log n)d−1 log log n). (60)
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Similarly, since E(L′
n | N ′

n = m) = E(L′′
n | N ′′

n = m), E(L′′
n | N ′′

n = m) ≤ Cm and, for
large n,

n∑
m=0

| P(N ′
n = m) − P(N ′′

n = m)| + P(N ′′
n > n) = 2dTV(Xn, Yn) ≤ 2qn,

we find, for large n, that

| E(L′
n) − E(L′′

n)| =
∣∣∣∣

n∑
m=0

P(N ′
n = m) E(L′

n | N ′
n = m) −

∞∑
m=0

P(N ′′
n = m) E(L′′

n | N ′′
n = m)

∣∣∣∣
≤

�2nqn�∑
m=0

| P(N ′
n = m) − P(N ′′

n = m)|E(L′′
n | N ′′

n = m)

+
n∑

m=�2nqn�+1

P(N ′
n = m) E(L′

n | N ′
n = m)

+
∞∑

m=�2nqn�+1

P(N ′′
n = m) E(L′′

n | N ′′
n = m)

≤ C

�2nqn�∑
m=0

| P(N ′
n = m) − P(N ′′

n = m)|2nqn

+ C

n∑
m=�2nqn�+1

P(N ′
n = m)m

+ C

∞∑
m=�2nqn�+1

P(N ′′
n = m)m

≤ C

∞∑
m=0

| P(N ′
n = m) − P(N ′′

n = m)|2nqn

+ C

n∑
m=�2nqn�+1

P(N ′
n = m)m + C

∞∑
m=�2nqn�+1

P(N ′′
n = m)m

≤ Cnq2
n + C

n∑
m=�2nqn�+1

P(N ′
n = m)m + C

∞∑
m=�2nqn�+1

P(N ′′
n = m)m,

where �·� is the greatest-integer function. Since, by the tail estimate of the binomial distribution,

n∑
m=�2nqn�+1

P(N ′
n = m)m = E(Xn, Xn > 2nqn)

= E(Xn − E(Xn), Xn > 2nqn) + nqn P(Xn > 2nqn)

≤ (nqn(1 − qn))
1/2(P(Xn > 2nqn))

1/2 + nqn P(Xn > 2nqn)

= O((nqn)
1/4e−nqn/4),
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and since, by the tail estimate of the Poisson distribution (by Stirling’s formula),

∞∑
m=�2nqn�+1

P(N ′′
n = m)m = λ

∞∑
m=�2nqn�

e−λ λm

m!

≤ Cλe−λ λ�2nqn�

�2nqn�!
= O((nqn)

1/2(e/4)nqn),

by (59) we have

| E(L′
n) − E(L′′

n)| ≤ Cnq2
n ≤ Cn−1(log n)2(d−1)(log log n)2. (61)

By a similar calculation, we also have

| E(L′
n(L

′
n − 1)) − E(L′′

n(L
′′
n − 1))| ≤ Cn2q3

n ≤ Cn−1(log n)3(d−1)(log log n)3. (62)

Next, we split R
d+ into cubes, Ti , of edge length l ≡ l(n), where we choose l to be sufficiently

small that the argument in (92), below, makes sense. At this point, simply think of l as a fixed
but small number, even though the choice of l depends on n. Let Zi be the contribution to L′′

n

of the Poisson point process lying in the cell Ti :

Zi :=
∑

y∈(Wn∩Ti)

|g−1(y)|1{y is maximal in Wn}.

Then we can rewrite L′′
n as

L′′
n =

∑
Ti∩(Bαn∩Aβn)�=∅

Zi.

Since we have decomposed L′′
n into a sum of locally dependent random variables, we apply

Stein’s method to L′′
n to obtain the central limit theorem for L′′

n. Here is the simple version of
Stein’s method that we use (Theorem 6.31 of [11]).

Lemma 1. Let Xi be a collection of locally dependent random variables with E(X2
i ) < ∞,

and let

Ui = {j : Xj depends on Xi}, Vi =
∑
j∈Ui

Xj ,

Ui,j = {k : Xk depends on Xi or Xj } \ Ui, Vi,j =
∑

k∈Ui,j

Xk, j ∈ Ui,

S =
∑

i

Xi, Si = S − Vi, Si,j = S − Vi,j .

Suppose that
E(Xi) = 0 for all i, (63)

and
E(S2) =

∑
i

E(XiVi) =
∑

i

∑
j∈Ui

E(XiXj ) = 1. (64)
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Then, for any function h with supx |h(x)| + supx |h′(x)| ≤ 1, we have

| E(h(S)) − E(h(N))| ≤ C
∑

i

∑
j∈Ui

∑
k∈Ui∪Ui,j

(E(|XiXjXk|) + E(|XiXj |) E(|Xk|)),

where N is the standard normal random variable.

Proposition 1. The normalized random variable (L′′
n − E(L′′

n))/(var(L′′
n))

1/2 converges in
distribution to the standard normal with rate

d1

(
L′′

n − E(L′′
n)

(var(L′′
n))

1/2 , N(0, 1)

)
= O((log n)−(d−2)/2(log log n)d+1),

where
d1(X, Y ) := sup

{
| E(h(X)) − E(h(Y ))| : sup

x
|h(x)| + sup

x
|h′(x)| ≤ 1

}
. (65)

Proof. Let Xi = (Zi − E(Zi))/(var(L′′
n))

1/2. Then the Xi satisfy (63) and (64). Thus, by
Lemma 1, for any function h with supx |h(x)| + supx |h′(x)| ≤ 1, we have∣∣∣∣E

(
h

(
L′′

n − E(L′′
n)

(var(L′′
n))

1/2

))
− E(h(N))

∣∣∣∣
≤ C(var(L′′

n))
−3/2

∑
i

∑
j∈Ui

∑
k∈Ui∪Ui,j

(E(ZiZjZk) + E(Zi) E(ZjZk) + E(Zj ) E(ZiZk)

+ E(Zk) E(ZiZj ) + E(Zi) E(Zj ) E(Zk)). (66)

Now define the constants

Qn = max
i,j∈Ui

∑
k∈Ui∪Ui,j

E(Nk),

εn,1 = max
i

(ri), εn,2 = max
i

(ri)
∑

i

ri = εn,1nqn,

where Ni is the number of Poisson points lying in the region Ti and ri = E(Ni).
We now consider the term E(ZiZjZk) in (66). If i, j , and k are distinct then

E(ZiZjZk) ≤ C E(Zi) E(Nj ) E(Nk). (67)

It is obvious that E(ZiZj | Nk = m) is a decreasing function of m. Thus, E(ZiZj | Nk) and
Nk are negatively correlated and, since Zk ≤ CNk , we have

E(ZiZjZk) ≤ C E(ZiZjNk) = C E(E(ZiZj | Nk)Nk) ≤ C E(ZiZj ) E(Nk).

By the same reasoning, we have E(ZiZj ) ≤ C E(Zi) E(Nj ). Hence, (67) indeed holds. If two
of the three indices i, j , and k are equal, then there are three cases to consider. In the first case,
E(ZiZ

2
j ) is bounded (according to (67)) by

E(ZiZ
2
j ) ≤ C E(ZiN

2
j )

≤ C E(Zi) E(N2
j )

= C E(Zi)(E(Nj ) + r2
j )

≤ C E(Zi)(E(Nj ) + εn,1rj ), (68)
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where Nj is the Poisson distribution with mean rj . In the second case, E(ZjZ
2
i ) is bounded

(according to (67)) by

E(ZjZ
2
i ) ≤ C E(NjZ

2
i )

≤ C E(Nj ) E(Z2
i )

= C E(Nj )

∞∑
m=1

E(Z2
i | Ni = m)e−ri

rm
i

m!

≤ C E(Nj )

∞∑
m=1

E(Zi | Ni = m)me−ri
rm
i

m!

≤ C E(Nj )

(
E(Zi | Ni = 1)e−ri ri +

∞∑
m=2

m2e−ri
rm
i

m!
)

≤ C E(Nj )(E(Zi) + r2
i )

≤ C E(Nj )(E(Zi) + εn,1ri). (69)

We can handle the third case in the same way:

E(ZkZ
2
i ) ≤ C E(Nk)(E(Zi) + r2

i ) ≤ C E(Nk)(E(Zi) + εn,1ri). (70)

If the three indices are equal then, according to (70), we have

E(Z3
i ) ≤ E(Zi) + Cr2

i ≤ E(Zi) + Cεn,1ri . (71)

Now consider the term E(Zi) E(ZjZk). If i,j , and k are mutually distinct then, according
to (67),

E(Zi) E(ZjZk) ≤ C E(Zi) E(NjZk) ≤ C E(Zi) E(Nj ) E(Zk) ≤ C E(Zi) E(Nj ) E(Nk).

(72)
If two of the three indices are equal, then there are again three cases to consider: according

to (67), we have

E(Zi) E(Z2
j ) ≤ C E(Zi)(E(Zj ) + Cr3

j ) ≤ C E(Zi)(E(Nj ) + Cr3
j ), (73)

E(Zi) E(ZjZi) ≤ C E(Zi) E(NjZi) ≤ C(E(Zi))
2 E(Nj ) ≤ C(E(Zi) + Cr2

i ) E(Nj ), (74)

E(Zi) E(ZiZk) ≤ C(E(Zi) + Cr2
i ) E(Nk). (75)

If all three indices are equal then, according to (70), we have

E(Zi) E(Z2
i ) ≤ E(Zi)(E(Zi) + Cr3

i ) ≤ C E(Zi)(E(Ni) + Cr3
i ). (76)

Now consider the term E(Zj ) E(ZiZk). If the indices are mutually distinct then, according
to (67), we have

E(Zj ) E(ZiZk) ≤ C E(Zj ) E(ZiNk) ≤ C E(Zj ) E(Zi) E(Nk) ≤ C E(Nj ) E(Zi) E(Nk).

(77)
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If two of the three indices are equal then there are three cases to consider: according to (67),
we have

E(Zj ) E(ZiZj ) ≤ C E(Zj ) E(ZiNj ) ≤ C E(Zj ) E(Zi) E(Nj ) ≤ C E(Zi)(E(Nj ))
2, (78)

E(Zj ) E(Z2
i ) ≤ E(Zj )(E(Zi) + Cr3

i ) ≤ C E(Nj )(E(Zi) + Cr3
i ), (79)

E(Zi) E(ZiZk) ≤ C E(Zi) E(ZiNk) ≤ C(E(Zi))
2 E(Nk) ≤ C E(Zi) E(Ni) E(Nk). (80)

If all three indices are equal then, according to (70), we have

E(Zi) E(Z2
i ) ≤ E(Zi)(E(Zi) + Cr3

i ) ≤ C E(Zi)(E(Ni) + Cr3
i ). (81)

Now consider the term E(Zk) E(ZiZj ). If the indices are mutually distinct then, according
to (67), we have

E(Zk) E(ZiZj ) ≤ C E(Zk) E(ZiNj ) ≤ C E(Zk) E(Zi) E(Nj ) ≤ C E(Nk) E(Zi) E(Nj ).

(82)
If two of the three indices are equal then there are three cases to consider: according to (67),
we have

E(Zj ) E(ZiZj ) ≤ C E(Zj ) E(ZiNj ) ≤ C E(Zj ) E(Zi) E(Nj ) ≤ C E(Zi)(E(Nj ))
2, (83)

E(Zi) E(ZiZj ) ≤ C E(Zi) E(ZiNj ) ≤ C(E(Zi))
2 E(Nj ) ≤ C E(Zi) E(Ni) E(Nj ), (84)

E(Zk) E(Z2
i ) ≤ E(Zk)(E(Zi) + Cr3

i ) ≤ C E(Nk)(E(Zi) + Cr3
i ). (85)

If all three indices are equal then, according to (70), we have

E(Zi) E(Z2
i ) ≤ E(Zi)(E(Zi) + Cr3

i ) ≤ C E(Zi)(E(Ni) + Cr3
i ). (86)

Now consider the term E(Zi) E(Zj ) E(Zk). If the indices are mutually distinct then, accord-
ing to (67), we have

E(Zi) E(Zj ) E(Zk) ≤ C E(Zi) E(Nj ) E(Nk). (87)

If two of the indices are equal then there are three cases to consider: according to (67), we
have

E(Zi) E(Zj ) E(Zj ) ≤ C E(Zi) E(Nj ) E(Nj ), (88)

E(Zi) E(Zj ) E(Zi) ≤ C E(Zi) E(Nj ) E(Ni), (89)

E(Zi) E(Zi) E(Zk) ≤ C E(Zi) E(Ni) E(Nk). (90)

If all three indices are equal then, according to (70), we have

E(Zi) E(Zi) E(Zi) ≤ C E(Zi) E(Ni) E(Ni). (91)

Thus, by (66)–(91) we have∣∣∣∣E
(

h

(
L′′

n − E(L′′
n)

(var(L′′
n))

1/2

))
− E(h(N))

∣∣∣∣
≤ C

E(L′′
n)(Q

2
n + Qn + 1 + ε2

n,1 + εn,1 + Qnεn,1 + εn,2) + Qnεn,2 + εn,2

(var(L′′
n))

3/2 .
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Ti

Sn

Tj

x‖ ‖ nβ>x‖ ‖ αn<

Figure 1: For Sn := {x : αn < ‖x‖ < βn}, and for Ti and Tj with Ti ∩ Sn �= ∅ and Tj ∩ Sn �= ∅,
Zi and Zj are independent if Tj and the dark region generated by Ti have no overlapping region.

By splitting R
d+ into very small cubes, Ti , i.e. by choosing l to be very small, we can make εn,1

and εn,2 arbitrarily small. Therefore, we have∣∣∣∣E
(

h

(
L′′

n − E(L′′
n)

(var(L′′
n))

1/2

))
− E(h(N))

∣∣∣∣ ≤ C
E(L′′

n)(Q
2
n + Qn + 1) + 1

(var(L′′
n))

3/2 . (92)

Now we need only to estimate the quantities E(L′′
n), Qn, and var(L′′

n). First we estimate
E(L′′

n): by (61) we have

E(L′′
n) ≤ E(L′

n) + Cn−1(log n)2(d−1)(log log n)2

≤ E(Ln) + C(log n)(d−2)−(b−1)(d−1) + C(log n)−(a−(d−1)) (by (55))

≤ C(log n)d−2 (by Theorem 1). (93)

Now consider Qn. As we see in Figure 1, Zj is independent of Zi if Tj and the dark region
generated by Ti have no overlapping region. Thus,

Qn ≤ Cne−αn(βn − αn)
d ≤ C(log log n)d+1. (94)

Finally, with the choice of b in (40), we have the following estimate for var(L′′
n):

var(L′′
n) = E(L′′

n(L
′′
n − 1)) + E(L′′

n) − (E(L′′
n))

2

= E(L′
n(L

′
n − 1)) + E(L′

n) − (E(L′
n))

2 + O(n−1(log n)3(d−1)(log log n)3)

(by (62), (61), (55), and (2))

= var(L′
n) + O(n−1(log n)3(d−1)(log log n)3)

= var(Ln) + O((log n)2(d−2)−(1/2)(b−1)(d−1)) + o((log n)d−2) (by (58) and (3))

= var(Ln) + o((log n)d−2) (by (40)). (95)

Note that from (95) we also have

| var(L′′
n) − var(L′

n)| ≤ Cn−1(log n)3(d−1)(log log n)3. (96)
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Therefore, by (92), (93), (94), (95), and (3), we have∣∣∣∣E
(

h

(
L′′

n − E(L′′
n)

(var(L′′
n))

1/2

))
− E(h(N))

∣∣∣∣ = O((log n)−(d−2)/2(log log n)d+1).

This completes the proof of Proposition 1.

To prove Theorem 3, we need the following obvious lemma. We omit its proof.

Lemma 2. Let rn, rn → 0, be given. If

(i) dTV(Xn, Yn) = O(rn),

(ii) | E(Xn) − E(Yn)| = O(rn(var(Xn))
1/2), and

(iii) | var(Xn) − var(Yn)| = O(rn(var(Xn))
1/2),

then
Xn ∈ CLT(rn) if and only if Yn ∈ CLT(rn).

Proposition 2. For any rn with rn → 0 but with rn ≥ C(log n)−(d−2)/2, we have

Ln ∈ CLT(rn) if and only if L′′
n ∈ CLT(rn).

Proof. With the choice of a and b in (40), for any rn with rn → 0 but with

rn ≥ C(log n)−(d−2)/2,

the proposition follows from Lemma 2, (60), (61), (96), (48), (55), and (58).

Our final lemma relates the estimates of the rate of weak convergence using the d1 metric
(defined in (65)) and weak convergence in the sense of CLT(rn) (defined in (6)).

Lemma 3. Let (ξn, n ≥ 1) be a sequence of random variables with finite second moments,
and let ξ̄n := (ξn − E(ξn))/

√
var(ξn). If d1(ξ̄n, N) = O(rn), where N has a standard normal

distribution and where rn > 0 with rn → 0 as n → ∞, then ξn ∈ CLT(
√

rn).

Proof. Set an = √
rn. Given an x ∈ R and an n, set y = x + an. Define the bounded,

continuous, piecewise-linear function h on R by

h(t) =

⎧⎪⎨
⎪⎩

an, t ≤ x,

y − t, x ≤ t ≤ y,

0, t ≥ y.

Then, for n sufficiently large that an < 1, we have |h(t)| ≤ 1 for all t and |h′(t)| ≤ 1 for all t

except t = x and t = y. Thus, h can be approximated uniformly by continuously differentiable
functions g with |g(t)| ≤ 1 and |g′(t)| ≤ 1 for all t . Hence,

| E(h(X)) − E(h(Y ))| ≤ 2| E( 1
2h(X)) − E( 1

2h(Y ))| ≤ 2d1(X, Y )

for any pair of random variables X and Y . By the choice of h, for all X we have

an P(X ≤ x) ≤ E(h(X)) ≤ an P(X ≤ y).
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Hence, if d1(ξ̄n, N) = O(rn), there is a constant C such that

an P(ξ̄n ≤ x) ≤ E(h(ξ̄n))

≤ E(h(N)) + Crn

≤ an P(N ≤ x + an) + Crn

≤ an P(N ≤ x) + Ca2
n + Crn.

By the choice of an, we then have

P(ξ̄n ≤ x) ≤ P(N ≤ x) + 2C
√

rn. (97)

Here the choice of C can be made independently of n and x. For inequality in the other direction,
note that there is a constant C (independent of n and y) such that

an P(N ≤ y) ≤ an P(N ≤ x) + Ca2
n

≤ E(h(N)) + Ca2
n

≤ E(h(ξ̄n)) + Crn + Ca2
n

≤ an P(ξ̄n ≤ y) + C(rn + a2
n).

Again by the choice of an we have

P(N ≤ y) ≤ P(ξ̄n ≤ y) + 2C
√

rn. (98)

Combining (97) with (98) yields ξ ∈ CLT(
√

rn).

Theorem 3 now follows from Propositions 1 and 2 and Lemma 3.
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