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OBSERVATIONAL SPECKLE INTERFEROMETRY
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ABSTRACT

Speckle interferometry techniques have improved apprecjably during the
past few years. Current progress to be reviewed includes: steps towards
a fully digital analysis in the photon counting mode allowing for high
resolution on faint astrophysical objects (i.e. quasars), practical prospects
for phase recovery procedure, and the design of compact, self-contained

interferometers for on-line results at remote sites.

1. INTRODUCTION

The general availability of sensitive receptors such as photon counting
television cameras and image intensifiers has resulted in a widespread use of
speckle interferometric techniques by astronomers. Since the first results
by A. Labeyrie et al.l, these techniques have evolved from systems based
solely on optical processing to on-line digital devices which allow real time,

diffraction limited observations and measurements to be made.

2. DIGITIZED SPECKLE INTERFEROMETRY

The speckle device that we use averages the autocorrelations of the
frames rather than the Fourier transforms. With 20 m sec exposures made by
a photon counting camera, processing is faster using an autocorrelation
algorithm adapted for low light levels. The computation time of the algorithm
depends on the number of events per frame, not on the number of picture

elements.

We recall the basic formulae of speckle interferometry as applied to the

image, Fourier transform and autocorrelation planes, respectively, in Egs.
(1-3):
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I(;é) = OQ)QT%) (1)

n \12 _ N % 2

Jt@ 1% = 1B <lFwl? 2

<AC_(a)> = ACo(a)®<ACT(%)> (3)
where

Acf(,g) = [f(g}c)f%—é)% (4)

In the photon counting case, if there are N photons per frame, one has

N
fx) = Z § (x-x.) (5)
(m i=1 VIS |

where x, are the photon coordinates and § is Dirac's distribution.

Eq. (3) now becomes

AC (@) = 1§ (x,- %; - 2) (6)
1

A "hard-wired" correlator computes the difference in coordinates for each pair

of factors in a frame according to Eq.(6); it also integrates and displays

the autocorrelations in real time. Binary stars can be observed with

diffraction limited resolution with up to three magnitudes difference in

brightness between the components and a limiting magnitude of +9 is reached in

five minutes.

3. FAINT OBJECTS

At very low light levels, e.g. those that are reached in the case of a
13th magnitude quasar (3C273), the TV camera remanence and poor homogeneity
in the photon event sizes become troublesome and special preprocessing is
required. Consecutive clipped images are stored in the memory of a computer

and the remanence is removed by the operation

I(t) <« I(t) » I(t-20) (7
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where t is in milliseconds, "-" denotes a logical "and", and I is the
logical complement of the clipped image. Barycentric coordinates of the

remaining photon patches are computed and used for the correlation.

A one hour sequence of 20 ms exposures on 3C273 with the 5 m (200 inch)
Hale telescope has been processed this way and the quasar appears unresolved
with a 2 x 10_2 arc sec resolution. Other results have been recently

publ:i_shed.zm4

4. PHASE RECOVERY

Speckle imaging techniques such as the Knox-Thompson algorithm are
experiencing their first successes and will allow high resolution observation
of non-simple objects. The Knox phase recovery method involves computing the

function
<gw)> = <T()*@w + v)> (8)

where T(w) is the Fourier transform of the image I(x) and y is a small,

constant frequency shift.

In the case where it would prove efficient on low level or clipped
images, Eq.(8) can be computed in the autocorrelation plane; the algorithm

can be computed with a speed similar to that required for Eq.(6).

Fourier transformation of Eq.(8) yields:

gla) = f}’(w)ﬁf*(mwei‘”adw (9)
Let R(w) = Y(wry)el®®dw :

g(a) = Jr [ I(x)e T% g () e %40
and g(a) = JrI(x)K(x—a)da
Now let w' = wty, and as

K(x) = ﬁf(wﬂ()eiwadw

https://doi.org/10.1017/50252921100118834 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100118834

24-4

we have

K(x) = e ' f}'(w')elm Fdw' = e ¥1(x)
Then

g(a) = [I(X)I(x—a)e—1Y(x_a)dx

g(-a) = II(X)I(x—a)e_indx

Assuming that photon counting is used, I(x) will be given by Eq (5) and

N N 4
gla) = z z 8 (xi - xj - a)e ¥y (10)
i=1 j=1

The computing time for Eq.(10) is proportional to N2, and after averaging

a single Fourier transform will yield <g(w)>-

5. CONCLUSION

What can be imagined for future speckle interferometers is a plug-in,
portable element, which when placed at the focus of a telescope will change
it into a diffraction limited imaging instrument. Pending this somewhat
Utopian ‘'situation speckle devices will probably invade the field of large or
medium sized instruments in the next few years, leading in general to a 3-

to 10-fold increase in resolution.
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