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Abstract 

This study presents a search method for a solution space that aligns with a designer’s design intent. The 

proposed method uses multiobjective optimization to determine the size of the narrowed solution space and 

the weakness of the constraint relationships between the design variables. The suitability of the proposed 

method is tested by applying it to the design problem of an electric motor for an EV, aiming to provide 

designers with solution spaces that offer a high degree of freedom in the later design stages and that have 

weaker constraint relationships among the design variables. 

Keywords: decision making, visualisation, simulation-based design, set-based design,  
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1. Introduction 
Customer needs for products have become more sophisticated and diverse in recent years, with the 

environmental and resource constraints associated with the SDGs being markedly radicalized. As the 

customer needs for products increase and constraints become stricter, product development becomes 

more complex. Concern has also been raised regarding the increasing amount of design rework, which 

contributes to issues such as higher costs and longer design times. This highlights the need to develop a 

method that supports designers’ decision making and reduces design rework in the early design stages 

when various uncertainties including aleatory uncertainty, epistemic uncertainty, uncertainty in the 

decision of other designers, changes in environmental conditions, and numerical uncertainty (Inoue et 

al., 2013). 

1.1. Set-based design 

Many studies have proposed set-based design methods (Sobek and Liker, 1996; Sobek and Liker, 1999; 

Ward and Cristiano, 1995) to support decision making in the early design stages. This method considers 

preceding uncertain design information as ranges to derive common sets that simultaneously satisfy 

multiobjective performance, suggesting its ability to determine range solutions while handling 

uncertainty in the early design stages. In addition, the preference set-based design (PSD) method (Inoue 

et al., 2010; Inoue et al., 2013) was proposed to support the designer’s design intent in the early design 

stage by implementing the concept of the set-based design method. The PSD derives range solutions 

that satisfy the designer’s design intent by defining preference function for the design variables and 

required performance criteria to deal with the abovementioned uncertainties, especially epistemic 

uncertainty. Despite this method’s presumption of independent relationships between design variables, 
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actual product design may involve constraint relationships that limit the levels of design variables 

relative to one another. Furthermore, an appropriate order for determining the design variable levels 

must be defined because they cannot be decided concurrently owing to the constraint relationships 

among the design variables. The inappropriateness of the order reduces the degrees of freedom in the 

design and eliminates range solutions, resulting in design rework. 

1.2. Constraint relationships and design-priority order 

Kuroyanagi (2021) determined the ranges of required performance by defining their desirability as 

preference functions and expressed the constraint relationships among design variables under the 

limiting conditions of the required performance as a network. They also derived a design-priority order 

that maximizes the degrees of freedom in later design stages by analysing the constraint relationships 

among the design variables. This method allowed for the definition of a decision order for the values of 

the design variables while considering the constraint relationships between them. Notably, narrowing 

the range values of design variables as a design solution space while considering the constraint 

relationships among the design variables is imperative; however, conventional methods have rarely 

addressed this, and the development of the method remains unmet. Therefore, establishment of a 

technique to reduce the range values of the design variables as a solution space by following the 

constraint relationships among the design variables is desired. 

1.3. Research aims 

This study presents a method for searching for a solution space that aligns with the designer’s design 

intention by connecting the narrowing method based on set-based design with the constraint analysis. 

To illustrate the constraint relationships among design variables, a network visually expresses them 

corresponding to design variable levels was established. Moreover, two-objective optimization 

regarding the size of the narrowed solution space and the weakness of the constraint relationships was 

implemented according to design-priority order. This realizes the effective narrowing dealt with the 

uncertainties and the design rework by exploring larger solution spaces with weaker constraints. 

Additionally, the proposed method visualizes the networks in a narrowed solution space that reflects the 

designer’s intention and guides the designer’s decision making when narrowing the range values of 

design variables in the early design stages. 

2. Proposed method 
This section describes the overall process of the proposed method for narrowing the range values of the 

design variables. Figure 1 shows the process flow, with the details of each process provided in each 

section. 

2.1. Derivation of the design solution space 

Similar to Kuroyanagi’s (2021) approach, this study used simulation and metamodeling to generate 

comprehensive design solutions to analyze the entire design space. The product’s components and 

elements that characterize the units were interpreted as design variables, and parameters representing 

the product’s performance were considered as objective variables. For the simulation, a physical 

simulation was employed, and when the number of variables increased and the computation became 

extremely slow, metamodeling was used. The goal of metamodeling is to replicate a more detailed 

design space via an approximation. This reduces the time and financial expenses by enabling the 

acquisition of adequate design solutions with a minimal number of trials. The combinations of design 

variable levels satisfying all performance constraints are defined as design solutions. The design solution 

space is the result of integrating all design solutions. In this study, design solutions were extracted from 

the output results of the simulation and metamodeling. 
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Figure 1. Process flow of the proposed method 

2.2. Dividing in the design variable plane 

This study focuses on a specific two-design-variable plane of the target design solution space, aiming 

to quantitatively narrow down the range of values of the design variables for each axis of the planes 

according to the designer’s design intent. For the two selected variables, the plane area was partitioned 

by binning it into an arbitrary number of divisions. This number was determined based on the number 

of design variable levels. It was derived using the determination method for the class width of histograms 

to prevent the amount of data in the divided spaces from being excessively small when the design 

variables do not take levels. For example, when a system has 4 design variables and they have 5 levels 

respectively, 12 planes are derived from 𝐶4
 

2, and each of them is partitioned into 25 sections. In this 

study, the divisions in a plane and data points in the partitioned areas were defined as divided spaces. 

2.3. Evaluation of the divided space 

Because this study’s inputs were the simulation results from the initial design stage, the design variable 

levels may change in the later stages. Hence, the relationships among the design variables are suitable 

for evaluating the divided space criteria owing to their insignificant fluctuations, regardless of the design 

stage. Therefore, the constraint relationships between the design variables in the design solution of each 

divided space were expressed as a network, and the relationship between two specific design variables 

in the spaces was evaluated using the bivariate distribution concentration described in Section 2.3.1. In 

addition, the performance achieved by the design variables in the divided spaces was visualized using 

radar charts. 

2.3.1. Evaluation index 

In this study, the bivariate distribution concentration developed by Kuroyanagi (2021) was used to 

evaluate divided space. This index signifies the degree to which the available levels of the two-design 

variables are restricted to satisfy all the constraints given to the objective variables and is calculated 

using Equation (1). "Con" is the symbol of concentration. A high bivariate distribution concentration 

indicates a strict constraint relationship between the design variables. The essential indicator of the 

index, the constraint satisfaction rate, is calculated using Equation (2). 

𝐶𝑜𝑛(R)𝛼,𝛽  =  
∑ ∑ (𝑚𝑎𝑥(S(α,β)𝑛,𝑚)−S(α,β)𝑛,𝑚)𝑀

𝑚=1
𝑁
𝑛=1

𝑁𝑀−1
 (1) 
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S(α, β)𝑛,𝑚 =  
n({p ∈ P(R)|p𝛼  =  α𝑛 ∧ p𝛽  =  β𝑚})

n(P(−))/NM
 (2), 

where 𝑁 and M denote the number of levels of design variables α and β for a given set of constraints R, 

and S(α, β)𝑛,𝑚 means the constraint satisfaction rate when the design variable levels α and β are n and 

m. P (-) and P(𝑅) respectively imply all simulated sample points and the set of sample points satisfying 

the constraint R, and p𝛼 and p𝛽 are the level values of the design variables α and β at the sample points. 

2.3.2. Constraint network 

The indexes in Section 2.3.1 are visualized as a constraint network. Figure 2 shows that the constraint 

network comprises design variable 𝑥1，𝑥2 and 𝑥3 at each node, for which their size expresses the range 

value of the design solution in the divided space. The color of the nodes and the thickness of the edges 

individually represent the univariate distribution concentration, indicating the degree of concentration 

of the potential design variable levels and the bivariate distribution concentration. The visualized 

constraint network provides characteristics of the design solution space. For example, the larger the 

node, the wider the range of available design solutions; the darker the color of the node, the more 

concentrated the design solution is at particular design variable levels; and the thicker the edge, the 

stronger the constraint relationships between the design variables. 

 
Figure 2. Constraint network 

2.3.3. Drawing of the constraint networks and performance radar charts 

By drawing constraint networks and performance radar charts for each divided space, designers are 

guided to narrow down the range values of the design variables. The visualized graphs are placed on the 

design variable planes mentioned at the beginning of the process, and the axes of the planes are the 

selected design variables. Constraint networks and performance radar charts were constructed for each 

area of the corresponding divided space. 

2.4. Determining the planes and order for narrowing the solution space 

The number of drawn planes is 𝐶𝑛
 

2 in total when the number of design variables is n. However, if all 

planes are employed to narrow the range values of the design variables, they are repeatedly filtered and 

excessively narrowed. Therefore, the planes to be referred to and their orders should be settled. 

In the method of Kuroyanagi (2021), 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝛼→𝛽, the constraint force, which signifies the degree 

of restriction for the available levels of design variable β when design variable α takes a certain level, is 

derived using Equation (3). Moreover, 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝛼→𝛽, the relationships of priority, which implies that 

the design variable α should be prioritized over the design variable β, is calculated using Equation (4) 

with the forward and reverse constraint forces. 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝛼→𝛽  =  
∑ ∑ (max (𝑆(𝛼𝑛)𝑚)−𝑆(𝛼𝑛)𝑚)𝑀

𝑚
𝑁
𝑛

𝑁(𝑀−1)
 (3) 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝛼→𝛽  =  
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝛽→𝛼

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝛼→𝛽
 (4) 

The matrix of design–priority relationships is considered a parameter design structure matrix (DSM) 

(Browning, 2001), which is rearranged using the partitioning method, where the order of the row labels 

is the design order based on the priority relationships. The planes of two adjacent design variables in the 
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row labels of the DSM derived using this method are the planes to be utilized in the narrowing and 

referred based on the design–priority order. 

2.5.  Derivation of larger solution spaces with weaker constraints by two-
objective optimization 

By performing a two-objective optimization of the size of the narrowed solution space and the weakness 

of the constraint relationships between the design variables for each selected plane in the order 

determined based on the DSM of the design–priority relationships, the multiple optimized solution 

spaces are plotted on the Pareto frontier. This enables the selection of a large solution space with weak 

constraint relationships between the design variables. 

2.5.1. Size of the narrowed solution space and weakness of constraint relationships 
between design variables 

A wide range of values for each design variable realizes a high degree of design freedom in the later 

stages of the process, which enhances the attainability to deal with design changes and adjustments 

between different departments as the design process progresses. In this study, the area of the narrowed 

solution space on the two-design variable plane is calculated as the size of the solution space for which 

each design variable is refined. Designers can keep the design margins wide until the later stages of the 

process by exploring the narrowed solution space has large area. The average value derived by dividing 

the sum of the bivariate distribution concentrations of each constraint network by the size of the 

narrowed solution space is referred to as the weakness of the constraint relationships between the design 

variables in the solution space. 

Figure 3 shows a conceptual diagram of the size of the narrowed solution space and the weakness of the 

constraint relationships between the design variables in this study. The graph describes how the design 

variables 𝑥1 and 𝑥2 are narrowed down to 1 and 2 levels, and 2 and 3 levels, respectively. The reason 

for narrowing the shape of a rectangle is to realize a state in which the number of solutions does not 

differ among any design variable level because the entire solution space takes the shape of a hyper-

rectangle. 

According to the third level of the design variable 𝑥1 in Figure 3, all the constraint networks have thick 

network edges; that is, the values of the bivariate distribution concentration are high. In other words, 

these solutions are undesirable for designers because they have strict constraint relationships between 

the design variables. However, the wider the narrowed solution space, the more design solutions with 

strong constraint relationships among the design variables that may be included in the solution space. 

Consequently, the size of the narrowed solution space and weakness of the constraint relationships 

between the design variables have a trade-off relationship. Therefore, optimization for both and Pareto 

analysis were conducted to search for solution spaces that reflect the designer'’s design intent. 

2.5.2. Search for a narrowing pattern that simultaneously satisfies the wide design space 
and the weak constraints among design variables 

Two-objective optimization was performed to maximize the narrowed solution space area and minimize 

the average value of the sum of the bivariate distribution concentrations within the solution space. In 

this study, NSGA-II (Deb et al., 2002), a multiobjective genetic algorithm, was utilized to perform two-

objective optimization for each of the two-design-variable planes based on the design–priority order 

derived in Section 2.4. This leads to a search for narrowed large solution spaces: the range values of 

each design variable are wide, and the constraint relationships between the design variables are weak 

simultaneously. 

Regarding the optimization of the second and subsequent planes in order, optimization was conducted 

by reflecting the results of the narrowing of the planes that have been previously optimized. In other 

words, the information on the design variables that were already narrowed down was transferred to 

narrow the range values of the design variables in the subsequent planes. 

https://doi.org/10.1017/pds.2024.79 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.79


 
770  DESIGN METHODS AND TOOLS 

 
Figure 3. Conceptual diagram of the refinement of the range values of design variables in the 2-

design variable plane (green: solution space after refinement) 

2.6. Selection of the narrowed solution space 

The solution spaces for which the size of the narrowed solution space and the weakness of the constraint 

relationships between the design variables are optimized are shown in the Pareto charts generated by 

the two-objective optimization described in Section 2.5. The designer selects a solution space based on 

the design intent. For instance, selecting a narrowed solution space with a large area on the Pareto 

frontier is desirable if increasing the degrees of freedom in the later stages of the design process is the 

primary aim. However, a solution space with weak constraint relationships between design variables, 

that is, a solution space with a smaller average value of the sum of bivariate distribution concentrations 

on the Pareto frontier, should be selected when the attainability of design, such as less design rework, is 

prioritized. The methods in Sections 2.5 and 2.6 are applied once to every plane determined in Section 

2.4 to narrow the range of values of all design variables. 

3. Application example: Application to a functional model of an 
electric motor for an EV 

In this study, a functional model of an electric motor for an EV was chosen to illustrate the effectiveness 

of the proposed method. Table 1 presents the parameters of the applied functional model. The data for 

this model were normalized after extracting the design solution space to satisfy the constraints. 

3.1. Two-design variable planes are divided 

As an example, the case of dividing on the plane comprising the determined reduction ratio and the 

battery voltage was examined. The battery voltage was divided by the number of levels, because it was 

the design variable that took levels. However, as the determined reduction ratio lacked stationary levels, 

it was divided by 10 in this application example to arrange each divided space, including approximately 

100 samples. Figure 4 shows that every divided space has a design solution for the determined reduction 

ratio and battery voltage plane when it is divided. 

3.2. Evaluation of each divided space 

Constraint networks and performance radar charts were calculated for each of the divided spaces. Figure 

4(a) illustrates the constraint networks and Figure 4(b) shows the performance radar charts for each 

divided space on the determined reduction ratio and battery voltage plane. Designers can comprehend 

the design solutions contained within the narrowed solution space with these graphs when they narrow 
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the range values of the design variables. In addition, the graphs provide approximate design 

characteristics to designers by visualizing the constraint relationships between the design variables and 

performance trends. 

Table 1. Number of levels of target and design variable 

Type of variables Name of variables Unit Levels 

Design variables  M.G. stator O.D.  mm  7 

 M.G. loading thickness  mm  9 

 M.G. turns  -  5 

 Battery voltage  V  11 

 Determined reduction ratio  -  Not leveling 

Objective variables  System max. output  kW  Larger-is-better 

 Axle shaft max. torque  Nm  Larger-is-better 

 Combined electricity consumption  kWh/100km  Smaller-is-better 

 Capacity requirement  kWh  Smaller-is-better 

 Battery volume  L  Smaller-is-better 

 Power unit volume  L  Smaller-is-better 

 
Figure 4. (a) Constraint networks; (b) Performance radar charts for each divided space on the 

determined reduction ratio–battery voltage plane 

3.3. Determination of the two-design variable planes and order for narrowing 

In this application example, a total of 10 planes were drawn because there were five design variables. 

The planes used for narrowing down the range values of the design variables were selected, and the 

order of the planes was derived based on the design–priority order described in Section 2.4. Table 2 

presents the DSM showing the design–priority order in this examination. The numbers in the matrix are 

the values of the design–priority relationships calculated using Equation (4). 

From Table 2, the design–priority order in this examination is the order of the row labels, and the 

determined reduction ratio–M.G. stator O.D., M.G. stator O.D.–M.G. turns, M.G. turns–battery voltage, 

and battery voltage–M.G. loading thickness planes, shown in bold, are referenced to narrow down the 

range values of the design variables. 
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Table 2. DSM of design–priority relationships sorted by the partitioning method 

 Determined 

reduction ratio 

M.G. stator 

O.D. (mm) 

M.G. turns  Battery 

voltage (V) 

M.G. loading 

thickness 

(mm) 

Determined 

reduction ratio 

1 1.18 4.50 5.83 2.40 

M.G. stator O.D. 

(mm) 

0.849 1 1.19 1.38 1.69 

M.G. turns 0.222 0.837 1 1.17 1.87 

 Battery voltage (V) 0.172 0.735 0.854 1 1.55 

M.G. loading 

thickness (mm) 

0.417 0.590 0.534 0.645 1 

3.4. Two-objective optimization results based on the narrowed solution space's 
size and weakness of constraint relationships between design variables 

For the selected planes, optimization was performed with the two objectives of maximizing the size of 

the narrowed solution space and minimizing the average value of the sum of bivariate distribution 

concentrations in the space. Figure 5 shows a Pareto chart of the battery voltage and the M.G. loading 

thickness plane. Each point on the Pareto frontier corresponds to a narrow solution space. Designers can 

select a solution space based on their design intent. In this examination, the largest solution space was 

selected, assuming that the highest priority was to increase the degrees of freedom in the later stages of 

the design process. 

 
Figure 5. Pareto frontier on the battery voltage–M.G. loading thickness plane 

3.5. Results of narrowing the solution spaces 

Figure 6 shows the results of the two-objective optimization and selection of narrowed solution spaces 

for all four planes from the determined reduction ratio–M.G. stator O.D. plane to the battery voltage–

M.G. loading thickness plane. 

As Figure 6(a) illustrates, the determined reduction ratio and M.G. stator O.D. are finally narrowed 

down to less than half of their original levels, from 10 to 3 levels and from 7 to 3 levels, respectively, 

owing to the influence of strict performance constraints. However, in Figures 6(b), (c), and (d), which 

indicate the slight impact of performance constraints, the design variables that were narrowed down in 

the plane, M.G. turns, battery voltage, and M.G. loading thickness, are eventually narrowed down from 

5 to 4 levels, 11 to 7 levels, and 8 to 7 levels, respectively, remaining more than half of the originally 
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existing levels. Moreover, designers can avoid selecting a design solution with a high probability of 

design rework because the design solutions with extremely strong constraint relationships between the 

design variables are eliminated by two-objective optimization. 

 
Figure 6. Narrowing results for range values of all design variables: (a) the first plane, (b) the 

second plane, (c) the third plane, (d) the fourth plane 

4. Conclusion 
This study proposed a method for searching for a solution space for the design variables in accordance 

with the designer’s design intention in the early stages of the design process. It utilizes a two-objective 

optimization to maximize the size of the narrowed solution space and minimize the strength of the 

constraint relationships between the design variables on specific two-design-variable planes on which 

constraint networks and performance radar charts are drawn. This method enables designers to narrow 

down the range of values of design variables from the viewpoint of controlling design rework and 

securing design freedom for the latter stage of the process, considering the constraint relationships 

among design variables. 

While the proposed method narrows down the range values of design variables to search for a solution 

space with weaker constraint relationships and a higher degree of freedom in the later stages of design, 

the selected solution space remains unevaluated, relying solely on the designers’ judgment. This 

necessitates further research to develop a quantitative evaluation method for a narrowed solution space. 
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