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Bounds for zeros of Meixner and Kravchuk polynomials

A. Jooste and K. Jordaan

Abstract

The zeros of certain different sequences of orthogonal polynomials interlace in a well-defined way.
The study of this phenomenon and the conditions under which it holds lead to a set of points
that can be applied as bounds for the extreme zeros of the polynomials. We consider different
sequences of the discrete orthogonal Meixner and Kravchuk polynomials and use mixed three-
term recurrence relations, satisfied by the polynomials under consideration, to identify bounds
for the extreme zeros of Meixner and Kravchuk polynomials.

1. Introduction

Consider a sequence {pn}∞n=0 of real polynomials, where pn is of exact degree n, orthogonal
with respect to an absolutely continuous measure that can be represented via a real weight
function w(x), always positive, on the interval (a, b), so that∫ b

a

pn(x)pm(x)w(x) dx = N2
nδmn, Nn 6= 0,m, n = 0, 1, . . . (1)

where δmn denotes the Kronecker delta. The weight function may be discrete and in this case,
if wi > 0 are the values of the weight at the distinct points xi, i = 0, 1, 2, . . . ,M , M a positive
integer, the orthogonality relation (1) becomes [1, p. 182, equation (1.4)]

M∑
i=0

pn(xi)pm(xi)wi = N2
nδmn, Nn 6= 0,m, n = 0, 1, . . . .

One of the most important properties of orthogonal polynomials is that they satisfy a three-
term recurrence relation of the form

pn+1(x) = (αnx+ βn)pn(x)− γnpn−1(x), n = 0, 1, . . . ,

where we set p−1 = 0. The coefficients αn, βn and γn, n = 0, 1, 2, . . . , are real constants with

αn =
kn+1

kn
, γn+1 =

αn+1

αn

N2
n+1

N2
n

where kn denotes the leading coefficient of pn.

Let xn,1 < xn,2 < . . . < xn,n, n = 1, 2, . . . , be the n real, distinct zeros of pn, a = xn,0, b =
xn,n+1. It is a classical result that each interval (xn−1,j , xn−1,j+1), j = 0, 1, . . . , n− 1, contains
exactly one zero of pn (cf. [21, Theorem 3.3.2]). Interlacing of zeros of polynomials from
different sequences (of the same or adjacent degree) within the same family of orthogonal
polynomials, where each sequence is generated by a different parameter, was first studied in
1967 by Levit (cf. [16]), who proved several separation results for the zeros of Hahn polynomials
from different sequences. Using the limit relation between Hahn and Kravchuk polynomials (cf.
[15, equation (9.5.16)]), one can obtain interlacing of zeros of certain Kravchuk polynomials
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from different sequences (cf. [16, Theorem 6]), a result that was rediscovered independently
by Chihara and Stanton in [3] and later by Jordaan and Toókos in [14].

Stieltjes (cf. [21, Theorem 3.3.3]) proved that, within the orthogonal sequence {pn}∞n=0, the
zeros of pn and pn−m, m = 2, 3, . . . , n− 1, interlace in the following well-defined way: in each
interval (xn−m,j , xn−m,j+1), j = 0, 1, . . . , n−m, there is at least one zero of pn. De Boor and
Saff [4] and Vinet and Zhedanov [23] considered dual or, equivalently, associated polynomials,
and the role of the zeros of these polynomials in completing the interlacing was explicitly
stated by Beardon [2]. If pn−m and pn are co-prime, that is, they have no common zeros, there
exists a real polynomial of degree m−1, completely determined by the coefficients in the three-
term recurrence relation satisfied by the orthogonal sequence {pn}∞n=0, whose real simple zeros
provide a set of points that complete the interlacing. We will refer to this as completed Stieltjes
interlacing. An extension of this completed Stieltjes interlacing between polynomials belonging
to the same orthogonal sequence, to polynomials from different orthogonal sequences, obtained
by integer shifts of the appropriate parameter(s), was done in [6, 7] and [8] for the Gegenbauer,
Laguerre and Jacobi polynomials respectively.

In this paper we consider a sequence of polynomials {gn,k}∞n=0, depending on a nonnegative
integer parameter k, that are orthogonal on (a, b) with respect to weight function ck(x)w(x) > 0
where ck(x) represents a polynomial of degree k and prove that relations of finite-type (cf.
[18, (1.7)]) involving gn−2,k, pn and pn−1, necessary to obtain the completed Stieltjes
interlacing, only hold for specific values of k. It is important to mention that existence of such
sequences {gn,k}∞n=0 satisfying finite-type relations is not necessarily guaranteed, but necessary
and sufficient conditions for existence are known, see for instance [17, (5.7)]. We apply our
result to investigate the extent to which completed Stieltjes interlacing holds between the
zeros of different sequences of the discrete orthogonal Meixner polynomials. Furthermore, we
study completed Stieltjes interlacing for Kravchuk polynomials, a class of polynomials where
the conditions of the general result are not always satisfied. In each case we identify the
polynomial whose zeros complete the interlacing and we obtain new bounds for the extreme
zeros of Meixner and Kravchuk polynomials. Outer bounds for the extreme zeros of, inter alia,
Meixner polynomials were obtained in [13] by using recurrence coefficients. Knowledge of the
location and behaviour of the zeros of Meixner polynomials is relevant in analysing discrete
stochastic processes (cf. [11] and [20]) and the zeros of Kravchuk polynomials play a role in
coding theory [12, p. 184] and graph theory [5, Chapter 11]. Numerical examples are given in
order to illustrate the accuracy of our bounds.

2. Completed Stieltjes interlacing of different orthogonal polynomials

Theorem 2.1. Let {pn}∞n=0 be a sequence of polynomials orthogonal on the (finite or
infinite) interval (a, b) with respect to w(x) > 0. Let k ∈ N0 be fixed and suppose {gn,k(x)}∞n=0

is a sequence of polynomials orthogonal with respect to ck(x)w(x) > 0 on (a, b), where ck(x)
is a polynomial of degree k, that satisfies

Anck(x)gn−2,k(x) = ak−2(x)pn(x)− (x−Bn)pn−1(x), n = 1, 2, . . . , (2)

with g−1,k = 0, An, Bn, a−1, a−2 constants and ak−2 a polynomial of degree k− 2 defined on
(a, b) whenever k = 2, 3, . . . . Then:

(i) k ∈ {0, 1, 2, 3, 4};
(ii) the n − 1 real, simple zeros of (x − Bn)gn−2,k interlace with the zeros of pn and Bn is

an upper bound for the smallest, as well as a lower bound for the largest zero of pn if
gn−2,k and pn are co-prime;

(iii) if gn−2,k and pn are not co-prime:
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(a) they have one common zero that is equal to Bn and this common zero cannot be
the largest or smallest zero of pn;

(b) the n− 2 zeros of gn−2,k(x) interlace with the n− 1 non-common zeros of pn;
(c) Bn is an upper bound for the smallest as well as a lower bound for the largest zero

of pn.

Proof. (i) Let j ∈ {0, 1, . . . , n − 3}. Since gn,k is orthogonal with respect to ck(x)w(x) we
have ∫ b

a

Anx
jgn−2,k(x)ck(x)w(x) dx = 0 for n = 2, 3, . . . ,

while it follows from (2) and the orthogonality of pn−1 with respect to w(x) that∫ b
a

Anx
jgn−2,k(x)ck(x)w(x) dx

=

∫ b
a

xj(x−Bn)pn−1(x)w(x) dx+

∫ b
a

xjak−2(x)pn(x)w(x) dx

=

∫ b
a

q(x)pn(x)w(x) dx for n = 2, 3, . . . , (3)

where q(x) = xjak−2(x) is a polynomial of degree j + k − 2 when k ∈ {2, 3, . . .} and a
polynomial of degree j when k ∈ {0, 1}. Since pn is orthogonal with respect to w(x) on (a, b)
and the integral in (3) vanishes, we have that deg(q(x)) = j+k−2 ∈ {0, 1, . . . , n−1} and this
is true for all j ∈ {0, 1, . . . , n− 3}, which implies that k ∈ {2, 3, 4}. Furthermore, the integral
in (3) will be zero for all values of k such that deg(q(x)) = j, that is, when k ∈ {0, 1}.

(ii) See [9, Theorem 2.1 (i), Corollary 2.2 (i)] for a proof of the more general case when
gn−2,k has any degree less than or equal to n− 2.

(iii) See [9, Theorem 2.1 (ii), Corollary 2.2 (ii)] where a proof of the more general case when
gn−2,k has any degree less than or equal to n− 2 is given.

Remark. (1) Theorem 2.1 also applies to finite orthogonal sequences {pn}Mn=0, M ∈ N.
(2) In [7, Theorem 1], it was proved that, for α > −1, the zeros of the Laguerre polynomials,

Lα+kn−2 , k ∈ {0, 1, 2, 3, 4}, together with a given extra-interlacing point, interlace with the zeros of
Lαn, and in [8, Theorems 2.1, 2.4 and 2.6] it was proved that, for α, β > −1, completed Stieltjes

interlacing holds between the zeros of the Jacobi polynomials Pα,βn and the polynomials Pα+k,βn−2
and Pα,β+kn−2 for k ∈ {0, 1, 2, 3, 4} as well as the polynomials Pα+s,β+tn−2 , where k = s + t ∈
{0, 1, 2, 3, 4}. These papers used counter-examples to illustrate that the results are the best
possible and that interlacing breaks down for k ∈ {5, 6, . . .}. Theorem 2.1(i) shows clearly that
the mixed three-term recurrence relations necessary to obtain completed Stieltjes interlacing
hold only if k ∈ {0, 1, 2, 3, 4}. In [6, Theorem 1] it is proved that, for λ > − 1

2 , the zeros of

Gegenbauer polynomials Cλ+kn−2 , k ∈ {0, 1, 2}, together with the point x = 0, interlace with the
zeros of Cλn . Theorem 2.1 suggests that analogous results may hold for k ∈ {3, 4}.

(3) Theorem 2.1 extends a result by Gibson (cf. [10, p. 130]) that determines the maximum
amount of common zeros of two polynomials from the same orthogonal sequence, to the zeros
of any polynomials satisfying a recurrence relation of type (2) whose degrees differ by 2.

(4) Although condition (2) in Theorem 2.1 seems restrictive by not allowing more natural
structural relations involving more than three terms for the orthogonal sequence {gn,k}∞n=0, it
is important to point out that a three-term relation is essential in the proof of the completed
Stieltjes interlacing which yields the bounds for the extreme zeros given in Theorem 2.1(ii)
and (iii).
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3. Completed Stieltjes interlacing of zeros of different Meixner and Kravchuk polynomials

Meixner polynomials may be defined in terms of the 2F1 hypergeometric function (cf. [15,
equation (9.10.1)])

Mn(x;β, c) = (β)n 2F1

(
−n,−x;β; 1− 1

c

)
(4)

for β, c ∈ R, β 6= −1,−2, . . . ,−n + 1, c 6= 0, where the symbol ( · )k is the Pochhammer
symbol [12, equation (1.3.6)], defined by

(α)k = α(α+ 1) . . . (α+ k − 1), k ∈ N
(α)0 = 1, α 6= 0.

For 0 < c < 1 and β > 0, these polynomials are orthogonal on (0,∞) with respect to
the weight function ρ(x) = cx(β)x/x!. We examine completed Stieltjes interlacing of the
zeros of Mn(x;β, c) and Mn−2(x;β + k, c) for different integer values k with due attention
to the possibility that these polynomials can have common zeros. The extra-interlacing points
obtained are inner bounds for the extreme zeros of the Meixner polynomials and, in § 4, we
compare these points to identify the best upper (lower) bound for the smallest (largest) zero of
the polynomials Mn(x;β, c). Note that the polynomials Mn(x;β, c) are orthogonal when the
parameter c is restricted to the interval (0, 1) and therefore it does not make sense to consider
Stieltjes interlacing for the zeros of Meixner polynomials where the parameter c is shifted by
integer values.

Theorem 3.1. Let Mn(x;β, c), β > 0, 0 < c < 1, k, n ∈ N0, denote a Meixner polynomial
of degree n. Then, for each fixed k ∈ {0, 1, 2, 3, 4}:

(i) the zeros of Mn−2(x;β+ k, c), together with the point Bn(k), interlace with the zeros of
Mn(x;β, c) and each Bn(k) is an upper bound for the smallest as well as a lower bound
for the largest zero of Mn(x;β, c), where

Bn(k) =
βc+ (n− 1)(1 + (1− k)c)

1− c
+
k(1− k)(2− k)n(n− 1)c2

6(1− c)(n+ β)

for k = 0, 1, 2, 3 and

Bn(4) =
(β + n)2((n− 1) + c(3 + β − 3n))− c2n(n− 1)(c(β + n+ 1)− (3n+ 4β + 3))

(1− c)(β(2n+ β + 1) + n(n+ 1− (n− 1)c2))
(5)

if Mn−2(x;β + k, c) and Mn(x;β, c) are co-prime;
(ii) if Mn−2(x;β + k, c) and Mn(x;β, c) are not co-prime, then:

(a) the two polynomials under consideration have one common zero located at the
respective points identified in (i);

(b) the n−2 zeros of Mn−2(x;β+k, c) interlace with the remaining n−1 (non-common)
zeros of Mn(x;β, c);

(c) Bn(k), as identified in (i), is an upper bound for the smallest, as well as a lower
bound for the largest zero of pn.

The orthogonality of a finite number of Meixner polynomials Mn(x;β, c) when c < 0 and
β is equal to a negative integer, say β = −N , N ∈ N, is that of the Kravchuk polynomials,
defined by (cf. [15, equation (9.11.1)])

Kn(x; p,N) = (−N)n 2F1

(
−n,−x;−N ;

1

p

)
, n = 0, 1, . . . , N,N ∈ N (6)

and these polynomials are orthogonal with respect to the finite binomial distribution
w(x; p,N) =

(
N
x

)
(p)x(1− p)N−x that is positive at the mass points x = 0, 1, . . . , N of the

https://doi.org/10.1112/S1461157013000260 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000260


bounds for zeros of meixner and kravchuk polynomials 51

discrete distribution for 0 < p < 1. This implies that, for 0 < p < 1 and n 6 N , n,N ∈ N, the
zeros of Kn(x; p,N), denoted by xNn,1 < xNn,2 < . . . < xNn,n, are real, distinct, in the interval
(0, N) and separated by the mass points of the measure of orthogonality (cf. [21, Theorem
3.41.2]). In the particular case where n = N , the zeros of KN (x; p,N) interlace with the mass
points as follows

0 < xNN,1 < 1 < xNN,2 < 2 < . . . < xNN,N < N.

Completed Stieltjes interlacing between the zeros of Kravchuk polynomials Kn(x; p,N) that
lie in (0, N) and the n− 2 zeros of Kn−2(x; p,N − k), k ∈ {−1, 0, 1, 2}, that lie in (0, N − k)
are of particular interest since shifting the parameter N implies a change in the interval of
orthogonality. Note that general results such as Theorem 2.1 or [9, Theorem 2.1] are then not
immediately applicable. Additional restrictions on the parameter p will be necessary in some
cases to obtain completed Stieltjes interlacing. We identify the extra-interlacing points that
complete the interlacing and obtain new inner and outer bounds for the extreme zeros of the
polynomials Kn(x; p,N).

Theorem 3.2. Let Kn(x; p,N), 0 < p < 1, n = 2, 3, . . . , N, N ∈ N, denote the Kravchuk
polynomials and let

Cn(k) = Np+ (n− 1)(1 + kp− 2p) and pn(k) =
N − k − n+ 1

N + (k − 2)(n− 1)
, k = 0, 1, 2.

Then we have the following.
(i) The zeros of Kn−2(x; p,N), together with the point Cn(0), interlace with the zeros of

Kn(x; p,N) if Kn−2(x; p,N) and Kn(x; p,N) are co-prime.
(ii) The zeros of Kn−2(x; p,N − 1), together with the point Cn(1), interlace with the zeros

of Kn(x; p,N), if Kn−2(x; p,N − 1) and Kn(x; p,N) are co-prime. Furthermore:
(a) if 0 < pn(1) < p < 1, then xN−1n−2,n−2 < xNn,n−1 < N − 1 < Cn(1) < xNn,n < N ;

(b) if p = pn(1) = (N − n)/(N − n + 1), then xN−1n−2,n−2 < xNn,n−1 < Cn(1) = N − 1 <

xNn,n < N.
(iii) If Kn−2(x; p,N−2) and Kn(x; p,N) are co-prime, the zeros of Kn−2(x; p,N−2), together

with the point Cn(2), interlace with the zeros of Kn(x; p,N) for p < 1 − n/N , if and
only if the zeros of Kn(x; p,N) lie in (0, N − 1). Furthermore:
(a) if 0 < pn(2) < p < 1 − n/N , then xN−2n−2,n−2 < xNn,n−1 < N − 2 < Cn(2) < xNn,n <

N − 1;
(b) if p = pn(2) = 1− (n+ 1)/N , then xN−2n−2,n−2 < xNn,n−1 < Cn(2) = N − 2 < xNn,n <

N − 1.
(iv) If Kn(x; p,N) and Kn−2(x; p,N − k), k = 0, 1, 2 have a zero in common:

(a) 0 < p < 1 when k = 0 and 0 < p < pn(k) < 1 for k = 1, 2;
(b) the point Cn(k) is the common zero of Kn−2(x; p,N − k) and Kn(x; p,N);
(c) the n − 2 zeros of Kn−2(x; p,N − k) interlace with the n − 1 (non-common) zeros

of Kn(x; p,N).

Completed Stieltjes interlacing of the zeros of Kn(x, p,N) and Kn−2(x, p,N+1) is considered
in the following theorem.

Theorem 3.3. Let Kn(x; p,N), 0 < p < 1, n = 1, 2, . . . , N, N ∈ N, denote the Kravchuk
polynomial of degree n and let

q =
3(n− 1)−N +

√
9− 22n+ 17n2 − 4n3 + 6N − 10nN + 4n2N +N2

2n(n− 1)

X1 =
1

2

(
Sn −

√
S2
n + 4((N + 1)((n− 1)(3p− 1)−Np)− n(n− 1)p2)

)
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and

X2 =
1

2

(
Sn +

√
S2
n + 4((N + 1)((n− 1)(3p− 1)−Np)− n(n− 1)p2)

)
where

Sn = N + n− 3(n− 1)p+Np.

Then:
(i) X2 ∈ [N,N + 1) if p 6 q;
(ii) for each fixed n = 2, 3, . . . , N and p 6 q, the zeros of Kn−2(x; p,N +1) are in (0, N) and,

together with the point X1, they interlace with the zeros of Kn(x; p,N) if Kn−2(x; p,
N + 1) and Kn(x; p,N) are co-prime;

(iii) for n = 2, 3, . . . , N and p fixed, p 6 q, if Kn−2(x; p,N + 1) and Kn(x; p,N) are not
co-prime:
(a) they have one common zero at x = X1;
(b) the n− 2 zeros of Kn−2(x; p,N + 1) interlace with the n− 1 non-common zeros of

Kn(x; p,N).

Remark. The case k = 0 in Theorems 3.1(i) and 3.2(i) extend the classic result of Stieltjes
(cf. [21, Theorem 3.3.3]) that between any two zeros of a polynomial pn−2(x), there is at least
one zero of pn(x), by providing a formula for an extra-interlacing point.

4. Bounds for the extreme zeros of Meixner and Kravchuk polynomials

The inner bounds for the extreme zeros of Meixner polynomials Bn(k), k = 0, 1, . . . , 4, obtained
in Theorem 3.1, satisfy

0 < xn,1 < Bn(4) < Bn(3) < . . . < Bn(0) =
(n− 1)(1 + c) + βc

1− c
< xn,n,

for all values of β > 0 and 0 < c < 1 and it is clear that Bn(0) is the best lower bound for the
largest zero while Bn(4), given in (5), is the most precise upper bound for the smallest zero
of Mn(x;β, c) obtained by using Theorem 2.1. In Table 1 we provide numerical examples in
order to illustrate these bounds. The points Cn(k) = Np + (n − 1)(1 − (k − 2)p), k = 0, 1, 2,
obtained in Theorem 3.2 will be upper (lower) bounds for the smallest (largest) zero of the
Kravchuk polynomial Kn(x; p,N). For p ∈ (0, 1) and n = 2, 3, . . . , N we have that

0 < xNn,1 < Cn(0) < Cn(1) < xNn,n < N. (7)

When p ∈ (0, 1 − n/N) ⊂ (0, 1), we obtain a new upper bound for xNn,n as well as a better

lower bound for xNn,n than the one given in (7), since it follows from Theorem 3.2 (iii), (iv)
and the definition of Cn(k), k = 0, 1, 2, that

0 < xNn,1 < Cn(0) < Cn(1) < Cn(2) < xNn,n < N − 1.

Table 1. Comparison of bounds for the extreme zeros of M8(x;β, c) for different values of β and c.

β, c x8,1 Bn(4) Bn(0) x8,8

β = 0.09, c = 0.02 2.9 × 10−15 6.727 7.288 7.913
β = 0.09, c = 0.99 1.118 1.130 1401.91 2114.7
β = 0.09, c = 0.5 0.0004 2.195 21.09 31.082
β = 20, c = 0.5 5.234 16.474 41.00 65.935
β = 20, c = 0.99 892.097 1212.12 3373.00 5141.82
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The lower bounds for the largest zeros, Cn(1) and Cn(2), are surprisingly good, particularly
when p→ 1, which is consistent with the fact that

Kn(x; 1, N) = (−N)n 2F1(−n,−x;−N ; 1) = (x−N)(x−N + 1) . . . (x−N + n− 1),

which vanishes when x = N,N − 1, . . . , N − n + 1. We provide some numerical examples in
Table 2 to illustrate the new bounds.

5. Proofs

Gauss (cf. [19, p. 50]) defined as contiguous to 2F1(a, b; c; z), each of the six functions obtained
by shifting one of the parameters by one unit and he proved that there is a relation between
the function 2F1(a, b; c; z) and any two of its contiguous functions. The equation(

1− n+ b

n+ c
z

)
2F1(−n, b; c; z) = 2F1(−n− 1, b; c; z)− (c− b)n

(n+ c)c
z2F1(−n+ 1, b; c+ 1; z) (8)

follows from combining (2) and (4) in [19, p. 71]. In the following lemma we list the contiguous
function relations that are used in our proofs. A useful algorithm for computing contiguous
relations for 2F1 Gauss hypergeometric series, written by Vidunas in 2002, is available
as a computer package (cf. [22]). These relations can be easily verified by comparing the
corresponding coefficients of equal powers.

Lemma 5.1. Let Fn = 2F1(−n, b; c; z) and denote 2F1(−n− 1, b+ 1; c; z) by Fn+1(b+ 1),

2F1(−n+ 1, b+ 1; c− 3; z) by Fn−1(b+ 1, c− 3) and so on. Then

(n+ c− 1)Fn = nFn−1 + (c− 1)Fn(c− 1), (9)

(bz + nz − n− c)Fn(c+ 1) = −cFn+1 + n(z − 1)Fn−1(c+ 1), (10)

(z − 1)

(
z − c

b+ n

)
Fn =

c− z(c+ n)

b+ n
Fn+1 +

n(c− b)(c− b+ 1)

(b+ n)c(c+ 1)
z2Fn−1(c+ 2), (11)(

−n(n+ 1)

1 + b− c
+ (c+ 3n)z − (b+ n)z2

)
Fn

= (c+ n)

(
z − n

1 + b− c

)
Fn+1 +

n(c− 1)

1 + b− c
(z − 1)2Fn−1(c− 1), (12)

(z − 1)((n+ 1)(b(z − 1) + nz)z + c(z − 1)(z(b+ n)− c− 1))Fn

= −(c2(z − 1)2 + nz(z(n+ 1)− b) + c(1− (n+ 2)z + (2n+ 1)z2))Fn+1

+
n(c− b)3

(c)3
(c+ n+ 1)z3Fn−1(c+ 3), (13)

(1− z)D1Fn = D2Fn+1 +
n(c− b)4(n+ c+ 1)(n+ c+ 2)

(c)4
z4Fn−1(c+ 4), (14)

Table 2. Comparison of bounds for the extreme zeros of K5(x; p,N), for different values of p and N .

Upper bound
p,N x5,1 Cn(0) Cn(1) Cn(2) x5,5 N − 1

p = 0.1, N = 7 0.0007 3.9 4.3 4.7 4.991 6
p = 0.45, N = 10 0.769 4.9 6.7 8.5 8.738 9
p = 0.9, N = 7 2.009 3.1 6.7 – 6.999 –
p = 0.99, N = 8 3.816 4 7.96 – 7.999 –
p = 0.99, N = 14 9.573 9.94 13.9 – 13.999 –
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where

D1 = c3(z − 1)2 − c2(z − 1)2(bz + nz − 3)− c((n+ 4 + (2n+ 3)b)z

− (2 + 3n+ n2 + (4n+ 6)b)z2 + (b+ n)(2n+ 3)z3 − 2)

− (n+ 1)z(n(n+ 2)z2 + b(2− 2(n+ 2)z + (n+ 2)z2)),

D2 =−c3(z − 1)3 − c2((n+ 9)z − 3(n+ 3)z2 + 3(n+ 1)z3 − 3)

+ c(2− (6 + n+ 2bn)z + (6 + 4(b+ 1)n+ n2)z2 − (2 + 6n+ 3n2)z3)

− nz(b2z + (2 + 3n+ n2)z2 + b(2− 5z − 2nz)).

Proof of Theorem 3.1. Let β > 0, 0 < c < 1, k, n ∈ N0. The mixed three-term recurrence
relations

(n− 1)(x+ β)Mn−2(x;β + 1, c)

=

(
c

c− 1

)
Mn(x;β, c)−

(
x− 1− n− βc

c− 1

)
Mn−1(x;β, c), (15)

(n− 1)(1− c)(x+ β)2
β + n− 1

Mn−2(x;β + 2, c)

=
((n− 1)(1− c) + β)c

(c− 1)(β + n− 1)
Mn(x;β, c)−

(
x− (n− 1)(1− c) + βc

1− c

)
Mn−1(x;β, c), (16)

(n− 1)(1− c)2(x+ β)3
(β + n− 1)2

Mn−2(x;β + 3, c) =
cD1(x)

(c− 1)(β + n− 1)2
Mn(x;β, c)

−
(
x− (n− 1)2(c− 1)2 + (n− 1)(c− 1)(c− β − 1) + (β)2c

(1− c)(β + n)

)
Mn−1(x;β, c), (17)

(n− 1)(1− c)3(x+ β)4
(β + n− 1)D3

Mn−2(x;β + 4, c)

=
cD2(x)

(c− 1)(β + n− 1)D3
Mn(x;β, c)− (x−Bn(4))Mn−1(x;β, c), (18)

where

D1(x) = (n− 1)2(c− 1)2 + (β)2 + (n− 1)(c− 1)((x+ β + 1)c− 2β − 1),

D2(x) = (n− 1)3(c− 1)3 − (β)3 + (n− 1)2(c− 1)2((2x+ 2β + 3)c− 3(β + 1))

+ (n− 1)(c− 1)(3β2 + 6β + 2 + ((β + 1)2 + x(x+ 2β + 3))c2

− (3β2 + 8β + 4 + x(x+ 4β + 5))c),

D3 = (n− 1)2(1− c2) + (n− 1)(2β + 3− c2) + (β + 1)2

can be obtained using (4), together with the three-term recurrence relation satisfied by Meixner
polynomials [15, equation (9.10.3)]

(n− 1)(β + n− 2)

1− c
Mn−2(x;β, c)

=
c

c− 1
Mn(x;β, c)−

(
x− n− 1 + (β + n− 1)c

1− c

)
Mn−1(x;β, c) (19)

and the identities (11), (13) and (14). Equations (19), (15), (16), (17) and (18) are of the general
form (2) and satisfy the conditions given in Theorem 2.1. It follows from Theorem 2.1(i) that
such equations involving Mn−2(x;β+ k, c) exist only for k ∈ {0, 1, 2, 3, 4} and Theorem 2.1(ii)
and (iii) immediately yield the stated results.
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Proof of Theorem 3.2.
(i) We assume that Kn−2(x; p,N) and Kn(x; p,N) do not have any zeros in common. By

substituting n by n−1 in the three-term recurrence relation satisfied by Kravchuk polynomials
[15, equation (9.11.3)] and applying Theorem 2.1(ii), we obtain the stated result.

(ii) Let Kn−2(x; p,N − 1) and Kn(x; p,N) be co-prime. From (6) and the contiguous
relation (10) we obtain the mixed recurrence relation

(n− 1)(x−N)Kn−2(x; p,N − 1)

= pKn(x; p,N)− (x−Np+ (n− 1)(p− 1))Kn−1(x; p,N). (20)

The polynomial x − N in (20) does not change sign on (0, N) and from [9, Theorem 2.1(i)],
we deduce that the zeros of Kn−2(x; p,N − 1), together with the point Cn(1) = Np +
(n− 1)(1− p), interlace with the zeros of Kn(x; p,N) on (0, N).

Furthermore:
(a) if p > pn(1) = 1 − 1/(N − n+ 1), we have N − 1 < Cn(1) < xNn,n and since there is

at most one zero of Kn(x; p,N), n = 1, 2, . . . , N in between any two consecutive mass
points 0, 1, 2 . . . , N , we have xNn,n−1 < N − 1;

(b) if p = 1− 1/(N − n+ 1), Cn(1) = N − 1 and hence xNn,n−1 < N − 1 < xNn,n < N.
(iii) Let Kn−2(x; p,N − 2) and Kn(x; p,N) be co-prime and consider the mixed three-term

recurrence relation

(x−N)2Kn−2(x; p,N − 2) =
p(n− 1 +Np−N)

n− 1
Kn(x; p,N) + (x− n+ 1−Np)

× (N − n+ 1)(1− p)
n− 1

Kn−1(x; p,N) (21)

obtained using (6) and (11). Firstly, we assume that the zeros of Kn(x; p,N) lie in (0, N − 1).
The function (x −N)(x −N + 1) in (21) is defined and does not change sign on the interval
(0, N−1). The same proof as that of [9, Theorem 2.1(i)] can be used for the interval (0, N−1)
and it follows that the zeros of Kn−2(x; p,N − 2), together with the point Cn(2), interlace
with the zeros of Kn(x; p,N) on (0, N − 1). Since Cn(2) = Np + n − 1 < N − 1, we deduce
that p < 1− n/N.

Next, assume that the zeros of Kn−2(x; p,N − 2), together with the point Cn(2), interlace
with the zeros of Kn(x; p,N) and p < 1− n/N , that is, Cn(2) = Np+ n− 1 < N − 1.

Suppose xNn,n > N − 1. Evaluating (21) at xNn,n−1 and xNn,n, we obtain

Kn(xNn,n−1; p,N)Kn(xNn,n; p,N)d2

(xNn,n−1 −N)(xNn,n −N)(xNn,n−1 −N + 1)(xNn,n −N + 1)

=
Kn−2(xNn,n−1; p,N − 2)Kn−2(xNn,n; p,N − 2)

(xNn,n−1 − Cn(2))(xNn,n − Cn(2))
, (22)

where d = (N − n+ 1)(1− p)/(n− 1). The zeros of Kn(x; p,N) lie in (0, N) and there is only
one zero of Kn(x; p,N) between any two mass points, therefore xNn,n−1 < N −1. Consequently
the denominator on the left-hand side of (22) is negative. The numerator is also negative,
since the zeros of Kn(x; p,N) and Kn−1(x; p,N) interlace, which implies that the left-hand
side of (22) is positive.

By assumption, either a zero of Kn−2(x; p,N − 2) or the point Cn(2), needs to lie in
the interval (xNn,n−1, x

N
n,n). If Cn(2) ∈ (xNn,n−1, x

N
n,n), the denominator on the right-hand

side is negative. For the right-hand side of (22) to be positive, we need Kn−2(xNn,n−1; p,
N − 2)Kn−2(xNn,n; p,N − 2) < 0, which means there is also a zero of Kn−2(x; p,N − 2) in
(xNn,n−1, x

N
n,n) and we have a contradiction.
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Alternatively, if Kn−2(x; p,N − 2) has a zero in the interval (xNn,n−1, x
N
n,n), the numerator

on the right-hand side is negative and for the right-hand side of (22) to be positive, we need
the denominator to be negative, that is, Cn(2) ∈ (xNn,n−1, x

N
n,n) and again, this contradicts our

assumption. We conclude that xNn,n < N − 1.
Furthermore:

(a) if 0 < 1 − (n+ 1)/N < p < 1 − n/N , then N − 2 < Cn(2) < N − 1 and, because of
the completed Stieltjes interlacing, N − 2 < Cn(2) < xNn,n < N − 1 Since there is at
most one zero of Kn(x; p,N) in between any two consecutive mass points, we have
xNn,n−1 < N − 2;

(b) if p = 1− (n+ 1)/N , then Cn(2) = N − 2 and xNn,n−1 < N − 2 < xNn,n < N − 1.
(iv) If, for each k ∈ {0, 1, 2}, Kn−2(x; p,N − k) and Kn(x; p,N) have zeros in common,

it follows from the three-term recurrence relation (for k = 0) and the mixed recurrence
relation (20) and (21) (for k = 1, 2 respectively), together with Theorem 2.1(iii) in [9], that
they can only have one common zero, which is equal to the point Cn(k). The common zero
must lie in (0, N − k) and consequently p < pn(k).

Proof of Theorem 3.3. We use the contiguous relation (12) and the 2F1 representation of the
Kravchuk polynomials (6) to obtain the mixed three-term recurrence relation

(n− 1)(N − n+ 2)2(1− p)2Kn−2(x; p,N + 1)

= p(x+ (n− 1)p−N − 1)Kn(x; p,N)− P2(x)Kn−1(x; p,N) (23)

where

P2(x) = x2 − (n+N − 3(n− 1)p+Np)x+ n(n− 1)p2 − (N + 1)((n− 1)(3p− 1)−Np)
= (x−X1)(x−X2).

It is easy to show that X1 ∈ (0, N) and X2 ∈ (0, N + 1) for 0 < p < 1. In order to apply
[9, Theorem 2.1] to (23), we need to determine the parameter values for which (x−X2) does
not change sign on (0, N), that is, we need to find the conditions on p so that N 6 X2 < N+1.

(i) A straight-forward calculation shows that X2 > N is equivalent to

(n2 − n)p2 + (N − 3n+ 3)p+ n− 1−N 6 0.

By solving this quadratic inequality and taking in consideration the assumption that
p > 0, we find

0 < p 6
3(n− 1)−N +

√
9− 22n+ 17n2 − 4n3 + 6N − 10nN + 4n2N +N2

2n(n− 1)
= q.

(ii) Let Kn−2(x; p,N + 1) and Kn(x; p,N) be co-prime, n and p fixed and p 6 q. We apply
[9, Theorem 2.1(i)] to (23) and conclude that for p 6 q the n−2 zeros of Kn−2(x; p,N+1),
together with the point X1, interlace with the zeros of Kn(x; p,N). A direct consequence
of this interlacing is that the zeros of Kn−2(x; p,N + 1) lie in (0, N) for the specified
values of p, since xN+1

n−2,n−2 < xNn,n < N.
(iii) Let n and p 6 q be fixed. When we assume that Kn−2(x; p,N + 1) and Kn(x; p,N)

have a common zero, this zero must lie in (0, N) and the stated result follows from
[9, Theorem 2.1(ii)].
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21. G. Szegő, Orthogonal Polynomials, 4th edn, Colloquium Publications 23, (American Mathematical

Society, Providence, RI, 2003).
22. R. Vidunas and T. Koornwinder, ‘Algorithmic methods for special functions by computer algebra.

Webpage of the NWO project’, 2000, http://www.science.uva.nl/∼thk/specfun/compalg.html.
23. L. Vinet and A. Zhedanov, ‘A characterization of classical and semiclassical orthogonal polynomials from

their dual polynomials’, J. Comput. Appl. Math. 172 (2004) 41–48.

A. Jooste
Department of Mathematics and

Applied Mathematics
University of Pretoria
Lynnwood Road, Pretoria, 0002
South Africa

alta.jooste@up.ac.za

K. Jordaan
Department of Mathematics and

Applied Mathematics
University of Pretoria
Lynnwood Road, Pretoria, 0002
South Africa

kjordaan@up.ac.za

https://doi.org/10.1112/S1461157013000260 Published online by Cambridge University Press

http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
http://www.science.uva.nl/~thk/specfun/compalg.html
https://doi.org/10.1112/S1461157013000260

	1 Introduction
	2 Completed Stieltjes interlacing of different orthogonal polynomials
	3 Completed Stieltjes interlacing of zeros of different Meixner and Kravchuk polynomials
	4 Bounds for the extreme zeros of Meixner and Kravchuk polynomials
	5 Proofs
	References

