ON REPRESENTATIONS OF VARIANTS OF SEMIGROUPS

Ganna Kudryavtseva and Victor Maltcev

We construct a family of representations of an arbitrary variant S_{a} of a semigroup S, induced by a given representation of S, and investigate properties of such representations and their kernels.

1. Introduction

Let S be a semigroup and $a \in S$. Set $s * t=s a t, s, t \in S$. The semigroup ($S, *$) is called a variant of S and will be denoted by S_{a}. One of the motivations for the study of variants is their importance to understanding the structure of an original semigroup. In particular, the notion of a regularity-preserving element, which generalises the notion of an invertible element, is defined using variants, see [2, 3, 5]. Other situations where variants naturally appear and work are discussed in [5].

Let • : $M \times S \rightarrow M$ or just (S, M) be a representation of a semigroup S by transformations of a set M. It defines a homomorphism from S to the full transformation semigroup $\mathcal{T}(M)$; we denote the image of (m, s) under the function • by $m \cdot s$. For $a \in S$ and a decomposition $a=\beta \alpha, \alpha, \beta \in S^{1}$, we introduce a map *: $M \times S_{a} \rightarrow M$ or just $\left(S_{a}, M ; \alpha, \beta\right)$, defined by

$$
m * s=m \cdot(\alpha s \beta) \text { for all } s \in S, m \in M .
$$

Since

$$
\begin{aligned}
m *(s * t)=m *(s a t)= & m \cdot(\alpha s \beta \alpha t \beta) \\
& =(m \cdot(\alpha s \beta)) \cdot(\alpha t \beta)=(m * s) * t \text { for all } s, t \in S, m \in M,
\end{aligned}
$$

it follows that ($S_{a}, M ; \alpha, \beta$) is a representation of S_{a} on M.
The kernel ρ of a representation of S naturally leads to the consideration of the family of congruences $\left\{\rho_{b, c}: b, c \in S^{1}, c b=a\right\}$ on S_{a}, which are the kernels of the corresponding representations of S_{a}. In the case when ι is the identity relation on S, $\iota_{a, 1}$ and $\iota_{1, a}$ coincide with the congruences 1 and r on S_{a} respectively, which were first introduced by Symons (see [8]) for the generalised transformation semigroups and many

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.
properties of which resemble the corresponding properties of the Green's relations \mathcal{L} and \mathcal{R}.

The present paper is devoted to the study of the connections between a given representation (S, M) of S on M and the representations ($S_{a}, M ; \alpha, \beta$); and also to the study of the properties of congruences $\left\{\rho_{b, c}: b, c \in S^{1}, c b=a\right\}$. In Section 2 we prove that for a regular semigroup S, which does not contain the bicyclic semigroup, a faithful representation of S_{a} coincides with certain ($S_{a}, M ; \alpha, \beta$) if and only if α and β are left and right cancellable in S respectively (Theorems 1, 2 and Proposition 1). We also show that for the bicyclic semigroup these conditions are not equivalent. The next result is Theorem 4, claiming that for a regular semigroup S each representation *: $M \times S_{a} \rightarrow M$ of any variant of S is induced by some $\cdot: M \times S \rightarrow M$ such that either $m * s=m \cdot(a s)$ for all $m \in M$ or $m * s=m \cdot(s a)$ for all $m \in M$, if and only if it is either a left or a right group, giving a new characterisation of the class of left (right) groups. In Section 3 we investigate the properties of the family of congruences $\left\{\rho_{b, c}: b, c \in S^{1}, c b=a\right\}$. In particular, in Theorem 6 we prove that in the case when c, b are regular elements of S the map sending ρ to $\rho_{b, c}$ is a homomorphism from the lattice of congruences of S to the lattice of congruences of $S_{c b}$. Without the requirement of regularity of b, c this map always preserves the meet, while may not preserve the join, the corresponding example is provided. Finally, the aim of Section 4 is, given $a \in S^{1}$ and a congruence ρ on S, to define a congruence ρ_{a} which naturally generalises the congruence d on S_{a}, introduced in $[8]$ and studied afterwards in $[3,6]$.

2. Connections between representations

Let S be a semigroup. An element $u \in S^{1}$ will be called left [right] cancellable if $u s=u t[s u=t u]$ implies $s=t$ for all $s, t \in S$.

Fix $a \in S$ and a decomposition $a=\beta \alpha, \alpha, \beta \in S^{1}$.
LEMMA 1. The implication $\alpha s \beta=\alpha t \beta \Rightarrow s=t$ for all $s, t \in S$ holds if and only if α is left cancellable and β is right cancellable simultaneously.

Proof: The proof is straightforward.
A representation $: M \times S \rightarrow M$ is said to be faithful if the corresponding homomorphism from S to $\mathcal{T}(M)$ is injective. That is, $\cdot: M \times S \rightarrow M$ is faithful if and only if

$$
(\forall m \in M)[m \cdot s=m \cdot t] \Rightarrow[s=t] \text { for all } s, t \in S
$$

Lemma 2. Suppose that ($S_{a}, M ; \alpha, \beta$) is faithful. Then so is (S, M).
Proof: Indeed, by the definition we have

$$
(\forall m \in M)[m \cdot(\alpha s \beta)=m \cdot(\alpha t \beta)] \Rightarrow[s=t] \text { for all } s, t \in S
$$

Take $s, t \in S$. If now $m \cdot s=m \cdot t$ for all $m \in M$, then

$$
(m \cdot \alpha) \cdot(s \beta)=(m \cdot \alpha) \cdot(t \beta) \text { for all } m \in M,
$$

and so $s=t$.
Theorem 1. Let (S, M) be a representation of a semigroup S on a set M and $a \in S$. Take $\alpha, \beta \in S^{1}$ such that $\beta \alpha=a$. Then the following conditions are equivalent:

1. ($S_{a}, M ; \alpha, \beta$) is faithful;
2. (S, M) is faithful and α, β are left and right cancellable respectively.

Proof: That 1 implies 2 is due to Lemmas 1 and 2. The opposite implication is a consequence of Lemma 1.

Recall that an element u of a semigroup S is said to be a mididentity in S if $s u t=s t$ for all $s, t \in S$. For the case when S is regular, we obtain the following theorem.

Theorem 2. Let S be a regular semigroup and $a=\beta \alpha \in S, \alpha, \beta \in S^{1}$. Suppose that there exist α^{*} and β^{*} of S^{1}, inverses of α and β in S^{1} respectively, such that $\beta^{*} \beta \alpha \alpha^{*}$ is a mididentity in S. Let also *: $M \times S_{a} \rightarrow M$ be a faithful representation of S_{a} on M. Then the following conditions are equivalent:

1. there is a representation (S, M) such that $\left(S_{a}, M\right.$) coincides with $\left(S_{a}, M ; \alpha, \beta\right)$;
2. α and β are left and right cancellable respectively.

Proof: Due to Theorem 1 we have that 1 implies 2.
Now let α and β be left and right cancellable respectively. Let us prove that a function $\cdot: M \times S \rightarrow M$, given by

$$
m \cdot s=m *\left(\alpha^{*} s \beta^{*}\right) \text { for all } s \in S, m \in M
$$

defines a representation (S, M) of S such that (S_{a}, M) coincides with ($S_{a}, M ; \alpha, \beta$).
Since $\beta^{*} \beta \alpha \alpha^{*}$ is a mididentity in S, we have

$$
\begin{aligned}
(m \cdot s) \cdot t=\left(m *\left(\alpha^{*} s \beta^{*}\right)\right) *\left(\alpha^{*} t \beta^{*}\right) & =m *\left(\alpha^{*} s \beta^{*} \cdot \beta \alpha \cdot \alpha^{*} t \beta^{*}\right) \\
= & m *\left(\alpha^{*} s t \beta^{*}\right)=m \cdot(s t) \text { for all } s, t \in S, m \in M .
\end{aligned}
$$

Thus (S, M) is indeed a representation.
Note that the equality $\alpha \alpha^{*} \alpha s=\alpha s$ implies $\alpha^{*} \alpha s=s$ for all $s \in S$. Analogously, $s \beta \beta^{*}=s$ for all $s \in S$. Then we have

$$
m \cdot(\alpha s \beta)=m *\left(\alpha^{*} \alpha s \beta \beta^{*}\right)=m * s \text { for all } s \in S, m \in M .
$$

The latter means that (S_{a}, M) coincides with $\left(S_{a}, M ; \alpha, \beta\right)$. That is, the function • defines the required representation (S, M).

The following example shows that the condition of Theorem 2 that there are α^{*} and β^{*} in S^{1}, such that $\beta^{*} \beta \alpha \alpha^{*}$ is a mididentity in S, is essential.

Example 1. Let $\mathcal{B}=\langle a, b \mid b a=1\rangle$ be the bicyclic semigroup. Consider the Cayley representation of \mathcal{B} :

$$
m * s=m s \text { for all } m, s \in \mathcal{B}
$$

Then there is no faithful representation $0: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$ such that

$$
m \circ(a s b)=m * s=m s \text { for all } m, s \in \mathcal{B}
$$

Since \mathcal{B} is an inverse semigroup with the identity element, 1, its Cayley representation is faithful. That $b a=1$ implies $\mathcal{B}_{b a}=\mathcal{B}$. Note that $b^{-1} b a a^{-1}=a \cdot b a \cdot b=a b$ is not a mididentity in \mathcal{B}, as $1 \cdot a b \cdot 1=a b \neq 1$.

Assume that there is a faithful representation $0: \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$ such that

$$
m \circ(a s b)=m * s=m s \text { for all } m, s \in \mathcal{B}
$$

Then $m \circ(a b)=m * 1=m$ for all $m \in \mathcal{B}$. So we have

$$
\begin{aligned}
& m \circ a=(m \circ a) \circ(a b)=m \circ\left(a^{2} b\right)=m * a=m a \text { and } \\
& \quad m \circ b=(m \circ(a b)) \circ b=m \circ\left(a b^{2}\right)=m * b=m b \text { for all } m \in \mathcal{B} .
\end{aligned}
$$

But this leads to a contradiction:

$$
1=1 \circ(a b)=(1 \circ a) \circ b=a \circ b=a b
$$

Let us recall (see [1, Corollary 1.32]) that every homomorphic image of \mathcal{B} is either a cyclic group or isomorphic to \mathcal{B}. Using this fact, we are going to prove that in the case when S is a regular semigroup, which does not contain a subsemigroup, isomorphic to \mathcal{B}, one obtains that the conditions 1 and 2 of Theorem 2 are equivalent.

Proposition 1. Let S be a regular semigroup, which does not contain a subsemigroup isomorphic to \mathcal{B}. Let $a=\beta \alpha \in S, \alpha, \beta \in S^{1}$. Let also * : $M \times S_{a} \rightarrow M$ be a faithful representation of S_{a} on M. Then the conditions 1 and 2 of Theorem 2 are equivalent.

Proof: We have only to prove that 2 implies 1.
Let now α and β be left and right cancellable respectively. Take α^{*} and β^{*}, inverses of α and β in S^{1} respectively. Then the equality $\alpha \alpha^{*} \alpha s=\alpha s$ implies $\alpha^{*} \alpha s=s$ for all $s \in S$. Also $s \beta \beta^{*} \beta=s \beta$ implies $s \beta \beta^{*}=s$ for all $s \in S$. It follows that $\alpha^{*} \alpha$ and $\beta \beta^{*}$ are left and right identity elements of S^{1} respectively. Consider three possible cases.
Case 1. Let $\alpha, \beta \in S$. Then $\alpha^{*} \alpha$ and $\beta \beta^{*}$ are both in S. It follows that S has the identity $1=\alpha^{*} \alpha=\beta \beta^{*}$. Assume that $\alpha \alpha^{*} \neq 1$. Then $\left\langle\alpha, \alpha^{*}\right\rangle$ is a homomorphic image of $\mathcal{B}=\langle a, b \mid b a=1\rangle$ under a map, which sends a to α and b to α^{*}. Since $\left\langle\alpha, \alpha^{*}\right\rangle$ is not isomorphic to a cyclic group, then $\left\langle\alpha, \alpha^{*}\right\rangle$ is a subsemigroup, isomorphic to \mathcal{B}. We get a
contradiction. Thus $\alpha \alpha^{*}=1$. Analogously, one shows that $\beta^{*} \beta=1$. Then $\beta^{*} \beta \alpha \alpha^{*}$ is a mididentity in S. Now due to Theorem 2, we have that 1 holds.

Case 2. Let $\beta \notin S$ and $\alpha=a \in S$. Arguments are similar to those of Case 1. Then $\alpha \alpha^{*}=\alpha^{*} \alpha$ is again a mididentity in S and to prove that 1 holds, it remains to use Theorem 2.

Case 3. Let $\alpha \notin S$ and $\beta=a \in S$. Analogously to Case $2, \beta^{*} \beta=\beta \beta^{*}$ is a mididentity in S. Thus, according to Theorem 2,1 holds.

Recall (see [1]) that a right [left] group is a semigroup which is right [left] simple and left [right] cancellative. We shall need the following known fact.

Theorem 3. ([1, Theorem 1.27].) The following conditions for a semigroup S are equivalent:

1. S is a left [right] group;
2. S is right [left] simple and contains an idempotent;
3. S is a direct product $G \times U$ of a group G and a left [right] zero semigroup U.

Among all the decompositions $a=\beta \alpha, \alpha, \beta \in S^{1}$, two are rather special, namely $a=a \cdot 1$ and $a=1 \cdot a$. The main result of the following theorem is the characterisation of semigroups S such that for all $a \in S$ and for each representation *: $M \times S_{a} \rightarrow M$ there exists a representation $: M \times S \rightarrow M$ such that either $m * s=m \cdot(a s)$ for all $m \in M$ or $m * s=m \cdot(s a)$ for all $m \in M$.

Theorem 4. Let S be a regular semigroup with the set of idempotents E. Then the following conditions are equivalent:

1. for all $a \in S$ and for each representation * : $M \times S_{a} \rightarrow M$ there exists a representation $: ~ M \times S \rightarrow M$ such that either $m * s=m \cdot(a s)$ for all $m \in M$ or $m * s=m \cdot(s a)$ for all $m \in M$;
2. for all $e \in E$ there are a faithful representation * : $M \times S_{e} \rightarrow M$ and a representation $\cdot: M \times S \rightarrow M$ such that either $m * s=m \cdot(e s)$ for all $m \in M$ or $m * s=m \cdot(s e)$ for all $m \in M$;
3. every element of E is either a left or a right identity in S;
4. S is either a left or a right group.

Proof: Obviously, 1 implies 2.
Assume that 2 holds. Take an idempotent $e \in E$. The first case is that there are a set M, a faithful representation * : $M \times S_{e} \rightarrow M$ and a representation $\cdot: M \times S \rightarrow M$ such that $m * s=m \cdot(e s)$ for all $m \in M$. Then $m * s=m *(e s)$ for all $m \in M$ and $s \in S$ and so $s=e s$ for all $s \in S$. In the second case we obtain $s=s e$ for all $s \in S$. Thus, 2 implies 3.

Let us prove now that 3 implies 4 . Note that E is nonempty as S is regular. If S contains both left and right identities then it contains the identity 1 , thus each idempotent coincides with 1 . Hence, S is a regular semigroup with the unique idempotent 1. It follows now from [$\mathbf{7}$, Lemma II.2.10] that S is a group and so also a left group. If every idempotent $e \in E$ is a left [right] unit in S, then

$$
s S^{1}=s S=s s^{\prime} S=S\left[S^{1} s=S s=S s^{\prime} s=S\right]
$$

for all $s \in S$ and for each s^{\prime}, inverse of s, and so S is right [left] simple. But due to Theorem 3 we obtain now that S is a right [left] group.

Finally, assume that S is, for instance, a left group. Then by Theorem 3 there are a group G and a left zero semigroup U such that $S=G \times U$. Take $(g, u) \in S$ and a representation * : $M \times S_{(g, u)} \rightarrow M$. Put $m \cdot(h, v)=m *\left(h g^{-1}, v\right)$ for all $(h, v) \in S$. Then $m \cdot((h, v)(g, u))=m *(h, v)$ for all $(h, v) \in S$. We are left to prove that \cdot is a representation of S. Indeed, we have

$$
\begin{aligned}
m \cdot\left(h_{1} h_{2}, v_{1} v_{2}\right)=m * & \left(h_{1} h_{2} g^{-1}, v_{1} v_{2}\right)=m *\left(\left(h_{1} g^{-1}, v_{1}\right) *\left(h_{2} g^{-1}, v_{2}\right)\right) \\
& =\left(m \cdot\left(h_{1}, v_{1}\right)\right) \cdot\left(h_{2}, v_{2}\right) \text { for all }\left(h_{1}, v_{1}\right),\left(h_{2}, v_{2}\right) \in S, m \in M
\end{aligned}
$$

This completes the proof.
Let S be a semigroup and $\cdot: M \times S \rightarrow M$ a representation of S. Denote by $M \cdot \alpha$ the set $\{m \cdot \alpha: m \in M\}$ and by $m \cdot S$ the set $\{m \cdot s: s \in S\}$. In the case when $S \neq S^{1}$ set $M \cdot 1=M$. A representation (S, M) is said to be cyclic (see [1]) if there is a generating element $m \in M$ for (S, M), that is, $m \cdot S=M$.

PROPOSITION 2. Let S be an arbitrary semigroup and $a \in S, a=\beta \alpha, \alpha, \beta$ $\in S^{1}$. Let (S, M) be a representation of S on M. The following conditions are equivalent:

1. $\left(S_{a}, M ; \alpha, \beta\right)$ is cyclic;
2. (S, M) is cyclic, $M \cdot \beta=M$ and $M \cdot \alpha$ contains a generating element for (S, M).
Proof: Suppose that 1 holds. It follows immediately from the definition of cyclic representations that (S, M) is cyclic. If $m \in M$ is a generating element for ($S_{a}, M ; \alpha, \beta$) then $m \cdot(\alpha S \beta)=M$ which implies $M \cdot \beta=M$. Since

$$
(m \cdot \alpha) \cdot S \supseteq m \cdot(\alpha S \beta)=M
$$

we have that $M \cdot \alpha$ contains a generating element for (S, M).
Suppose now that 2 holds. Let $m \in M \cdot \alpha$ be a generating element for (S, M) such that $m=m_{0} \alpha$ for some $m_{0} \in M$. Let us prove that m_{0} is a generating element for ($S_{a}, M ; \alpha, \beta$). Indeed, take $m_{1} \in M$. Then there exists $\bar{m} \in M$ such that $m_{1}=\bar{m} \cdot \beta$. Also there is $s \in S$ such that $\bar{m}=\left(m_{0} \alpha\right) \cdot s$. Then we obtain $m_{0} * s=m_{0} \cdot(\alpha s \beta)$ $=\left(\left(m_{0} \alpha\right) \cdot s\right) \cdot \beta=m_{1}$. Thus $m_{0} * S=M$.

3. Congruences $\rho_{b, c}$

Let ρ be a congruence on a semigroup S and $a \in S, a=c b, b, c \in S^{1}$. Define a relation $\rho_{b, c}$ on S_{a} as follows:

$$
(s, t) \in \rho_{b, c} \text { if and only if }(b s c, b t c) \in \rho \text { for all } s, t \in S .
$$

It is straightforward that $\rho_{b, c}$ is a congruence on S_{a}. If now we have a representation $\cdot: M \times S \rightarrow M$ of S on M, then the congruence ν, related to it, is given by

$$
(s, t) \in \nu \text { if and only if } m \cdot s=m \cdot t \text { for all } m \in M .
$$

Then one can easily see that the congruence on S_{a}, related to the representation ($S_{a}, M ; b, c$), coincides with $\nu_{b, c}$.

Denote by $\operatorname{Cong}(S)$ the set of all congruences on a semigroup S. Set $\rho_{1,1}=\rho$ for all $\rho \in \operatorname{Cong}(S)$. In the case when $S \neq S^{1}$, set also $S_{1}=S$.

Proposition 3. Let S be a semigroup, $b, c \in S^{1}, \rho \in \operatorname{Cong}(S)$. Then

$$
S_{c b} / \rho_{b, c} \cong b S c / \rho \cap(b S c \times b S c) .
$$

Proof: Define a map $\varphi: S_{c b} \rightarrow b S c / \rho \cap(b S c \times b S c)$ as follows:

$$
\varphi(x)=(b x c) \rho \text { for all } x \in S .
$$

One can easily show that φ is an onto homomorphism and $\varphi \circ \varphi^{-1}=\rho_{b, c}$. These two facts complete the proof.

Let $S \neq S^{1}$ and $\rho \in \operatorname{Cong}(S)$. Then we identify (1) ρ with the identity element of $(S / \rho)^{1}$.

Theorem 5. Let S be a semigroup, $b, c, b_{1}, c_{1} \in S^{1}, \rho, \sigma \in \operatorname{Cong}(S)$. Then

1. if $b \rho$ and $b_{1} \rho$ are \mathcal{L}-related, $c \rho$ and $c_{1} \rho$ are \mathcal{R}-related in $(S / \rho)^{1}$, then $\rho_{b, c}$ $=p_{b_{1}, c_{1}} ;$
2. $\rho \subseteq \rho_{b, c}$;
3. $\rho_{b, c}=\rho$ if and only if b ρ and $c \rho$ are left and right cancellable in $(S / \rho)^{1}$ respectively;
4. if $\rho \subseteq \sigma$ then $\rho_{b, c} \subseteq \sigma_{b, c}$. If $b \sigma$ and $c \sigma$ are left and right cancellable in $(S / \sigma)^{1}$ then $\rho \subseteq \sigma$ if and only if $\rho_{b, c} \subseteq \sigma_{b, c}$.
Proof: Statements 1 and 2 follow immediately from the definition of $\rho_{b, c}$. Statement 3 follows from Lemma 1 and the fact that $\rho_{b, c}=\rho$ is equivalent to the implication

$$
(b \rho) x(c \rho)=(b \rho) y(c \rho) \Rightarrow[x=y] \text { for all } x, y \in S / \rho .
$$

Finally, let us prove 4. If $\rho \subseteq \sigma$ then $(x, y) \in \rho_{b, c}$ implies (bxc, byc) $\in \rho \subseteq \sigma$ which, in turn, implies $(x, y) \in \sigma_{b, c}$. Thus, if $\rho \subseteq \sigma$, then $\rho_{b, c} \subseteq \sigma_{b, c}$.

Suppose now that $b \sigma$ and $c \sigma$ are left and right cancellable in $(S / \sigma)^{1}$ and $\rho_{b, c}$ $\subseteq \sigma_{b, c}$. Take $(x, y) \in \rho$. Then $(b x c, b y c) \in \rho$ which implies $(x, y) \in \rho_{b, c} \subseteq \sigma_{b, c}$ or just $(b \sigma)(x \sigma)(c \sigma)=(b \sigma)(y \sigma)(c \sigma)$, we have $x \sigma=y \sigma$. Thus, we obtain that $\rho \subseteq \sigma$. This completes the proof.

The converse statement of 1 of Theorem 5 is not true in general as the following easy example shows.

Example 2. Consider a semilattice $E=\{a, b\}$, where $a \leqslant b$. Let ρ be the identity relation on E. Then $\rho_{a, a}=\rho_{a, b}$ but $(a, b) \notin \mathcal{R}$.

Set $\rho_{a}^{r}=\rho_{1, a}$ and $\rho_{a}^{l}=\rho_{a, 1}$ for all congruences ρ on a semigroup S and $a \in S^{1}$. The following proposition shows that the converse statement of 1 of Theorem 5 is true in the case when $b=b_{1}=1\left[c=c_{1}=1\right]$ and S / ρ is inverse.

Proposition 4. Let S be a semigroup, $b, c \in S^{1}, \rho \in \operatorname{Cong}(S)$. Suppose that S / ρ is inverse. Then $\rho_{b}^{r}=\rho_{c}^{r}\left[\rho_{b}^{l}=\rho_{c}^{l}\right]$ if and only if $b \rho$ and $c \rho$ are \mathcal{R}-related [\mathcal{L}-related] in $(S / \rho)^{1}$.

Proof: The sufficiency follows from 1 of Theorem 5. Let now assume that $\rho_{b}^{r}=\rho_{c}^{r}$. Set $b \rho=u$ and $c \rho=v$. Then we have $x u=y u$ if and only if $x v=y v$ for all $x, y \in S / \rho$. In particular, $x u=x u u^{-1} u$ gives us $x v=x u u^{-1} v$ for all $x \in S / \rho$. Hence, $v=v v^{-1} v$ $=v v^{-1} u u^{-1} v=u u^{-1} v$, thus $v v^{-1}=u u^{-1} v v^{-1}$. Analogously, $u u^{-1}=v v^{-1} u u^{-1}$. Thus, $v v^{-1}=u u^{-1}$ which is well-known to be equivalent to $u \mathcal{R} v$ (see [4]).

Take $b, c \in S^{\mathbf{1}}$. Set a map $\varphi_{b, c}: \operatorname{Cong}(S) \rightarrow \operatorname{Cong}\left(S_{c b}\right)$ as follows:

$$
\varphi_{b, c}(\rho)=\rho_{b, c} \text { for all } \rho \in \operatorname{Cong}(S)
$$

It is well-known that if one has $\rho, \sigma \in \operatorname{Cong}(S)$ then $\rho \vee \sigma$ coincides with the transitive closure $(\rho \cup \sigma)^{t}$. Denote by $\mathcal{S L}(S)$ the lower semilattice ($\operatorname{Cong}(S) ; \subseteq, \cap$) of congruences on S and by $\mathcal{L}(S)$ the lattice (Cong $(S) ; \subseteq, \cap, \vee)$ of congruences on S.

Theorem 6. Let S be a semigroup and $b, c \in S^{1}$. Then

1. $\varphi_{b, c}$ is a homomorphism from $\mathcal{S L}(S)$ to $\mathcal{S L}\left(S_{c b}\right)$;
2. $\rho_{b, c} \vee \sigma_{b, c} \subseteq(\rho \vee \sigma)_{b, c}$ for all $\rho, \sigma \in \operatorname{Cong}(S)$;
3. if b and c are regular in S^{1} then $\varphi_{b, c}$ is a homomorphism from $\mathcal{L}(S)$ to $\mathcal{L}\left(S_{c b}\right)$;
4. if $b S c=S$ then $\varphi_{b, c}$ is injective homomorphism from $\mathcal{L}(S)$ to $\mathcal{L}\left(S_{c b}\right)$.

Proof: Take $\rho, \sigma \in \operatorname{Cong}(S)$. Then $(x, y) \in \rho_{b, c} \cap \sigma_{b, c}$ if and only if $(b x c, b y c) \in \rho \cap \sigma$, which is, in turn, equivalent to $(x, y) \in(\rho \cap \sigma)_{b, c}$ for all $x, y \in S$. Thus, $\rho_{b, c} \cap \sigma_{b, c}$ $=(\rho \cap \sigma)_{b, c}$, which completes the proof of 1 .

To prove 2, we note that due to $\rho_{b, c} \subseteq(\rho \vee \sigma)_{b, c}$ and $\sigma_{b, c} \subseteq(\rho \vee \sigma)_{b, c}$, we have that $\rho_{b, c} \vee \sigma_{b, c} \subseteq(\rho \vee \sigma)_{b, c}$.

Let now b and c be regular in S^{1} and b^{\prime}, c^{\prime} be certain inverses of b and c in S^{1} respectively. To prove 3, in view of what has already been done, we are left to show that $(\rho \vee \sigma)_{b, c} \subseteq \rho_{b, c} \vee \sigma_{b, c}$. Suppose that $(x, y) \in(\rho \vee \sigma)_{b, c}$. Then (bxc, byc) $\in \rho \vee \sigma$ and so there are $p_{1}, \ldots, p_{m} \in S$ such that

$$
\begin{equation*}
\left(b x c, p_{1}\right) \in \rho \cup \sigma, \ldots,\left(p_{i}, p_{i+1}\right) \in \rho \cup \sigma, \ldots,\left(p_{m}, b y c\right) \in \rho \cup \sigma . \tag{1}
\end{equation*}
$$

Clearly, $\rho \cup \sigma$ is left and right compatible, and therefore

$$
\begin{aligned}
\left(b x c, b \cdot b^{\prime} p_{1} c^{\prime} \cdot c\right) \in & \rho \cup \sigma, \ldots, \\
& \left(b \cdot b^{\prime} p_{i} c^{\prime} \cdot c, b \cdot b^{\prime} p_{i+1} c^{\prime} \cdot c\right) \in \rho \cup \sigma, \ldots,\left(b \cdot b^{\prime} p_{m} c^{\prime} \cdot c, b y c\right) \in \rho \cup \sigma,
\end{aligned}
$$

which yields

$$
\left(x, b^{\prime} p_{1} c^{\prime}\right) \in \rho_{b, c} \cup \sigma_{b, c}, \ldots,\left(b^{\prime} p_{i} c^{\prime}, b^{\prime} p_{i+1} c^{\prime}\right) \in \rho_{b, c} \cup \sigma_{b, c}, \ldots,\left(b^{\prime} p_{m} c^{\prime}, y\right) \in \rho_{b, c} \cup \sigma_{b, c}
$$

then $(x, y) \in \rho_{b, c} \vee \sigma_{b, c}$. Thus, 3 is proved.
Finally, assume that $b S c=S$. To prove that $\varphi_{b, c}$ is a homomorphism, it is enough to show that $(\rho \vee \sigma)_{b, c} \subseteq \rho_{b, c} \vee \sigma_{b, c}$. Take $(x, y) \in(\rho \vee \sigma)_{b, c}$. Then there are $p_{1}, \ldots, p_{m} \in S$ such that (1) holds. Then due to $b S c=S$ and the fact that ($b s c, b t c$) $\in \rho \cup \sigma$ if and only if $(s, t) \in \rho_{b, c} \cup \sigma_{b, c}$ for all $s, t \in S$, we obtain that $(x, y) \in \rho_{b, c} \vee \sigma_{b, c}$. It remains to prove that $\varphi_{b, c}$ is injective. Suppose that $\rho_{b, c}=\sigma_{b, c}$. Take $(s, t) \in \rho$. There are s_{1} and t_{1} of S such that $s=b s_{1} c$ and $t=b t_{1} c$. Then $\left(s_{1}, t_{1}\right) \in \rho_{b, c}$ which implies $\left(s_{1}, t_{1}\right) \in \sigma_{b, c}$, which, in turn, is equivalent to $(s, t) \in \sigma$. Thus, $\rho \subseteq \sigma$. Analogously, $\sigma \subseteq \rho$. So $\rho=\sigma$ and $\varphi_{b, c}$ is an injective homomorphism.

We note that the converse inclusion of one in 2 of Theorem 6, namely ($\rho \vee \sigma)_{b, c}$ $\subseteq \rho_{b, c} \vee \sigma_{b, c}$ for $\rho, \sigma \in \operatorname{Cong}(S)$, is not true in general as the following example illustrates.
Example 3. Consider the free semigroup $\{a, b\}^{+}$over the alphabet $\{a, b\}$. Let I be the ideal consisting of all words from $\{a, b\}^{+}$of length not less than 3. Set $S=\{a, b\}^{+} / I$ to be the Rees quotient semigroup.

Set $\rho=(b a, a b) \cup(a b, b a) \cup \iota$ and $\sigma=(a b, b b) \cup(b b, a b) \cup \iota$, where ι denotes the identity relation on S. It follows immediately from the construction of S that $\rho, \sigma \in \operatorname{Cong}(S)$. Now we observe that $(a, b) \in(\rho \vee \sigma)_{b, 1}$. Indeed, we have $(b a, a b) \in \rho$ and $(a b, b b) \in \sigma$, thus $(b a, b b) \in \rho \vee \sigma$ which is equivalent to $(a, b) \in(\rho \vee \sigma)_{b, 1}$. But $(a, b) \notin \rho_{b, 1} \vee \sigma_{b, 1}$. Indeed, otherwise there would exist $t_{1}, \ldots, t_{n} \in S$ such that

$$
\left(b a, b t_{1}\right) \in \rho \cup \sigma, \ldots,\left(b t_{i}, b t_{i+1}\right) \in \rho \cup \sigma, \ldots,\left(b t_{n}, b b\right) \in \rho \cup \sigma
$$

It follows from the construction of ρ and σ that $\left(b a, b t_{1}\right) \in \rho \cup \sigma$ implies $t_{1}=a$. Now inductive arguments show that $t_{i}=a$ for all possible i. In particular, $t_{n}=a$. Then $(b a, b b) \in \rho \cup \sigma$, and we get a contradiction. Thus, $(\rho \vee \sigma)_{b, 1} \nsubseteq \rho_{b, 1} \vee \sigma_{b, 1}$.

4. Congruences ρ_{a}

Let now ρ be a congruence on a semigroup S and $a \in S^{1}$. Then we can construct a congruence $\rho_{a} \in \operatorname{Cong}\left(S_{a}\right)$ as follows:

$$
(s, t) \in \rho_{a} \text { if and only if }(a s a, a t a) \in \rho \text { for all } s, t \in S
$$

Thus, in terms of [3], $(s, t) \in \rho_{a}$ if and only if $(s \rho, t \rho) \in \delta^{a \rho}$.
If now one has $a=c b, b, c \in S^{1}$, then $\rho_{b, c} \subseteq \rho_{a}$. The following statement shows when the opposite inclusion holds in the case when S / ρ is inverse.

Proposition 5. Let S be a semigroup, $b, c \in S^{1}$. Let also ρ be a congruence on S such that S / ρ is inverse. Then $\rho_{b, c}=\rho_{c b}$ if and only if

$$
\begin{equation*}
u x v=v^{-1} v u \cdot x \cdot v u u^{-1} \text { for all } x \in S / \rho \tag{2}
\end{equation*}
$$

where $u=b \rho$ and $v=c \rho$.
Proof: The condition $\rho_{b, c}=\rho_{c b}$ is equivalent to $\rho_{c b} \subseteq \rho_{b, c}$, which is, in turn, equivalent to

$$
\begin{equation*}
v \cdot u x v \cdot u=v \cdot u y v \cdot u \Rightarrow u x v=u y v \text { for all } x, y \in S / \rho \tag{3}
\end{equation*}
$$

Let us prove that the condition (3) is equivalent to (2).
Indeed, assume that (3) holds. Since

$$
v u \cdot x \cdot v u=v u \cdot u^{-1} v^{-1} v u \cdot x \cdot v u u^{-1} v^{-1} \cdot v u \text { for all } x \in S / \rho,
$$

we have

$$
u \cdot x \cdot v=u \cdot u^{-1} v^{-1} v u \cdot x \cdot v u u^{-1} v^{-1} \cdot v=v^{-1} v u \cdot x \cdot v u u^{-1}
$$

due to the fact that all the idempotents of an inverse semigroup pairwise commute. That is, the condition (2) holds.

Assume now that (2) holds. Suppose that $v \cdot u x v \cdot u=v \cdot u y v \cdot u$ for some $x, y \in S / \rho$. Then

$$
u x v=v^{-1} v u \cdot x \cdot v u u^{-1}=v^{-1} v u \cdot y \cdot v u u^{-1}=u y v
$$

then we obtain (3).
Proposition 6. Let S be a semigroup, $a \in S^{1}, \rho \in \operatorname{Cong}(S)$. Then

$$
S_{a} / \rho_{a} \cong a S a / \rho \cap(a S a \times a S a)
$$

Proof: Set a map $\psi: S_{a} \rightarrow a S a / \rho \cap(a S a \times a S a)$ as follows:

$$
\psi(x)=(a x a) \rho \text { for all } x \in S
$$

It remains to note that ψ is an onto homomorphism and $\psi \circ \psi^{-1}=\rho_{a}$.

References

[1] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Mathematical Surveys 7 (American Mathematical Society, Providence, R.I., 1961, 1967).
[2] J. Hickey, 'Semigroups under a sandwich operation', Proc. Edinburgh Math. Soc. 26 (1983), 371-382.
[3] J. Hickey, 'On variants of a semigroup', Bull. Austral. Math. Soc. 34 (1986), 447-459.
[4] P. Higgins, Techniques of semigroup theory (Oxford University Press, New York, 1992).
[5] T. Khan and M. Lawson, 'Variants of regular semigroups', Semigroup Forum 62 (2001), 358-374.
[6] K. Magill, P. Misra and U. Tewari, 'Symons' d-congruence on sandwich semigroups', Czechslovak Math. J. 33 (1983), 221-236.
[7] M. Petrich, Inverse semigroups (John Wiley \& Sons, 1984).
[8] J. Symons, 'On a generalization of the transformation semigroups', J. Austral. Math. Soc. 19 (1975), 47-61.

Algebra, Department of Mathematics and Mechanics
Kyiv Taras Shevchenko University
64 Volodymyrska St.
01033 Kyiv
Ukraine
e-mail: akudr@univ.kiev.ua
vmaltcev@univ.kiev.ua

[^0]: Received 22nd November, 2005

