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ON THE CENTRAL IDEAL CLASS GROUP
OF CYCLOTOMIC FIELDS

SUSUMU SHIRAI

Introduction

Let @ be the rational number field, K/@ be a finite Galois extension
with the Galois group G, and let C; be the ideal class group of K in the
wider sense. We consider C; as a G-module. Denote by I the augmen-
tation ideal of the group ring of G over the ring of rational integers.
Then C/I(Cy) is called the central ideal class group of K, which is the
maximal factor group of Cr on which G acts trivially. A. Frohlich [3, 4]
rationally determined the central ideal class group of a complete” Abelian
field over @ whose degree is some power of a prime. The proof is based
on Theorems 3 and 4 of Frohlich [2]. D. Garbanati [6] recently gave an
algorithm which will produce the /-invariants of the central ideal class
group of an Abelian extension over @ for each prime / dividing its order.

In the present paper we determine the central ideal class group of
a cyclotomic field over @ in terms of generators and relations by refining
upon the methods used in [3, 4] (§ 3, Theorem 5). The proof is based on
Theorem 32 of our preceding paper [10], which is a generalization of
Frohlich [2, Theorem 3] to the case of a cyclotomic field over Q.

Notation

Throughout this paper the following notation will be used.

Q the field of rational numbers as in Introduction.
zZ the ring of rational integers on which a finite group acts triv-
jally.

Received August 4, 1978.

1) Cf. Frohlich [3, p. 212] and [4, pp. 73-77]. When [K: Q] = /4=, this implies that
K¥ =K or K* = K according as ¢ =2, K real or otherwise, where K is the maximal
real, unramified, Abelian 2-extension of K which is still Abelian over @, and K* is the
maximal, unramified, Abelian ¢-extension of K which is still Abelian over Q.
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Z, the cyclic group of order n.

(A the subgroup generated by A when A is a subset in a group.

(a, b) the commutator aba='b"' of ¢ and b when a, b are elements in
a group.

(A, B the subgroup generated by the commutators (a, b) of all aec A,
be B when A, B are subsets in a group.

A X B the direct product of A by B when A, B are groups.

G(K|[k) the Galois group of K over k.

( ,K/k) the norm residue symbol for K/k when K|k is a local Abelian
extension.

( , K ) the norm residue symbol for K when K is a finite Abelian ex-

p tension over Q.

Cx/I(Cr) the central ideal class group of K defined in Introduction when

K is a finite Galois extension over Q.

¥(m) the Euler’s function, i.e. the number of positive integers not
exceeding n which are relatively prime to n.
(m, n) the G.C. D. of m and n when m, n are rational integers.

Moreover we will use the results and notation of the preceding paper [10].

§1. The Schur multiplicator of a finite Abelian group

The structure of the Schur multiplicator H %G, Z) of a finite Abelian
group G is well-known (cf. [7],[8],[9]). In this section we describe
H%G, Z) in terms of generators and relations.

Lemma 1. IfG=2Z, X -+ X Z,, then
| H=G, Z)l = _I] (n,ny).
1gi<jsr

Proof. We proceed by induction on r. For any Abelian group A, and
any integer q, we denote by A(g) the subgroup comprising all those ele-
ments ¢ of A such that ¢? = 1. Then it follows from R. C. Lyndon [7,
Lemma 8.2] that

H¥G, Z) = H¥G, Z)
= Ha(znn Z) Xo n Hk(zm X - X an—v Z)(nr)
<k<3

X Ha(Zm X oo X an-—n Z)
E (an X Tt X an"l)(nr) >< Ha(an X e X Zﬂr—l’ Z) s

because HY(G, Z) = 1 and H*G, Z) = G for any finite Abelian group G.
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Thus by induction hypothesis,
IH_S(Ga Z)I = . —l(ni’ n’j)'(nh nr) te (nr—l) nr)

1=si<j=sr
i<

IA
IA

H (ni7 nj) . Q.E.D.

1Si<jsr

Lemma 2. Let G=Z, X --- X Z,,, and let
f

1—>R,20)—> 2 >G—>1

be an exact sequence in which £ is a finite nilpotent group of class two
such that (2,92) = H %G, Z). Denote by o, an element of 2 such that
f(®;) is a generator of Z,(CG) for i =1, ---,r. Then (2, 2) is generated by

(;) elements
(wi’w1)9 1§"<J§r’
and completely determined by the relations

{(wi’ wj)(wlu wl) = (wk’ wl)(wi’ wj) ’ all i’ j9 k9 l ’
(0 0)"0" =1, 1si<j=sr.

(1)

Proof. Since 2 is of class two, it is obvious that the elements (v;, ,),
1 <i<j< r generate (2, 2), and satisfy the above relations (1). Further-
more the order of (2, 2) is [[ici<j<r (s, n;) by Lemma 1. Conversely the

group which is generated by (g) elements and satisfies the above rela-
tions (1) is an Abelian group of order [[ici<;<r (7, n;). Hence (2, 2) is

completely described by the relations (1). Q.E.D.

§2. Inertia groups

Let p be a rational prime, @, be the p-adic number field, 7/Q, be a
finite unramified extension, { be a primitive p’th root of unity, and let
K = T(). Denote by K a central extension of K|/Q, such that the p-
exponent p(K/Qp) of the Galois conductor” of I%/Q,, does not exceed v.

LEmmA 3. Let p = 2, and let
0=(2,K/Q)", *=(-1LKQ), =(5 KQ).
Denote by 6,%*, and % any extensions of o,7*, and t to K, respectively.

2) See [10, §1].
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Then the inertia group of Iz'/K is generated by the elements (z, t%), (%, 6),
#*, 9).

Proof. Let F be the inertia field of K/K, and let D be the fixed field
of {(, %), (%, 6), (¥*%, 6)). Since G(I%/Qz) is of class two and {g, #*, %} is a
system of generators of G(K/Qz), the commutator group of G(K/Qz) is
generated by the elements (%, %), (%, 6), (%, §). Thus D/Q, is the maximal
Abelian extension contained in K. Hence D DO F, because F/Q, is an
Abelian extension.

To prove the converse let 7 be the inertia field of D/Q,. Since
wD,) < y(K/Qz) < v by [10, Lemma 3], it follows from local class field
theory that G(D/T”) is a homomorphic image of the group of prime resi-
due classes mod 2*. We have [D: T'] < ¥(2") = 2!, and hence D = T'K,
because of "N K = T,[T'K: T'] = [K: T] = 2. We conclude that D/K
is unramified, which implies F D D. Q.E.D.

By the same procedure as the proof of Lemma 3, we obtain

LEMMA 4. Let p # 2, g be a primitive root mod p*, and let

o= (p, K/Qp)—l ’ t=(g, K/QP) .

Denote by ¢ and * any extensions of ¢ and t to, K, respectively. Then
the inertia group of K/K is generated by the single element (%, d).

§3. The central ideal class group of cyclotomic fields

Let m = 2'py - - - pr be a positive integer, K be the m-th cyclotomic
field over @, and let K be the central class field mod mp., in the sense
of [10, § 8], where p., is the real prime divisor of @. Then K is a central
extension of K/@, and hence it is a nilpotency class two extension over
€. Moreover it follows from the definition of the central class field mod m
that any rational prime not contained in mp. is unramified in K. We
have already proved in [10, Theorem 32] that if (m, 16) # 8, then

(2) (G(R/Q), GK|Q)) = GEK) = HY(G(K/Q), Z) .
For use of this result we distinguish the following three cases:
(@ v=0, ®) v=2, ) v=4.

In the present paper we will prove our main Theorem for (a) and state
the corresponding results for (b) and (c).
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Assume v = 0. Let g, be a primitive root mod p, and let

-1
0'1=(—pﬁ—’£> , z'i=<M)’ i:]_,...,r.
D; Dy

Since G(K/Q) is isomorphic to the group of prime residue classes mod m,
GK|Q) = Zypyy X -+ + X Zypy, and {zy, -+, 7,} is a system of generators
of G(K/Q). For each i, we choose elements ¢, and #, in the decomposi-
tion group of a prime factor P, of p; in K', which under the natural
homomorphism of G(K/Q) onto G(K/Q) are mapped onto ¢; and z,, respec-
tively. Since G(K’/K) is contained in the center of G(K/Q), the inertia
group of B, over K does not depend on the choice of 5, over p, and it
is generated by the element (#;, §,), as we can see by Lemma 4.

According to Lemma 2 and (2), G(K/K) is generated by (;) elements

(%i’fj)1 1§i<.’§r9
and completely determined by the relations

(%'l, %j)(%k’ %l) = (flu izl)(%i, %J) ’ all i’ j3 k9 ls
(‘Z'ta .Z.j)<w<p‘;i),~i/<p;i)) =1, 1< i <] <r.

Let C; be the ideal class group® of K, and let U be the Abelian
extension of K corresponding to I(Cy) in the sense of class field theory.
Then U is the maximal central extension of K/ which is unramified over
K, and is contained in K as we can see by going back to the definition
of the central class field mod m. We conclude that U is the subfield of
K corresponding to {(#,6y), -+, (#,6,)) in the sense of Galois theory.

Hence
Cx/I(Cx) = G(UIK) = GEKIK)[{(21, 3), -+, (21, 3,)) -
We next express (#,4;) in terms of %, --.,#,. Define the symbols®

U, i, [0, i, [0, i] by putting

p. = g5 mod ps i=0,1,---,r,j=1,---,71,
(3) p; = (=150 mod 2¢, i=1---,r,
il =0, Pm 1,y
3) In this case the ideal class groups in the narrow and the wider sense coincide,

because no real prime divisor exists in K.
4) Cf. Fréhlich [2, pp. 237-238].
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where p, = 2, namely, [j, i] is the index of p, for the modulus p}/ relative
to the primitive root g;, and [0, i]*, [0,7] are the indices of p, for the
modulus 2’ relative to the basis {—1,5}. Then we have

o'i=ﬁr5-j’“ fori=1,---,r,

Jj=1

because of [] (M) =1, the product formula in class field theory.
D

allp

Therefore

because G(K/K) is contained in the center of G(K/Q) and G(K/Q) is of
class two. Thus® we have proved the following main

THEOREM 5. Let m = 2'pir - - - pir be a positive integer, K be the m-th
cyclotomic field over Q, and let Ci/I(Cy) be the central ideal class group
of K. Then:

(8 v=0. CK/I(CK) is generated by (g) elements x,;, 1<i<j<r,
and completely determined by the relations

X35k = XpiXeg s all i,j,k, 1,
,

ﬂlx%ﬂ]:l’ l=1,"',r,
j=

x@g}k(p:i),ijh) =1, 1< i <j <r,
with the convention x, = xij.
() v=2. Cg/I(Cy) is generated by (r "2|_ 1) elements x,;, 0<i<j<r,

and completely determined by the relations

X1jXp = XXy all i,j,k, 1,
r
7,0 —
ng.'; ]“'l’
j=1
T r P .
xo—i[o’d Hlx%‘ﬂ] =1 ’ = 1, e, T,
=
xgizl’ i=1,"',7‘,

5) As regards computation in the cases (b) and (c), cf. [11, §3]. See also Froh-
lich [8, Theorem 2] and [4, Theorem 3].
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XGEIEN = 1, 1<i<j<r,
with the convention x; = x;j.
(¢) v=4. Ci/I(Cy) is generated by (r ; 2) — 1 elements x,;, —1 < @
<j&r, 4,)) #(—1,0), and completely determined by the relations

X3 Xk = XXy all i,j, k1,
-

7,0 — y —
nx%]—']—y l'——"]-’o,
=1

- ik r Py .
x:g‘i]ﬂ]xo—i[oyl] l_ll x%_ﬂ] =1 s 1 = 1’ cee, T

j=
xiz;i—Z,\lr(p;’i)) == 1 ) i = 1, ) r ’
2 .
x0t=1s l=1"":r9
xl(}lf(p';i).wp;!)> =1, 1< <]’ <r,

with the convention x,, = x;}', where [j, i], [0, i]*, [0, i] are the indices defined
by (3).

§4. Applications

Y. Furuta [5, Theorem 4] proved the following result: Let ¢ be any
rational prime and m be a rational integer. Assume that the number of
different prime divisors p of m such that p =1 mod ¢ is equal to or greater
than 8 (this number should be replaced by 9, only when ¢ =2 and m
# 0 mod 4). Then the class number of the m-th cyclotomic field is
always divisible by ¢ and moreover the m-th cyclotomic field admits an
infinite unramified 4-extension.

The first half of this result can be sharpen as follows.

THEOREM 6”. Let m = 2'p}r - - - p¥ be a positive integer, K be the m-th
cyclotomic field over Q, p, be the {-rank of Cr/I(Cy), and let t be the num-
ber of different primes p, of m such that p, =1 mod 4. Then:

(@ v=0. 0 = ¥t — 3).

In particular 0y = 3r(r — 3).

(b) v=2. pe= 3t —3), ¢ +2,
p: = ¥(r + 1)(r — 2).

(0 v=4. .= 3t —3), £+2
o= 3(r* +r—4).

Proof. (a) Suppose the primes p; to be so numbered that p, =1
mod ¢ for i=1,---,t. Set m’ = p» --- p*, and denote by C’ the central
6) Cf. Frohlich [3, Lemmas 2 and 3] and [4, Lemmas 4 and 5].
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ideal class group of the m'-th cyclotomic field over Q. By virtue of
Theorem 5, (a), C' is generated by (é) elements y,;, 1<i<j<t and

completely determined by the relations

Yis Vi = YiVij» all i,j,k&,1,
¢
(4) nyBﬂJ:ls l=1,,t,
j=1
W =1, 1gi<jst,

where y,; = y;/. We define a homomorphism Cg/I(Cx) — C’ by putting
xy—y,; for 1<i<j<t x,;—1 otherwise. Then the homomorphism is
epimorphic. Hence denoting the ¢-rank of C’ by p;, we have

00 = 0r -
It follows from the assumption that

(W), v(p:) =0mod £ for 1<i<j<t.

Noting the convention y,, = y;;', we denote by A the matrix of coeffi-
cients in the additively written equations (4) on generators y,, and by
r(A) its rank as a matrix in GF(¢). Since A is a (¢, $t(t — 1)) matrix, we
have r(A) < t. Hence

pe = $i(t — 1) — r(4) = $4t — 3) .
Q.E.D.

COROLLARY 7. Let m = 2'p}r - - - pr be a positive integer, h be the class
number of the m-th cyclotomic field over Q, and let t be the number of dif-
ferent primes p, of m such that p, =1 mod ¢ for an odd prime ¢. Then:

(& v=0. If r = 4, then 2%h.

If t = 4, then 2°¢*|h.
b)) v=2 If r = 38, then 2°|h.
If t = 4, then 2°0*h.
(c) v=4. If r = 2, then 2|h.
If t = 4, then 284 h.
In any case h is divisible by 4 if r =4, and by 2°4* if t = 4.

Finally we state a result concerning the invariants of the central
ideal class group of cyclotomic fields. The following Lemma can be
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easily verified”.
LemmA 8. For any prime p and any integer a prime to p, let
o(p*, a) = the order of a modp® for v = 1,
q(p, a) = the highest exponent of p dividing a*' — 1.
Then we have: (i) If p + 2 and a = q(p, a), then
o(p, @) = o(p*, @) = - -+ = o(p", @) ,
o(p**',a) = p'o(p,a) fori=1.
Gi)) p=2. Ifa=¢q2a) >1,ie a=1mod4, then
02,a) =0(2a)=--- =02%,a)=1,
o(2**¢, @) = 2° fori=1,
and if « =1, i.e. a = 3 mod 4, then
0(22, a) = 0(23, a) = = O(2ﬂ: a) =2 ’
0(2*¢, g) = 211 fori=1,
where B = the highest exponent of 2 dividing a* — 1. Note B = 3, which

implies that the group of prime residue classes mod 2° is not cyclic when
vy = 3.

Denote by B the matrix of coefficients in the additively written
equations on generators x,, in Theorem 5, (a), noting x;, = x;}. Then B
is a (3r(r + 1), ir(r — 1)) matrix. Let e; be the elementary divisors of B

in the domain of rational integers such that e)le,| - - - le,, e, > 0,i =1, ---,s.
Then Ci/I(Cx) can be written in the form, as a product of cyclic groups,
(5) CxlI(Co) = Z,, X -+ X Z, .

Each e; can be computed by the following rule: Let D,(B) be the G.C.D.
of all i-th minors in det B. Then

D(B) =ee,---¢e;, 15is.
Hence

e, = the G.C.D. of all entries of B
= G.C.D. {(v(p?9), v(pj), U, i, i,iDI1 S i<j= 1}

= GCD. {(og»(p;j) o(i(p;>)}1 si<jsrf.

7) See also L. E. Dickson [1, Chapter VII].
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Thus by virtue of Lemma 8 we obtain

THEOREM 9. Let m = pir --- p, p,, - - -, P, distinct odd primes, and let
Cy/I(Cx) be the central ideal class group of the m-th cyclotomic field over
Q. Then the first elementary divisor e, of Cg/I(Cg) in (5) becomes con-
stant for all v, sufficiently large. In fact if we put a;; = q(p., p,) and take
v, >max{e,lj=1,---,r} fori=1,---,r, then

-aon (. i)

ExampLE. For m = 5111y, = 2,v, = 2, we have Ci/I(Cy) = Z,.

Remark. Let K be a finite Galois extension over Q, f(K) be its
Galois conductor in the sense of [10, § 2], and let m be a rational module
such that f(K)im. We denote by K, the central class field mod m and
by K# the genus field mod m of K/Q in the sense of [10, § 3]. Then it
follows from [10, Theorem 31] that if all first ramification groups of K/Q
are cyclic, then

G(K. /K% = H(G(KIQ), Z) .

Thus the method leading up to main Theorem 5 can be applicable to
determine the central ideal class group of Abelian extensions over @ whose
first ramification groups are cyclic, because it is based on Lemma 2 and

2.
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