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Abstract. In this paper, we consider the dependence of the Dirichlet eigenva-
lues and eigenspaces of the Laplace operator upon perturbation of the domain of
definition. We prove that the dependence of a certain eigenvalue and of the corre-
sponding eigenspace is analytic on the set of perturbations that leave the multiplicity
constant.

2000 Mathematics Subject Classification. 35P05.

1. Introduction. For a given regular, connected, bounded open subset € of R”,
we consider the Dirichlet eigenvalue problem

—Au=Aiu in Q,
{u:O on 9%, (1.1)

for A € R, u in the Schauder space C*%(clQ) of the k-times continuously differenti-
able functions of cl to R, with a-Hoélder continuous k-th order derivatives, for
k>2,a€]0,1[. It is well known that problem (1.1) has an increasing sequence of
eigenvalues, that we write as 0 < A; < A <... < A; <..., where each eigenvalue is
repeated as many times as its multiplicity. If ¢ is a diffecomorphism of clQ2 onto
clp(R2) of class (C"’“(CIQ))”, then ¢(£2) is again a sufficiently regular bounded open
domain of R", and it makes sense to consider the Dirichlet eigenvalues {A;[#]};cn o)
of —A in the ‘perturbed’ domain ¢(£2).

Several authors have investigated the problem of establishing the regularity of
the maps which take a perturbed domain, here ¢($2), to the spectrum of —A in ¢(2),
here {A[¢]};en(0)- For a treatment of this problem, we refer to Chow and Hale [2],
Desaint and Zolésio [5] and Henry [9].

It is well known that the maps ¢i— A;[¢] are continuous (cf. Courant and Hilbert
[3].) Cox [4] has shown a Lipschitz continuity result for the dependence of A;[¢] upon
¢. It is also known that if a certain eigenvalue )L_/[qS] relative to the domain ¢(£2) has
multiplicity one, then Aj[-], as well as a suitably normalized eigenvector relative to
Aj[-], depend real analytically upon ¢ in a neighborhood of é (cf. Henry [9], Prodi
[21]). For related results, see also Chow and Hale [2], Desaint and Zolésio [5], [6] and
Gekeler [7].
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In general, if the multiplicity of )\j[¢~>] is greater than one, we do not expect that
Aj[¢] depends analytically on ¢ around ¢. However, it makes sense to consider the
set of perturbations, say My o jm, of those ¢’s for which A;[¢] has multiplicity m, and
one may question whether the function A;[-], as well as the eigenspace relative to Aj[-],
depend with a certain degree of regularity on ¢ € My 4 jm.

We note that Kong, Wu and Zettl [10] have proved some results related in spirit
to ours. Namely, they have considered certain boundary-value problems for ordin-
ary differential equations depending on a parameter, and they have proved differ-
entiability theorems for eigenvalues of multiplicity higher than one upon variation
of the parameter, under the assumption that locally the multiplicity of the eigen-
value does not change as the parameter is perturbed.

In this paper, we prove that if the multiplicity m of )‘j[é] is greater than one, then
the restriction of Aj[-] to My 4 ;m, and the function which takes ¢ € My o jn to a
suitably chosen projection operator Py ; of the space for u onto the eigenspace rela-
tive to Aj[-] can be extended real-analytically in a neighborhood of é to a function

Ag Ll and to a function P; 5.0 respectively. It should be mentioned however, that if
] does not belong to My 4 ;m, then we cannot expect, in general, that A [¢] and
Pj 1[¢] coincide with A;[¢] and Py ;, respectively.

The idea of the proof is to set up a suitable functional equation involving the
eigenvalues, the function ¢, and the projection operators associated to the eigen-
spaces, and to use the Implicit Function Theorem. Our methods differ completely
from the classical methods used to study the analytic dependence of the eigenvalues
of a real or complex parameter dependent family of compact self adjoint linear
operators in Hilbert space, which could instead be used to deduce analyticity results
for the dependence of A,[y(¢)] upon ¢, when {y(¢)},cg is a one parameter real analytic
family of domain diffeomorphisms.

It should be noted that Lupo and Micheletti [15] have proved that the set of ¢’s
of class C* which preserve the multiplicity m = 2 of a certain eigenvalue is locally a
manifold of codimension ’"(";L —11in C3, and have given a sufficient condition for
the same result to hold for m > 2. (See also Lupo and Micheletti [16], [17] for related
results.) As we shall see in a forthcoming paper, the same result can be proved for
¢’s of class C** by exploiting the methods of this paper.

2. Technical preliminaries and notation. We denote the norm on a (real) normed
space X by || - |lx. Let X and ) be normed spaces. We equip the product space
& x Y with the norm || - [|yxy = || - lx + Il - Iy, while we use the Euclidean norm for
R". By L(X, )) we denote the normed space of the continuous linear maps of X to )
equipped with the topology of uniform convergence on the unit sphere of X.
B(X x Y, Z) denotes the normed space of the continuous bilinear maps of X x ) to
the normed space Z, and is equipped with the topology of uniform convergence on
the cross product of the unit sphere of X and of the unit sphere of ). For standard
definitions of calculus in normed spaces, we refer to Prodi and Ambrosetti [22].
Furthermore, N denotes the set of natural numbers including 0. Throughout the
paper, n is an element of N\ {0}. The inverse function of an invertible function f'is
denoted /=1, as opposed to the reciprocal of a complex-valued function g, or the
inverse of a matrix 4, which are denoted g~!' and A~!, respectively. A dot ‘-> denotes
the inner product in R”, or the matrix product between matrices with real entries.
Let 4 be a matrix. Then A’ denotes the transpose matrix of 4, and tr4 denotes the
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trace of A. The set of r x r matrices with real entries is denoted by M, (R). Let
E C R". Then clE denotes the closure of E. For all R > 0, x € R", |x| denotes the
Euclidean modulus of x in R", and B(x, R) denotes the ball {y € R" : |x — y| < R}.
Let © be an open subset of R". The space of k times continuously differentiable real-
valued functions on € is denoted by C*(RQ). Let f'e (C"(Q))". The s-th component

of f is denoted f;, and Df denotes the gradient matrix (3—@) = Let n=
s,l=1,...,
my.oon) €N", Inl=m +...4+n, Then D"f denotes 3x713,|.n.“afxgn' The subspace of

CK(Q2) of those functions f such that f'and its derivatives D"f of order |n| < k can be
extended with continuity to cl€2 is denoted by C*(cl€2). Let Q be a bounded open
subset of R". C¥(clQ) equipped with the norm | f], = > ini<k SUPag D1 is a
Banach space. The subspace of C*(cl2) whose functions have k-th order derivatives
that are Hélder continuous with exponent « € (0, 1] is denoted C5*(cIR2), (cf. e.g.
Gilbarg and Trudinger [8].) Let ECR". Then CrF%(clQ, E) denotes
{f € (CF(clQ))": ficlQ) € E}. CF(cl, M,(R)) denotes the space of functions of
clQ to M,(R), whose components are of class CF. If f'e C*¥(clQ), then its Holder

quotient | f/, is defined as {M ix,yecl, x# y}. The space C%(clR2), equip-

="
ped with its usual norm || fllz, = IIfllx + Zlnl=k |D"f,, is well known to be a
Banach space. We say that a bounded open subset is of class CX or of class C*<, if it
is a manifold with boundary imbedded in R" of class C¥ or C*@, respectively.

We summarize in the following statement some known properties of the
Schauder spaces that we need in the sequel (cf. e.g. Gilbarg and Trudinger [8], and
[12, Section 2]).

LEMMA 2.1. Let k € N, «, 8 €]0, 1]. Let Q be a bounded connected open subset of

R" of class C'.
(i) The pointwise product is continuous in C*%(clQ).

(i) CH(cIR) is continuously imbedded in C*'(clQ).

(i) If o > B, then C%(clQ) is compactly imbedded in C*P(cl).

(V) If {fi}ien is a bounded sequence of C*%(clQ), that converges pointwise to
some [ e COclQ), then fe CH(cIQ) and {fi};en converges to [ in CHP(cIQ), for all
B €10, of.

As we have announced in the introduction, we shall parametrize our domains by
means of diffeomorphisms ¢ € C~%(cI2, R"). To apply our methods, we need to
show that the set of such ¢’s is open. Thus we introduce the following variant of [13,
Lemma 5.2] and [14, Lemma 2.2].

LEMMA 2.2. Let Q be a bounded connected open subset of R" of class C'. Then the
following statements hold.

(1) The set A= {¢ e Cl(clQ, R") : ¢ is injective, detDgp(x) # 0, Vx € clQ} is
open in C'(cl2, R").

(i) If ¢ € A, then 9p(clQ) = ¢p(02) = dp(RL), and $(2) is the interior of ¢(cl).
The map ¢ is a homeomorphism of clI2 onto clp(2).

We summarize in the following Lemma the properties of the composition and of

the inversion of functions in Schauder spaces that we need in the sequel. For a
proof, we refer to [12, Lemmas 3.1, 4.26, and Theorem. 4.28].
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LEmMA 2.3. Let ke N\ {0}, @ €]0,1]. Let 2, Q1 be open bounded connected
subsets of class C' of R". Then the following statements hold.

Q) If (¢, ¥) € CEoclQ)) x CE(clR, cl2)), then ¢ o Y € CE(cIQ).

(i) If ¢ € CFo(clQ, R") N A, then the inverse function ¢~V e CH(clp(RQ), R").

Next, we have the following result.

LeEmMMA 2.4. Let k € N\ {0}, @ €]0, 1]. Let Q be an open bounded connected subset
of R" of class C**. Let ¢ € C~*(cl2, R") N A. Then ¢(R) is of class C*<.

Proof. Since Q is of class C*¢, it is well known that each ¢ € CF¥(clQ, R")
admits an extension ® of class C** in a ball c1B(0, R) containing cI2 in the interior.
By applying the Inverse Function Theorem to the function @ at the points of 92,
and by using the local charts of 92, one can easily construct local charts around the
points of dp(£2). O

We collect in the following Theorem a few well-known facts on the eigenvalues
of the Laplace operator.

THEOREM 2.5. Let k € N\ {0, 1}, @ €10, 1[. Let Q be an open bounded connected
subset of R" of class C*®. Let ¢ € C5*(cIQ, R"YN A. Then the boundary value
problem

(2.6)

—Av=2Av In ¢(Q),
v=20 on ¢(L2),

has a nontrivial solution v € C*(cl¢(R)) if and only if A is a term of an increasing
sequence {A{@}jen o) i 10, +00[. For each A € {A)[#] : j € N\ {0}}, problem (2.6) has
a finite dimensional space of solutions. We call the dimension of this space the multi-
plicity of the eigenvalue X\, and we agree to repeat each eigenvalue in the sequence
{Al@1jenvgoy as many times as its multiplicity. For each fixed j € N\ {0}, the map Aj[-]
of Cke(clQ, RN A 1o R that takes ¢ to A[¢)] is continuous.

For the proof of the first part of the statement, we refer to Necas [20, Theorem
3.1, p. 135] and to Gilbarg and Trudinger [8, Theorem 6.19, p. 111 and Theorem
8.37, p. 214]. For the statement concerning the continuity of the eigenvalues, we
refer to Courant and Hilbert [3, Theorem 8, p. 419].

We close the present section by collecting some known properties of elementary
operators in the following Lemma. We note that throughout the paper ‘analytic’
means ‘real analytic’. For the definition of analytic operator, we refer to Prodi and
Ambrosetti [22, p. 89].

LEmMA 2.7. Let r,k e N, r >0, a €10, 1]. Let Q be a bounded connected open
subset of R" of class C'. Let F~' be the inverse matrix of (an invertible)
F e C5*(cl, M,(R)).

(1) The pointwise matrix product, which reduces to the pointwise product of
functions when r = 1, is bilinear and continuous and henceforth analytic from the space
Cho(clQ, M.(R)) x CH*(cl2, M, (R)) to the space C**(clQ, M,(R)).
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(i) The map Fi—F~" is analytic from {F € C**(clQ, M,(R)) : det F # 0 on cIQ}
to itself, and its differential at the element Fy is given by the map
Mi— —FHI 'M-Fo‘l.

We also mention that continuous (multi)linear operators between normed
spaces are analytic (cf. e.g. Prodi and Ambrosetti [22]).

3. An analyticity result for multiple eigenvalues. As it is often done in the study of
domain dependent problems, we transform our boundary value problem on ¢(£2)
into a problem on £ by means of the following Proposition 3.1, whose validity can
be easily verified by Lemma 2.3 and by the chain rule. Right after the statement of
Proposition 3.1, we introduce some notation and we explain the structure of this
section.

ProrosITION 3.1. Let k € N\ {0, 1}, o €]0, 1]. Let Q be an open bounded con-
nected subset of R" of class C'. Let ¢ € C*(cI, R")N A, A €]0, +o0[. Then the
function v € Co*(cl¢()) satisfies the boundary value problem (2.6) if and only if the
function u=v o ¢ belongs to C**(cIQ) and satisfies the boundary value problem

—Agu=Au in L,
{ u=>0 on 9L, (3.2)
where Agu = [A(uo ¢'=")] o ¢. Furthermore
Ayu = tr{[(D¢)*1]’-(Hu) - [(D¢)’1]} + %@% (3.3)
is,/=1 axi 8)6[
where o is the (i, s) entry of the matrix (D$)~", and where Hu = <3323”\) = The

,,,,,

operator Ay is uniformly elliptic in Q, and its ellipticily2 constant in 2 is greater or
equal to the constant mMin g MiNgcr g=1} [(D¢)*1]’ &

We now introduce some notation. For all ¢ € C5*(cl2, R") N A, with k,j e N,
k>2,j>1,ael0 1], we set Cy®(cl) = {u € CF(clQ) : upe = 0}, and

E¢J = {M € Cl(;’a(CI Q) : —A¢,u = )»,[qb]u in Q}

Thus the multiplicity of A;[¢] equals dimFE, ;. Then we denote by Lé(Q) the Hilbert
space of the (equivalence classes) of functions of © to R that are square summable
with respect to the measure | det D¢|dx, equipped with the scalar product defined by

<up,up >¢= / wyuy| det Dpldx,  Vuy, u € Ly(Q). (3.4)
Q
Then we set

Miajm = {¢ € CH(lQRYNA: dim Ey; = m},
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for all m € N\ {0}. Now we fix an element ¢~> € My ajm. For all ¢ € My ojm, we

denote by P, ; the orthogonal projection of (Lz(Q) > &) onto the eigenspace
Eg,J.

Our goal is to prove that the functions which map ¢ € My 4 m to A{¢] € R and
to Pyj e L(CH (), Ci “(CIQ)) are real analytic around ¢, in the sense that they
admit a real analytic extension in a neighborhood of ¢. As a first step, we consider
the restriction pgy; of Py to Ej . and we note that the triple (¢, py;, Aj[¢]) is char-
acterized by a certain system of equations (cf. Theorem 3.6), that we recast in the
form of an abstract equation

Flg, p, 2] = 0. (3.5)

In order to analyze equation (3.5), we analyze the corresponding operator F in
Theorem 3.13. Now it may be natural to think of applying the Implicit Function
Theorem to equation (3.5) in order to deduce the regularity of the dependence of
(p, ») as a function of ¢. However, this cannot be done, because the linearized dp ) F
at the reference state (¢, 7, A,[¢]) is not onto the target space of F (cf. Theorem 3.13).
We circumvent this difficulty by introducing the projection IT onto the image of the
linearized operator dj,;)F[¢, I, ;[$]], and by considering the modified equation
ITo F[¢, p, A\] = 0, which obviously contains the zeros of equation (3.5). Then we
show that we can apply the Implicit Function Theorem to equation
[To Fl¢,p, A\] =0, and we obtain (p, A) as a certain functional of ¢ (cf. Theorem
3.34). In order to show that such implicitly defined functional coincides on My 4 j
with ¢i—(py ;, A{¢]), a fact which we state in our main Theorem 3.34, we need to
show that p, ; is continuous at q) for ¢ € My o jm (see Lemma 3.20 and Proposition
3.30) and, in order to deduce the regularity of the dependence of Py; upon ¢ from
the corresponding result for p, ;, we shall prove the technical Lemma 3.32. Finally,
in the last part of the section, we shall derive the Hadamard formulae for the deri-
vatives of A;[-] along a curve of deformations of ¢ on My 4 j -

We now introduce a system of equations involving (¢, py j A/[¢]) by means of the
following result.

THEOREM 3.6. Let k € N\ {0, 1}, j, m e N\ {0}, a €]0, 1[. Let @ be a bounded
open connected subset of R" of class C" “ Let ¢ € Mo jm. If ¢ € My ajm, then the
triple (¢, py.j, A1), where py; = Py jig; , and where Py ; denotes the orthogonal pro-
Jection of LZ(Q) onto Eg ;, satisfies the system

B¢ 0 Poy+ 1l9lpa; = 0 in £(Eg;, 0241 9),

) (3.7
< (I—p¢t,-)(a),p¢‘,-(b) >5= 0, V(a,b)e Edlj’

where I denotes the inclusion map of E, 7) in C" “*(cl2). Conversely, there exists an open

neighborhood V of (¢, I, ,[@]) in (CH(cl, RN A) x L(Ej,, C5*(cl)) x R such

that if (¢, p, )) € V and if

¢’

Agop+ip=0 in L( L Ck= 20‘(CIQ))

< (I = p)a), p(b) >5= 0, V(a,b)e E;j, 38

then P = P(b,j\f&/a A= )‘j[¢]7 ¢ € Mk,ot,j,m-
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Proof. The first part of the statement is obvious. We now prove the second part.
Since )L_,'[dS] has multiplicity m, we can assume that A,«[(f)] == )L_Hm_l[qS]. By the
continuous dependence of the eigenvalues upon ¢ (cf. Theorem 2.5), there exists an
open interval J containing )Lj[qg], and an open neighborhood W of ¢ such that
MlpleJ for h=j,....j+m—1, M[pl&J for he N\{0,/,...,j+m—1} and
¢ € W. A simple contradiction argument shows that there exists an open neighbor-
hood J of I such that if p € J, then p is injective. Accordingly dim p(Ej ;) = m, for
all p e J. Now, if (¢, p, 1) e W x J x J =V, and if equation (3.8) is satlsﬁed then
A is an eigenvalue whose corresponding eigenspace contains p(Ej ;), and thus A has
multiplicity at least m. Since A € J, ¢ € W, we must have A € {A [¢] o Agm—1101},
and thus the multlphmty of X\ is at most m. Then the mult1p11c1ty is m, equality
A= Ajlg] = i+m—1[¢] holds, and p(E )_ E4 ;. We still have to prove that p

01nc1des w1th the restriction to Ej ; of the orthogondl projection of L2(R2) onto Ejy .
Let D=E; NEy; Eg; =Q® D, with Q L D, and Eyj=D®Q, with D L Q. Let
the space H 'be such that LX) =(Q®D®Q)®H, with H L (Q ® D & Q), where
all direct sums have been tadi<en in L2(Q). We set P(G+ d+ g + h) = p(§ + d) + gq, for
all (q,d,q,h) € Q x D x Q x H. Now, we show that P is the orthogonal projection
of L%(Q) onto Ey ;. It clearly suffices to verify that

<U—=P)g+d+q+h),P(q+di+q+mh)>;=0, (3.9)

for all (q,d, q, h), (q1,d,, q1, ) € Q x D x Q x H. By the second equation of (3.8)
and by the orthogonality of / to Ey;, the left hand side of (3.9) equals

<G+d—p@i+d,q >4 (3.10)

We note that £, ; = p(E ) and accordingly, there exists w € Ej 6. such that ¢; = p(w).
Then the scalar product 1n (3.10) vanishes by the second equation of (3.8), and thus
we have proved that condition (3.9) holds. O

We now note that one can think of the set of the solutions of system (3.8) as the
set of zeros of a certain function F. We introduce and analyze the function F in
Theorem 3.13. To do so however, we need the following technical statement, whose
validity can be easily verified by Lemma 2.3, by the chain rule, and by standard
results of elliptic theory (cf. e.g. Necas [20, Theorem 3.1, p. 135], Gilbarg and
Trudinger [8, Theorem 6.19, p. 111 and Theorem 8.12, p. 186], Troianiello [23
Theorem 3.23, p. 189]).

THEOREM 3.11. Let k € N\ {0, 1}, j, m € N\ {0}, a €]0, 1[. Let 2 be a bounded
open connected subset of R" of class ke Let ¢ € Miojm. Then

{Aq;u + )»j[q’;]u fue C’g""(cl Q)} = {fe CF=22clQ) i< fiw >3=0, Vwe Eq;,j}.
(3.12)
We are now ready to prove the following result.

TaEOREM 3.13. Let k € N\ {0, 1}, j, m € N\ {0}, o €]0, 1[. Let Q2 be a bounded
open connected subset of R" of class C*. Let ¢ € Miajm. Let F be the map of
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(CH(cl, R") N A) x L(E,
defined by

Cyoel)) xR to  L(E C"Z“(CIQ))XB( ,R)

¢.j’ éJ

Flg.p. )= (850 p+2p. < (=P p() >5): (3.14)

for all (¢,p, 1) € (Ck %(cl2, R™) ﬂA) X L(E¢,, ch "‘(CIQ)) x R, where I denotes the

inclusion ofE in C “*(cl). Then the map F is real analytic. Let
Y= {Me L( 50 Ol sz)) (E@,.) is orthogonal 10 Ej, in L2(sz)}
Z={ul: neR}

Then YN Z={0} and the space (¥ ® Z)x B (Ejb/ R) is a closed subspace of
L(E;, C" —2e(clR)) x B(E2 R). The differential d, ) FI$, I, @] is a linear homeo-
morphzsm of L(Ej; Cy “(CIQ)) x Ronto (Y& 2) x B(E3 , R).

Let {uy, .. um} be an orthonormal basis for E wzth respect to the scalar product
of LZ(Q) Let T1y be the map ofﬁ( Ck 2 "‘(CIQ)) to Y ® Z defined by

(M) = M1 =Y < M1, dy > i+ < M), ity > 1. (3.15)
=1

where I is the inclusion of Ej ; into Ck=22(cI2). The map T1, is linear and continuous,
and restricts the identity on y ® Z.

Proof. To shorten our notation, we set A = A[¢], X; = C( £y ch “(clR)),
Xy = L(Ej,, C*29(clQ)), B= B(E2 R). The real analytlmty of Fis an 1mmed1dte
consequence of (3.3) and of Lemma i 7. Equality Y N Z = {0} is obvious. By simple
computations, it can be easily verified that IT; is linear and continuous and that
I1}ygz restricts the identity on Y @ Z. Then Y @ Z = Ker({ — I1;) and, accordingly,
Y @ Z is closed. By standard calculus and by (3.14), we have

dp P, 1,ANQ. 11) = (850 0 + 50 + ul, BIQY), ¥(Q. 1) € 11 x R,

where B[Q] is the element of B defined by B[Q](a,b) = — < Q(a), b >3 , for all
a,be Ej .. We now prove that d, ) Fl¢, I, A] is injective. Assume that there exist
0 € X1, n € R such that

AjoQ+AQ+ul=0 inX,, 516
—<Qa).b>5=0,  VabekEj, '
Then we have
Ay OW) +MOW) +pu=0, in <, (3.17)

for all u € E; ;. and thus, by Theorem 3.11, we obtain u = 0. Then, by equation

(3.17), we conclude that Q(u) € E;,, for all u € E; ., and thus, by the second

é.j° >
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equation of (3.16), we obtain < Q(u), Q(u) > >4=0, for all u e Ej .. Accordingly
Q =0, and thus d,, A)F[¢ I, A]is injective. We now show that dp ) Fle, 1, MY x R) =
(V@ 2) x B. If the pair (M, S) belongs to d,, A)F[db I, X)(X; x R), then the system

{A$0Q+AQ+M1=M in A, (3.18)

— < Q(a), b > 5= Sla, b), Va,be E; ;.
has at least one solution (Q,u)€ Xy x R. Then we have Az(Q(v))+ A0() =
M[v] — v, forall v € E;; and thus, by Theorem 3.11, we obtain

< Mlu;), vy >5= 0 < u;, U >4 Vis€ {1,...,m}. (3.19)

Now, we can write M[i;] as M[i;] = Y/, Oyt + vi, with 0 € R, v; € CF=29(cIQ) and
< v, U > 5= 0, for all s=1,...,m. By (3.19) and by our choice of uy, ..., &,, we
have 6; = u < u, u; > 5 Then we have M e )Y ® Z. Conversely, let (M,S) e
(Y@ 2) x B. Then M = M| + M,, with M| € Y, M, € Z. In particular, there exists
u € R such that M, = ul, and by our choice of #y, ..., u,,, and by the orthogonality
of the image of M, to Ej ;. we obtain (3.19) and thus by Theorem 3.11, there exist
@; € Ck “(cl2) such that A¢w, + A@; = M[i]] — piy; in Q, for all i=1,...,m. Now
we set w; = &; + Y o, agty, with ay € R, for all i,/ € {1,...,m}, and we determine
the coefficients a;; so that — < w;, #; >5= S(u;, uy), for all i,s €{l,..., m}. Clearly,
we can take ay = —S(u;, u))— < @;, Wy > 5 Now, let O be Ehe element of X; defined
by QOlu;] = w;. Then we must necessarily have d, ,Fl¢, I, \](Q, n) = (M, S). O

We now prove the continuity of the dependence of P,; at ¢ =¢, for
¢ € My jm by means of the following two statements.

LEmMA 3.20. Let k e N\ {0, 1}, j,m e N\ {0}, « €]0, [. Let 2 be a bounded
open connected subset of R" of class C. Let {¢;},cn be a sequence in M 4 Jm that
converges 1o ¢ € Micajim in Che(clQ, R"). Let u; € Ey j, <upup>5=1, foralll € N.
Then there exists a subsequence {u,},en of {wlien and u € Ej; such that
lim, s 1o, = u in C"""(CIQ), and < u,u >5= 1.

Proof. Since the map of C**(cl2, R") N A to C*~1(clQ, M,(R)) that takes ¢ to
(D)~ is real analytic, the same map is also bounded around ¢. Accordingly, there
exist a neighborhood W of ¢ and a constant ¢ > 0 such that

1 . . 177 2
— < min min Do) | &,
¢ xeclQ {&eR": |§|:1}‘ [( ¢) ] §

e 2 Y PR (3.21)
S 8[(D¢)71]is [(D¢)71] <c
Is ’
is,=1,...n ox; k20l )

for all ¢ € W. By standard elliptic estimates (cf. e.g. Troianiello [23, Theorem 3.28
(i), p. 194]), there exists a constant ¢; > 0 depending only on ¢, n, @, k, o, VW such
that

https://doi.org/10.1017/5S0017089502010157 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089502010157

38 P. D. LAMBERTI AND M. LANZA DE CRISTOFORIS
lull craero) < c1llAgullcireei gy, Yu € Clow(Cl Q), Vo e W. (3.22)

Since lim., ¢; = ¢, then by possibly neglecting a finite number of terms of the
sequence, we can assume that

lull k@) < cirdddllullceraeay V1€ N. (3.23)

By Theorem 2.5, the function A;[-] is continuous. Then there exists ¢, > 0 such that

¢y = sup Ajl¢] < +o0. (3.24)
leN

By Lemma 2.1, the space CA%(clQ2) is compactly imbedded in C*~2%(clR2), and
Ck=22(clQ) is imbedded in L>(2). Thus by Lion’s Lemma (cf. for example Berger [1,
p- 35]), there exists a constant ¢3 > 0, depending only on €, n, k, &, ¢;, ¢2, such that

1
llull ce2e(e1 ) < m lull crar ) + c3llull o), Yu € Ck’a(CI Q). (3.25)

Then by (3.23), (3.24), (3.25), we conclude that % il ke < creacsllugll 2y, for all
/ € N. Since | det Dg| is continuous and positive in cl2, we can assume that there
exists a constant ¢4 >0 such that 0 < ¢4 < min,qgq |det Dq§|. Since
[o u? det Dpldx = 1, we conclude that

el craqer) < 26102()3621/2, VI e N. (3.26)

Now let 8 €]0, of. By Lemma 2.1 (iv) there exists a subsequence {uy,},eny Of {u/}ens
and u € C*9(cl) such that lim,_, ;o 1, = u in C*P(cIQ). Since lim,_, 1o ¢ = ¢ in
Che(cl2) and lim,, 0 Al ] = Aj[q,’;] (cf. Theorem 2.5), we have Aju + )\j[qg]u =0in
Q. Thus u € Ej ;. Now, by (3.22), and by the membership of u; € Ey, ;, and of
ue E¢;,j, we have

llu, — ullcroEr gy < 1 { IAGu, — Ag, |l ce2ea @) + 1201 Jus, — Mlull -2 Q)}»
(3.27)

for all r € N. Since C*f(clQ) is continuously imbedded in C¥2¢(cIQ), we have
lim, 1o, = u in C*2%(clQ). By Theorem 2.5, we have lim,_, ;o0 Aj{¢h,] = A/[@].
Then we conclude that

rEI-POO Ajlr Jus, — Ml Plull ce2ec1 ) = 0. (3.28)

By inequality (3.26), the sequence {u},cn is bounded in C*(cI2). Then, by (3.3),
the triangle inequality, the continuity of the pointwise product in Ch*(clf), and the
convergence of {¢; },en to ¢ in CF¥(clR, R"), we conclude that

lim ||Ad;u1,_ = Ay g, | kel @) = 0. (3.29)

r—>-+400

By combining (3.27), (3.28), (3.29), we deduce that lim,_, ;o 1, = u in CF¥(clQ). [
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ProprosiTiON 3.30. Ler ke N\ {0,1}, j,m e N\ {0}, a €]0,1[. Let Q2 be a
bounded open connected subset of R" of class C**. Let ¢ € My o jm. Let Py be the
restriction to Ck *(clQ) of the orthogonal projection in Lz(Q) of L%(RQ) onto Ey;, for all
¢ € My jm Then the map of My g jm to L(Cy*(clS), c" “(clsz)‘g that takes ¢ to Py,
is continuous at qb

Proof. For all ¢ € My 4 jn, we fix an orthonormal basis {uy 1, ..., ugn} of Eg;in
the scalar product of Lé(Q). Clearly,

Pyl =) < ugy>5ups  Vue CoclQ). (3.31)

Then P,; € £L(Ch*(cIR), C*(cI2)). To prove the continuity of the map which takes
¢ to Py, it suffices to show that if a sequence {¢;},.n converges to ¢ in My 4 ; , then
there exists a subsequence {¢; },cn of {¢}cn such that {Py, ;},n converges to Pj; in
(C’” “(clR), C" "‘(le)) By the previous Lemma, there exist a subsequence {¢1, },EN,
and #y,..., U, € E ) such that lim,, o g, s = #, for all s e {1,...,m}. Clearly
{uy, ..., u,} is an orthonormal basis of E¢ and P [ 1=, <u iy > § ug, for all
ue Ck o‘(CIQ) Then by the equality (3 31) and by the limiting relation
hmHJroo ug, s =y, we can easily deduce that lim, . o Py ;= Pdlj in
L(CH(cl), C5* ().

We now prove the following technical statement, which we employ in the proof
of our main Theorem 3.34 in order to deduce the regularity of the dependence of Py ;
upon ¢ by the corresponding regularity result for p, ; upon ¢.

LeEmMA 3.32. Let m, k € N, @ €10, 1[. Let Q be a bounded open subset of[R” Lett
be a continuous function of cl2 to 10, +oo[. Let E be a subspace of CO “(cI2) of
dimension m. Let I be the inclusion map of E into Ck *(cl2). Then there exists an open
neighborhood U of I in the space [,( Ck “(CIQ)) and a real analytic map T, of U to

(Ck “(cl), Cl” “(CIQ)) which takes an operator T into the orthogonal projection
I[T] of C’” “(CIQ) onto T(E) with respect to the scalar product defined by

<u,v>= / wuvtdx, Vu,ve Cé""(cl Q). (3.33)
Q

Proof. We can clearly assume that m > 0. A simple contradiction argument
shows that there exists an open neighborhood U of I such that T is injective, for all
T € U. Since E has finite dimension m1, the dimension of T(E) is exactly m, for all
T € U. Let E be generated by {uy, ..., u,}. Clearly, for all T € U, the set {T(w), ...,
T(u,,)} is a basis for T(E), and the set of vectors {v|[T7], ..., v,[T]} defined by

T(uy)
n[T] = ’
T falTPrax}
ver1[T] = T(usi1) — Y1y Jq Tus)vi[ Tt dxv[T]

{Jal ) = L fo Tl Tl et T rax)
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foralls=1,...,m— 1, is an orthonormal basis for T(E), with respect to the scalar
product of (3.33). Since I':[T)(u) = Y, [ uvlTlrdxv/[T], and the functions v,[-],
with s = 1, ..., m are real analytic, we conclude that T';[-] is real analytic. O

We are now ready to prove our main result.

THEOREM 3.34. Let k € N\ {0, 1}, j,m € N\ {0}, @ €]0, 1. Let 2 be a bounded
open connected subset of R" of class C**. Let ¢ € My qjm. Let TI| be the map of
(3.15). Let T1 be the map ofL(E 5 Cck= 20‘(0152)) X B(Ei,, ) to (Y& 2)x B(E;/ R)

defined by TI(M, S) = (T(M), S), for all (M, S) € L(Ej;, C*22(cI)) x B(E2 | R).

Let F be the map of Theorem 3.13. Let Py be the restriction to Ck *(cl) of the
orthogonal projection ofL2 (Q) onto Eyj, for all ¢ € My g jm- Let py; be the restriction
of Py to Ej ;. Then there exzvl an open neighborhood W of ¢ in C*(cl2, R") N A, an
open neighborhood U of I in E( C]‘“(CIQ)) an open interval J of R containing

M@, a real analytic map )»w ofW to J, a real analytic map 1343,]‘ of W toU, a real
analytic map }A’d;‘/ of W to E(Cﬁ""(le), Cé‘“(CISZ)) such that }A’(l;_j[tp] is the orthogonal
projection of C&°(cI) onto the space p 5 10)(E;;) with respect to the product of Lj;(Q)
for all € W, and such that

(6.2 €W xUx J: TIFI, p. 2D = 0} = {6 b 1. g 8D : p e W], (339)

Rl =2lgl. Vo e WN Migym (3.36)
il =psj YO EWNMiajm (3.37)
Py lgl=Pyi. Yo EWN Miajm: (3.38)
dimp; [91(E;)) = dim Py [g)(CF(cl Q) =m,  VpeW. (339

Proof. By Theorem 3.13, we can apply the Implicit Function Theorem to equa-
tion ITo F= 0, around the point (@, 1, 2; [43]) and deduce the existence of W, U, J,
Mg s p¢j, as in (3.35). By possibly shrlnklng W and U, we can assume that I/ is con-
tained in the neighborhood U/ of Lemma 3.32, with 7 = |det Dg|. Then, by setting
P¢J[¢] =T, 4ot gy [Po[¢]] for all ¢ € W and, by invoking Theorem 2.5, Proposition
3.30 and Theorem 3.6, one can easily see that (3.36)—(3.39) hold. OJ

REMARK 3.40. Although (3.36)—(3.39) hold, we do not expect, in general, that
for ¢ € W\ My o jm the value A [¢] of the function A [] coincides with A;[¢], and
that the space p; [#](Ej) is the elgenspdce Ey .

REMARK 3.41. If m=1, ¢ ¢ M.qj1 then, by the continuity of Aj[-] around b,
one easily deduces that ¢ is interior to Mo j1- By the previous Theorem Ajl¢] and
Py ; are real analytic in ¢, for ¢ in a neighborhood of é. In particular, a sultably
normalized eigenvector generating Ey; depends real analytically upon ¢ in a neigh-
borhood of ¢. Such an analyticity result is well known (cf. Henry [9, §3.2].)

We now show that Theorem 3.34 allows us, in particular, to prove the Hada-

mard formulae for the derivatives of the function A,[-] along a curve y(-) of deform-
ations of ¢ on M ajm- (See also Henry [9, §4.1] and Desaint and Zolésio [6].) To do
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so, we introduce the following technical Lemma, whose proof exploits a computa-
tion of Micheletti [18, pp. 161-163].

LemMMA 3.42. Let k€ N\ {0, 1}, j,m € N\ {0}, « €]0, 1[. Let Q2 be a bounded
open connected subset of R" of class CF®. Let ¢ € Miajm. Then, for all
ue C]‘ *(cl), the differential 3, ¢(A¢u) of the map of CF(CIQ,RHNA to
ck=2 0‘(CIQ) that takes ¢ to Ayu at ¢ = ¢ is delivered by the map

2o FV) oy 0 )] -
Yi— — 2Z|:8 gy;;/ (stay? ):|O¢+

o ¢=M) . .
—2[ "o (wsow-”)}ocp,

(3.43)

Sor all = Y, ..., ¥,) € CFcIQ, R"). Furthermore, if uy, us are two elements of

qu,j’ then
3111 3\)2
| oy 5(Bgun) (s | det DP| dx = ( )Z(ur V) (3.44)
BQ)
where = (1, ..., ) =vod D, vi=uo é("j, for i=1,2 and where
v=(vy,...,V,) denotes the unit exterior normal to dp(2).

Proof. Formula (3.43) can be derived by standard calculus in normed space. To
prove formula (3.44), we note that by exploiting formula (3.43), by changing the
variable in the integrals with the function y = ¢(x), and by integrating by parts, we
obtain

f3¢\¢=¢(A¢M1)(¢)uzldet0<}3| dx=— [ (Av)wdivudy
Q ()

& vy v 9 A, \ vy dv
—Z[ 22 div udy+2/ (“S “)—1—2d
= Jaw ay, 0y o\, dys) 3y, Ay

Since v; and v, are eigenvectors of —A in ¢(2) relative to the eigenvalue )»j[¢~>], the
previous expression equals

(3.45)

auy O, \ 0vy vy
—= A(viv))div wdy + / ( )——d 3.46
/ (A0, Y Z a2 \yr Ay, Ays (3.46)

Now, by exploiting the computations of Micheletti [18, pp. 161-163], one obtains
that the expression in (3.46) equals the right-hand side of (3.44). O

We are now ready to compute the derivative of A;[-] along y(-) by using a stan-
dard argument.
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TaeEOREM 3.47. Let k€ N\ {0, 1}, j,m e N\ {0}, « €]0,1[, § > 0. Let Q2 be a
bounded open connected subset of R" of class Ck’“.NLel ¢ be an element of My 4 ;. Let

Y=o v) € C (=8, 8], Miajm), v(0)=¢. Let uce E;, be such that
<u,u>z=1. Then ‘

d / " - <8v>2

— Ay = — (0) o @' )vr — | do, 3.48

dipeo OV =7 [ 2 @0 (G0 (3.48)
where v=(vy,...,v,) denotes the exterior unit normal to (), and where

V=1uo ¢~>(_1).

Proof. By possibly considering a restriction of y, we can assume that y(7)
belongs to the neighborhood W of ¢ of Theorem 3.34, for all 1 € [—8, §]. To shorten
our notation, we set A(f) = Aj[y(?)], p(¥) E[’J\&’j[)/(l‘)], and we denote by a dot the
differentiation with respect to . Then we have A,y op(f)+A(#)p(t) =0 in
L(E;,, Ck=22(clQ)), for all 1 € [—38, 8]. By differentiating with respect to ¢, by setting
¢ =0, and by computing both sides of the resulting equation at v € Ej » we obtain

AFPOD) + A OGO = — (315 Ag)[7(O)]) = (O

Thus, by Theorem 3.11 and by formula (3.44), we deduce the validity of formula
(3.48). ]
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