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ON THE CENTRAL IDEAL CLASS GROUP

OF CYCLOTOMIC FIELDS

SUSUMU SHIRAI

Introduction

Let Q be the rational number field, KjQ be a finite Galois extension
with the Galois group G, and let Cκ be the ideal class group of K in the
wider sense. We consider Cκ as a G-module. Denote by / the augmen-
tation ideal of the group ring of G over the ring of rational integers.
Then CκjI(Cκ) is called the central ideal class group of K, which is the
maximal factor group of Cκ on which G acts trivially. A. Frδhlich [3, 4]
rationally determined the central ideal class group of a completeυ Abelian
field over Q whose degree is some power of a prime. The proof is based
on Theorems 3 and 4 of Frδhlich [2]. D. Garbanati [6] recently gave an
algorithm which will produce the ^-invariants of the central ideal class
group of an Abelian extension over Q for each prime ί dividing its order.

In the present paper we determine the central ideal class group of
a cyclotomic field over Q in terms of generators and relations by refining
upon the methods used in [3, 4] (§ 3, Theorem 5). The proof is based on
Theorem 32 of our preceding paper [10], which is a generalization of
Frδhlich [2, Theorem 3] to the case of a cyclotomic field over Q.

Notation

Throughout this paper the following notation will be used.

Q the field of rational numbers as in Introduction.
Z the ring of rational integers on which a finite group acts triv-

ially.

Received August 4,1978.
1) Cf. Frδhlich [3, p. 212] and [4, pp. 73-77]. When [K: Q] = £<*, this implies that

Kjf = K or K* = K according as i = 2, K real or otherwise, where Kf is the maximal
real, unramified, Abelian 2-extension of K which is still Abelian over Q, and K* is the
maximal, unramified, Abelian ^-extension of K which is still Abelian over Q.
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Zn the cyclic group of order n.

(A) the subgroup generated by A when A is a subset in a group.

(a, b) the commutator aba~γb~x of a and b when α, 6 are elements in

a group.

(A, B) the subgroup generated by the commutators (α, b) of all ae A,

be B when A, B are subsets in a group.

A X B the direct product of A by JB when A, B are groups.

G(Kjk) the Galois group of UL over k.

( , i£/&) the norm residue symbol for Kjk when Kjk is a local Abelian

extension.

the norm residue symbol for K when K is a finite Abelian ex-

P f tension over Q.

CK/I(CK) the central ideal class group of K defined in Introduction when

K is a finite Galois extension over Q.

yjr(n) the Euler's function, i.e. the number of positive integers not

exceeding n which are relatively prime to n.

(m, n) the G. C. D. of m and n when m, n are rational integers.

Moreover we will use the results and notation of the preceding paper [10].

§ l The Schur multiplicator of a finite Abelian group

The structure of the Schur multiplicator H~\G, Z) of a finite Abelian

group G is well-known (cf. [7], [8], [9]). In this section we describe

H~3(G, Z) in terms of generators and relations.

LEMMA 1. If G = Znιx -- X Znr, then

\H-\G,Z)\= Π (*„*,).

Proof. We proceed by induction on r. For any Abelian group A, and

any integer q, we denote by A(q) the subgroup comprising all those ele-

ments a of A such that aq = 1. Then it follows from R. C. Lyndon [7,

Lemma 8.2] that

H~\G, Z) s H\G, Z)

S H\Znr, Z) X Π H*(Znι X X Znr_19 Z)(nr)
0<fc<3

X H\Znι x x Znr_t, Z)
s (Zni x x Z^.X v) x H\zni x x znr_lt Z),

because Ή\G, Z) = 1 and £P(G, Z) ^ G for any finite Abelian group G.
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Thus by induction hypothesis,

\H-\G, Z)\ = Π (**, %K"i> nr) (nr.u nr)

= Π (nun,). Q.E.D.

LEMMA 2. Let G = Zniχ - - X Znr, and let

1 • (β, β) > β - U G > 1

be an exact sequence in which Ω is a finite nilpotent group of class two

such that (Ω, Ω) = H'\G, Z). Denote by ωt an element of Ω such that

f(u)i) is a generator of Zni(dG) for i = 1, , r. Then (β, Ω) is generated by

elements

(ωt, (ύj) , 1 ^ i < j ^ r ,

and completely determined by the relations

\{ωu ω^ω^ ωt) = (ωk9 ωi){ωu ω3) , all ί,j, k, I ,

Proof Since £? is of class two, it is obvious that the elements (ωu ωo)y

1 <I i < j ^ r generate (β, β), and satisfy the above relations (1). Further-

more the order of (β, Ω) is Π i ^ < ^ r ( ^ j ^ ) by Lemma 1. Conversely the

group which is generated by ( Q ) elements and satisfies the above rela-

tions (1) is an Abelian group of order Π^K^rfeWj). Hence (β, Ω) is

completely described by the relations (1). Q.E.D.

§2. Inertia groups

Let p be a rational prime, Qp be the p-adic number field, T/Qp be a

finite unramified extension, ζ be a primitive p"-th root of unity, and let

K = T(ζ). Denote by K a central extension of KjQp such that the p-

exponent μ(KIQp) of the Galois conductor^ of KIQP does not exceed v.

LEMMA 3. Let p = 2, and let

σ = {2,Km-\ τ* = (-l,KIQ2), τ = (5, K/Q2) .

Denote by σ, τ*, and τ any extensions of σ, τ*, and τ to K, respectively.

2) See [10, §1].
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Then the inertia group of KjK is generated by the elements (r, f*), (r, σ),

Proof. Let F be the inertia field of K/K, and let D be the fixed field

of <(f, τ*), (f, σ), (r*, σ)>. Since G(K/Q2) is of class two and {σ, τ*, f} is a

system of generators of G{KjQ2), the commutator group of G(K/Q2) is

generated by the elements (f, τ*), (τ, σ), (f *, σ). Thus D/Q2 is the maximal

Abelian extension contained in K. Hence D Ό F, because FjQ2 is an

Abelian extension.

To prove the converse let T' be the inertia field of D/Q2. Since

μityQd ^ μ(KjQ2) < v by [10, Lemma 3], it follows from local class field

theory that G{Ώ\T) is a homomorphic image of the group of prime resi-

due classes mod2\ We have [D: V] ^ ψ(2v) = 2V~\ and hence D = T'K,

because of T Π K = T, [T'K: T] = [K: T] = 2υ~\ We conclude that DjK

is unramified, which implies F Z) D. Q.E.D.

By the same procedure as the proof of Lemma 3, we obtain

LEMMA 4. Let p φ2,g be a primitive root modpw, and let

σ = (p, KIQ,)-* , t = (g, K/Qp).

Denote by σ and f any extensions of σ and t to, K, respectively. Then

the inertia group of K/K is generated by the single element (f, σ).

§ 3. The central ideal class group of cyclotomic fields

Let m = 2ppϊ1 pv/ be a positive integer, K be the m-th cyclotomic

field over Q, and let K be the central class field mod mp^ in the sense

of [10, § 3], where pM is the real prime divisor of Q. Then K is a central

extension of K/Q, and hence it is a nilpotency class two extension over

Q. Moreover it follows from the definition of the central class field mod m

that any rational prime not contained in mp^ is unramified in K. We

have already proved in [10, Theorem 32] that if (m, 16) Φ 8, then

( 2) (G(K/Q), G(KIQ)) = G(K/K) s H~\G(KIQ), Z) .

For use of this result we distinguish the following three cases:

(a) v = 0, (b) v = 2, (c) v ^ 4 .

In the present paper we will prove our main Theorem for (a) and state

the corresponding results for (b) and (c).
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Assume v = 0. Let gt be a primitive root modp *, and let

Since G{KjQ) is isomorphic to the group of prime residue classes mod my

G(KjQ) = Znpϊl) X X Z^pjr), and {ΓJ, , τr} is a system of generators

of G(K/Q). For each i, we choose elements σt and fέ in the decomposi-

tion group of a prime factor Sβ, of pt in i£, which under the natural

homomorphism of G(K/Q) onto G(KIQ) are mapped onto at and τ<, respec-

tively. Since G(K/K) is contained in the center of G(K/Q), the inertia

group of Vβi over K does not depend on the choice of ψt over pί9 and it

is generated by the element (τi9 dt)9 as we can see by Lemma 4.

According to Lemma 2 and (2), G(K/K) is generated by ί£) elements

( * „ * , ) , l £ ί < j ^ r ,

and completely determined by the relations

(τί9 fj)(Tk, τt) = (τk, ?f)(^, ^) , all ij, k, /,

(r,, f,)^^^^^?'^ = 1 , 1 ^ i < j ^ r .

Let C* be the ideal class group3) of K, and let U be the Abelian

extension of K corresponding to I(CK) in the sense of class field theory.

Then U is the maximal central extension of K/Q which is unramified over

K, and is contained in K, as we can see by going back to the definition

of the central class field mod m. We conclude that U is the subfield of

K corresponding to <(r1? σ^, , (fr, σr)> in the sense of Galois theory.

Hence

CKII(CK) s G(U/K) s G(KIK)K(τu σ,\ , (rr, σr)> .

We next express (ft, σr) in terms of τu • • , τr. Define the symbols4*

[j, H [0, i]*, [0, i] by putting

i = 0,1, , r, j = 1, , r ,

(3) U ( - i)c .« 5» « mod 2", i = 1, • • •, r ,

3) In this case the ideal class groups in the narrow and the wider sense coincide,
because no real prime divisor exists in K.

4) Cf. Frδhlich [2, pp. 237-238].
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where p0 = 2, namely, [/, i] is the index of pt for the modulus p)* relative

to the primitive root gj9 and [0, ί]*, [0, i] are the indices of p{ for the

modulus 2V relative to the basis {— 1, 5}. Then we have

σt= ΠτS> « for ί = l, . . . , r ,

because of Π ( — — ) — 1» the product formula in class field theory.

allp \ p J

Therefore

because G(K/K) is contained in the center of G(KIQ) and G(KIQ) is of

class two. Thus5) we have proved the following main

THEOREM 5. Let m = 2vplx pv/ be a positive integer, K be the m-th

cyclotomic field over Q, and let CκjI{Cκ) be the central ideal class group

of K. Then:

(a) v = 0. CK/I(CK) is generated by ί g ) elements xij9 1 ^ ί < j ^ r,

completely determined by the relations

_Π

/ie convention xJt = xif.

(b) v = 2. CK/I(CK) is generated by (r ~£ J elements xij9 0<^i<j<*r,

and completely determined by the relations

XijXjci = ««x<i , aK i, 7, k, I,

Π ^ = 1 .

^ [ M ] t Π « S ί Λ = 1 , i = l, - , r ,
j = l

xli = 1 , ί = 1, , r ,

5) As regards computation in the cases (b) and (c), cf. [11, §3]. See also Frδh-
lich [3, Theorem 2] and [4, Theorem 3].
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with the convention xjt = XΪ/.

(c) v ^ 4. CKII(CK) is generated by I "ί" J — 1 elements xij9 — 1 ^ i

< j <* r, (i,j) # (—1, 0), ami completely determined by the relations

( ί)) _ -i _ -j

θi = = 1 > 1 = 1, * * * , Γ ,

the convention xH = x^1, where [j, i], [0, £]*, [0, ί] are the indices defined

by (3).

§ 4. Applications

Y. Furuta [5, Theorem 4] proved the following result: Let £ be any
rational prime and m be a rational integer. Assume that the number of
different prime divisors p of m such that p Ξ l mod £ is equal to or greater
than 8 (this number should be replaced by 9, only when £ = 2 and m
ξέ 0 mod 4). Then the class number of the m-th cyclotomic field is
always divisible by t and moreover the m-th cyclotomic field admits an
infinite unramified ^-extension.

The first half of this result can be sharpen as follows.

THEOREM 66). Let m = 2vpϊi pv/ be a positive integer, K be the m-th

cyclotomic field over Q, pe be the ί-rank of CK/I(CK)9 and let t be the num-

ber of different primes pt of m such that pt = 1 mod £. Then:

(a) v = 0. Pi ^ W - 3).

In particular p2 ^ \r(r — 3).

(b) v = 2. Pi ^ \t{t - 3), £ Φ 2,

p2 ^ i(r + l)(r - 2).

(c) v ^ 4. A ^ | ί(ί - 3), ^ ^ 2,

iθ2 ^ K^2 + r - 4).

Proo/. (a) Suppose the primes p* to be so numbered that pt = 1

mod ^ for i = 1, , t Set m! = p;1 p;«, and denote by C the central

6) Cf. Frδhlich [3, Lemmas 2 and 3] and [4, Lemmas 4 and 5].
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ideal class group of the m'-th cyclotomic field over Q. By virtue of

Theorem 5, (a), C" is generated by f 2 J elements yij9 1 <L i < j <* t9 and

completely determined by the relations

ytsy*ι ^JuJij , all i,j,k, 19

( 4 ) Π
. 7 = 1

where y,« = yϊ/. We define a homomorphism CK/I(CK) -> C by putting

%ij -+ y%j for 1 <. i<j<,t9 xtj-> 1 otherwise. Then the homomorphism is

epimorphic. Hence denoting the ^-rank of C by p'i9 we have

It follows from the assumption that

= 0 m o d ^ for 1 <: i < j ^ ί .

Noting the convention y^ = yj}1, we denote by A the matrix of coeffi-

cients in the additively written equations (4) on generators ytj and by

r(A) its rank as a matrix in GF(£). Since A is a (t9 jt(t — 1)) matrix, we

have r(A) <I t. Hence

9\ - W - 1) - r(A) ^ Wί - 3) .

Q.E.D.

COROLLARY 7. Let m — 2"pϊi - - pv/ be a positive integer, h be the class

number of the m-th cyclotomic field over Q9 and let t be the number of dif-

ferent primes pt of m such that p f E l mod t for an odd prime ί. Then:

(a) v = 0. If r ^ 4, then 22\h.

If t^49 then 2H2\h.

(b) v = 2. 7/ r ^ 3, ίΛen 22|/ι.

If t^4, then 2Ψ\h.
(c) v ^ 4. If r^2, then 2\h.

If * ^ 4, ίΛen 2V|Λ.

77Z απ/y case /ι is divisible by 4 £/ r ^ 4 , and 6y 22^2 if t ^i 4.

Finally we state a result concerning the invariants of the central

ideal class group of cyclotomic fields. The following Lemma can be
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easily verified75.

LEMMA 8. For any prime p and any integer a prime to p, let

o{p\ a) = the order of a rnodp" for v Ξ> 1,

q(p, a) = the highest exponent of p dividing av~x — 1.

Then we have: ( i ) If p Φ 2 and a = q(p, a), then

o(p, a) = o(p\ α) = = o(pa, a) ,

o(p α + ί , a) = pio(p9 a) for i ^ l .

(ii) p = 2. If a = q(2, a) > 1, i.e. a = 1 mod 4, ZΛera

o(2, o) = o(22, o) = = o{2% a) = 1 ,

o(2α + ί, α) = 2* /or £ ̂  1 ,

<md if a = 1, i.e. α = 3 mod 4, then

o(22, α) = o(23, a) = = o(2^, α) = 2 ,

o(2^+ ί,α) = 2 i + 1 for i ^ l ,

where β = ίΛe highest exponent of 2 dividing a2 — 1. iVote β ^ 3, which

implies that the group of prime residue classes mod 2V is not cyclic when

v^ 3.

Denote by B the matrix of coefficients in the additively written

equations on generators xtj in Theorem 5, (a), noting xμ = xϊ/. Then B

is a (%r(r + 1), Jr(r — 1)) matrix. Let et be the elementary divisors of B

in the domain of rational integers such that ex\e2\ |e,, et > 0, i = 1, , s.

Then CK/I(CK) can be written in the form, as a product of cyclic groups,

( 5 ) CK/I(CK) s Ze i x . . . χ Z < t .

Each ê  can be computed by the following rule: Let D^B) be the G.C.D.

of all ί-th minors in d e t £ . Then

= eA et , 1 ^ £ ̂  s .

Hence

β! = the G.C.D. of all entries of JB

= G.C.D.

(PϊSPj) o(pγ,pτ)

7) See also L. E. Dickson [1, Chapter VII].
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Thus by virtue of Lemma 8 we obtain

THEOREM 9. Let m = pi1 pv/y pu , pr distinct odd primes, and let

CK/I(CK) be the central ideal class group of the m-th cyclotomίc field over

Q. Then the first elementary divisor ex of CκjI{Cκ) in (5) becomes con-

stant for all vt sufficiently large. In fact if we put atj — q(Pt, p3) and take

vi > max {aυ \j = 1, , r} for ί = 1, , r, then

β l = G.C.D.

EXAMPLE. For m = 5V41Λ, vί ^ 2, v2 ^ 2, we have CκjI{Cκ) ^ Z2.

Remark. Let K be a finite Galois extension over Q, f(K) be its

Galois conductor in the sense of [10, § 2], and let m be a rational module

such that f{K)\m. We denote by ifm the central class field mod n and

by K* the genus field modm of K/Q in the sense of [10, §3]. Then it

follows from [10, Theorem 31] that if all first ramification groups of KjQ

are cyclic, then

G(KJK*) s H-\G{KIQ), Z) .

Thus the method leading up to main Theorem 5 can be applicable to

determine the central ideal class group of Abelian extensions over Q whose

first ramification groups are cyclic, because it is based on Lemma 2 and

(2).
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