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Abstract. We factor the virtual Poincaré polynomial of every homogeneous space G=H, where
G is a complex connected linear algebraic group and H is an algebraic subgroup, as
t2uðt2 � 1ÞrQG=Hðt

2Þ for a polynomial QG=H with nonnegative integer coefficients. Moreover,

we show that QG=Hðt
2Þ divides the virtual Poincaré polynomial of every regular embedding

of G=H, if H is connected.
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Introduction and Statement of the Results

With every complex algebraic variety X (possibly singular, or reducible) one asso-

ciates its virtual Poincaré polynomial PXðtÞ, uniquely determined by the following

properties:

(i) (additivity) PXðtÞ ¼ PYðtÞ þ PX�YðtÞ for every closed subvariety Y.

(ii) If X is smooth and complete, then PXðtÞ ¼
P

m dimHmðXÞ tm is the usual

Poincaré polynomial.

Then PXðtÞ ¼ PYðtÞPFðtÞ for every fibration F ! X ! Y which is locally trivial for

the Zariski topology.

Specifically, we have

PXðtÞ ¼
X

j;m

ð�1Þ jþm dim grmWðH j
c ðXÞÞt

m;

where grmWðHj
cðXÞÞ denotes the mth subquotient of the weight filtration on the jth

cohomology group of X with compact supports and complex coefficients (see

[15], 4.5 and [11]). More generally, the mixed Hodge structure on H�
c ðXÞ yields a

polynomial EXðs; tÞ in two variables, satisfying the same properties of additivity

and multiplicativity, and such that PXðtÞ ¼ EXð�t;�tÞ (see [9] and [2], x3, for more

details).
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In this paper, we investigate the E-polynomials of homogeneous spaces under lin-

ear algebraic groups, and of their regular embeddings in the sense of [4]. It turns out

that these polynomials behave much better than the usual Poincaré polynomials; the

latter are generally unknown for homogeneous spaces. To state our main results, we

introduce the following notation.

Let G be a complex connected linear algebraic group and let H be a closed sub-

group. Let rH (resp. uH) be the rank (resp. the dimension of a maximal unipotent

subgroup) of H, and define similarly rG, uG. Choose maximal reductive subgroups

Hred 	 H, Gred 	 G such that Hred 	 Gred, and maximal tori TH 	 Hred,

TG ¼ T 	 Gred such that TH 	 T; let WH, WG ¼ W be the corresponding Weyl

groups. The Lie algebras of G, H; . . . will be denoted g, h; . . .
The groupWH acts on the Lie algebra tH and on its ring of polynomial functions,

C½tH� ¼ RðTHÞ. The invariant subring C½tH�
WH ¼ RðHÞ is a finitely generated, graded

algebra over C, isomorphic to C½hred�H
red

. Its Hilbert series
P1

m¼0 dimRðHÞm tm is the

expansion of a rational function of t, denoted FHðtÞ.

Since G is connected, RðGÞ is a polynomial ring, and there exists a graded subspace

H of RðT Þ such that the multiplication map induces an isomorphism of RðGÞ 
H
onto RðT Þ. Moreover, H is isomorphic to the cohomology space of the flag variety

F ðGÞ, with complex coefficients. This isomorphism doubles degrees, and the Hodge

structure on H�ðF ðGÞÞ is pure. Therefore, the Poincaré polynomial PF ðGÞ is even, and

we have

EF ðGÞðs; tÞ ¼ PF ðGÞððstÞ
1=2

Þ and
1

ð1� tÞrG
¼ FTðtÞ ¼ FGðtÞPF ðGÞðt

1=2Þ:

Moreover, we have PF ðGÞðq
1=2Þ ¼ jF ðGÞðFqÞj for every finite field Fq with q elements.

Here jF ðGÞðFqÞj denotes the number of points over Fq of F ðGÞ regarded as the flag

variety of the split Z-form of Gred.

Our first main result generalizes this to an arbitrary homogeneous space G=H,

with some twists. Notice that both G and its closed subgroup H are defined over a

finitely generated subring of C, so that ðG=HÞðFqÞ makes sense for a large power q

of a large prime number.

THEOREM 1. ðaÞ With preceding notation, the virtual Poincaré polynomial PG=H is

even, and we have

EG=Hðs; tÞ ¼ PG=HððstÞ
1=2

Þ and FHðtÞ ¼ FGðtÞ t
dimðG=HÞPG=Hðt

�1=2Þ:

Moreover, we have for all large q: jðG=HÞðFqÞj ¼ PG=Hðq
1=2Þ:

ðbÞ There exists a polynomial QG=H with nonnegative integer coefficients, such that

PG=Hðt
1=2Þ ¼ tuG�uH ðt� 1ÞrG�rHQG=HðtÞ:
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Moreover, QG=HðtÞ ¼ QGred=Hred ðtÞ. The degree of QG=H equals dimF ðGÞ � dimF ðH0Þ,

with leading coefficient 1, and QG=Hð1Þ equals jWGj=jWHj.

ðcÞ If H is connected, then

QG=HðtÞ ¼ PF ðGÞðt
1=2ÞPF ðHÞðt

1=2Þ ¼ tdimF ðGÞ�dimF ðHÞQG=Hðt
�1Þ:

In particular, QG=Hð0Þ ¼ 1.

It follows that uG � uH, rG � rH and QG=H depend only on the complex algebraic

variety G=H (in fact, rG � rH is a topological invariant, see [1] 4.3).

Theorem 1 is proved in Section 1 by arguments of equivariant cohomology; it

would be interesting to deduce it from a deeper motivic result. Notice that (a) can

be deduced from the fibration G=H ! BH ! BG, where BH (resp. BG) denotes

the classifying space of H (resp. G); then the cohomology ring of BH is isomorphic

to RðHÞ with degrees doubled, so that the Poincaré series of BH is FHðt
2Þ. If more-

over H is connected, then

PG=Hðt
1=2Þ ¼

PGðt
1=2Þ

PHðt1=2Þ
¼ tuG�uH ðt� 1ÞrG�rH

PF ðGÞðt
1=2Þ

PF ðHÞðt1=2Þ
;

as follows from [11] Theorem 6.1(ii); and a similar relation holds for jðG=HÞðFqÞj, by

Lang’s theorem.

So the main point of Theorem 1 is (b), especially the nonnegativity of coefficients

of QG=H. We deduce it (together with (a) and (c)) from a geometric construction that

may be of independent interest. In loose words, we obtain a locally trivial fibration

(for the Zariski topology) S ! G=H ! Z, where S is a torus of dimension rG � rH,

and Z is an algebraic variety satisfying Poincaré duality and whose cohomology is

purely algebraic (see Lemmas 1 and 2 for a precise statement). Thus,

EG=Hðs; tÞ ¼ ð1� stÞrG�rHEZðs; tÞ, and EZðs; tÞ is the value at ðstÞ
1=2 of the Poincaré

polynomial of H�
c ðZÞ. In the case where G and H have the same rank, it follows that

PG=HðtÞ is the Poincaré polynomial of H
�
c ðG=HÞ.

As a consequence of Theorem 1, the Poincaré polynomial of the flag variety of a

semi-simple group is divisible by the Poincaré polynomial of the flag variety of every

semi-simple subgroup, and the quotient has nonnegative coefficients. Our second

main result generalizes this to closed subvarieties of flag varieties. Here the cohomo-

logy H�ðXÞ is replaced by IH�ðX;LÞ, the middle intersection cohomology of X with
coefficients in a local system L on a dense open nonsingular subvariety (see [3] and
also the survey [5]).

PROPOSITION 1. With preceding notation, let X be a closed H-invariant subvariety

of the flag variety F ðGÞ and let L be a local system on a dense open nonsingular

subvariety of X. If H is connected and if L is semi-simple and H-equivariant, then the

intersection cohomology Poincaré polynomial IPX;LðtÞ ¼
P

m dim IHmðX;LÞtm is divi-

sible by PF ðHÞðtÞ, and the quotient has nonnegative integer coefficients.
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This is proved at the end of Section 2 by adapting part of the proof of Theorem 1.

Next we turn to the E-polynomials of regular embeddings. Recall from [4] that a

regular embedding of the homogeneous space G=H is a smooth complex algebraic

variety X endowed with an algebraic action of G, such that:

(i) X contains an open orbit isomorphic to G=H.

(ii) The complement of this open orbit is a union of smooth irreducible divisors (the

boundary divisors), with normal crossings.

(iii) Every orbit closure is a partial intersection of the boundary divisors, and its

normal bundle contains an open orbit.

Recall also that those homogeneous spaces under a connected reductive group G

which admit a complete regular embedding are exactly the spherical homogeneous

spaces, i.e., those where a Borel subgroup of G acts with an open orbit.

Since every regular embedding X contains only finitely many orbits, we have

EXðs; tÞ ¼ PXððstÞ
1=2

Þ by Theorem 1 and additivity. Therefore, it suffices to consider

the virtual Poincaré polynomial PX. Our third main result yields a factorization of

that polynomial:

THEOREM 2. Let X be a regular embedding of G=H, where H is connected. Then, for

every orbit G=H0 in X, the polynomial QG=HðtÞ divides QG=H0 ðtÞ, and the quotient has

nonnegative integer coefficients.

As a consequence, there exists a polynomial RXðtÞ with integer coefficients, such that

PXðt
1=2Þ ¼ QG=HðtÞRXðtÞ: If, moreover, X is complete, then the coefficients of RXðtÞ are

nonnegative.

The assumption that H is connected cannot be suppressed, as shown by an exam-

ple at the end of Section 2. This section is devoted to the proof of Theorem 2. Again,

the main point is the nonnegativity of coefficients of RXðtÞ; for this, we show that the

equivariant cohomology ring of X is a free module of finite rank over a polynomial

subring generated by RðHÞ and indeterminates of degree 2. It would be interesting to

obtain a topological interpretation of the polynomial RXðtÞ. However, the factoriza-

tion PXðt
1=2Þ ¼ QG=HðtÞRXðtÞ does not originate in a fibration with total space X, as

shown by the following simple example.

Consider the complex projective space X ¼ P
2mþ1 of odd dimension, where the

projective special orthogonal group G ¼ SOð2mþ 2Þ=f�1g acts linearly. Then X con-

sists of 2 orbits: the quadric Q2m, and its complement with isotropy group

H ffi Oð2mþ 1Þ=f�1g ffi SOð2mþ 1Þ, a connected subgroup; one checks that X is a

regular completion of G=H. We have

PG=Hðt
1=2Þ ¼ P

P
2mþ1 ðt1=2Þ � PQ2mðt

1=2Þ ¼ tmðtmþ1 � 1Þ;

so that QG=HðtÞ ¼ tm þ tm�1 þ � � � þ 1 and that RXðtÞ ¼ tmþ1 þ 1. How to explain the

factorization
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P
P
2mþ1 ðt1=2Þ ¼ t2mþ1 þ t2m þ � � � þ 1 ¼ ðtm þ tm�1 þ � � � þ 1Þðtmþ1 þ 1Þ

in topological terms?

Notice that the complex projective space P
2m of even dimension is a regular com-

pletion of the homogeneous space SOð2mþ 1Þ=Oð2mÞ (where Oð2mÞ is not connec-

ted) by the quadric Q
2m�1; this yields QSOð2mþ1Þ=Oð2mÞðtÞ ¼ 1.

These are examples of complete symmetric varieties. In fact, the Poincaré polyno-

mials of all such varieties were determined by De Concini and Springer (see [10]) who

deduced the virtual Poincaré polynomials of adjoint symmetric spaces. Their results

were the starting point for the present work, as the factorizations of Theorems 1

and 2 can be seen on examples of [10].

For instance, by Theorem 2, the virtual Poincaré polynomial of any regular

embeding X of a connected reductive group G (viewed as a homogeneous space

under the action of G� G by left and right multiplication) is divisible by

QGðt
2Þ ¼ PF ðGÞðt

2Þ. When G is semi-simple adjoint and X is its canonical completion,

this agrees with the closed formula for PXðtÞ given in [10] p. 96.

1. Proof of Theorem 1 and of Proposition 1

In what follows, we use [14] as a general reference for mixed Hodge structures, and

[20] for algebraic groups.

Proof of Theorem 1. We begin with an easy reduction to the case where both

groups G and H are reductive. Let RuðHÞ be the unipotent radical of H. This unipo-

tent group is isomorphic, as an algebraic variety, to some C
u. Since H is the semi-

direct product of RuðHÞ with Hred, we have u ¼ uH � uHred . The quotient map

G ! G=H factors through p:G=Hred ! G=H; a fibration with fiber RuðHÞ ffi C
u.

Thus, the pullback map H�ðG=HredÞ ! H�ðG=HÞ is an isomorphism of mixed Hodge

structures. By Poincaré duality, it follows that EG=Hred ðs; tÞ ¼ ðstÞuEG=Hðs; tÞ:

We now show that jðG=HredÞðFqÞj ¼ qujðG=HÞðFqÞj for q such that H
red is defined

over Fq and thatH is the semidirect product of RuðHÞ withHred over Fq. This follows

from Grothendieck’s trace formula; as an alternative proof using elementary argu-

ments of Galois descent, we check that p: ðG=HredÞðFqÞ ! ðG=HÞðFqÞ is surjective

with all fibers of order qu. We denote Frq the Frobenius endomorphism of GðFqÞ,

with fixed point subgroup GðFqÞ.

Let x 2 GðFqÞ such that xH 2 ðG=HÞðFqÞ. Then x
�1FrqðxÞ 2 HðFqÞ. Thus, we can

write x�1FrqðxÞ ¼ yz where y 2 RuðHÞðFqÞ and z 2 HredðFqÞ. Since RuðHÞðFqÞ is con-

nected and invariant under IntðzÞ � Frq, there exists h 2 RuðHÞðFqÞ such that

y ¼ hzFrqðh
�1Þz�1. Thus, x�1FrqðxÞ ¼ hzFrqðh

�1Þ. Replacing x by xh, we may

assume that x�1FrqðxÞ 2 HredðFqÞ. This proves the surjectivity of p.
Let now x; y 2 GðFqÞ such that xH

red; yHred 2 ðG=HredÞðFqÞ and that y 2 xH. We

may assume that y ¼ xz where z 2 RuðHÞðFqÞ. Then H
redðFqÞ contains x

�1FrqðxÞ and

y�1FrqðyÞ ¼ z�1x�1FrqðxÞFrqðzÞ. Since HredðFqÞ normalizes RuðHÞðFqÞ and their

THE VIRTUAL POINCARÉ POLYNOMIALS OF HOMOGENEOUS SPACES 323

https://doi.org/10.1023/A:1020984924857 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020984924857


intersection is trivial, it follows that z�1x�1FrqðxÞFrqðzÞFrqðx
�1Þx ¼ 1. Therefore,

xzx�1 2 ðxRuðHÞx�1ÞðFqÞ, and xRuðHÞx�1 is a Frq-stable connected unipotent group

of dimension u. So every fiber of p has order qu.
Therefore, if Theorem 1 holds for G=Hred, then it holds for G=H, and QG=Hred ðtÞ ¼

QG=HðtÞ: So we may assume that H ¼ Hred. Then, using the fibration

G=H ! G=RuðGÞH ffi Gred=Hred

with fiber RuðGÞ, one reduces similarly to the case where G ¼ Gred.

We assume from now on that G and H are reductive; as a consequence, G=H is

affine.

LEMMA 1. The following conditions are equivalent for a subtorus S of T, with Lie

algebra s 	 t:

ðiÞ All isotropy subgroups of S acting on G=H are finite, and S is maximal for this

property.

ðiiÞ s� wtH ¼ t for all w 2 W.

As a consequence, there exist subtori S satisfying (i), and all of them have dimension

rG � rH. Moreover, the double coset space SnG=H is an affine algebraic variety, with at

worst quotient singularities by finite Abelian groups.

Proof. Let g 2 G, then the finiteness of the isotropy group of gH in S is equivalent

to: s \AdðgÞh ¼ 0. As there are only finitely many isotropy groups for a torus action

on an algebraic variety, the finiteness of all isotropy groups for the S-action on G=H

is equivalent to: s \AdðGÞh ¼ 0. Since

s \AdðGÞh ¼ s \ ðt \AdðGÞtHÞ ¼ s \WtH;

this amounts to: s \ wtH ¼ f0g for all w 2 W.

Now t has aW-invariant rational structure, defined by the lattice of differentials at
1 of one-parameter subgroups of T; the rational subspaces are exactly the Lie algebras

of subtori. Moreover, any rational subspace s intersecting trivially all subspaces wtH
is contained in a rational complement to all these subspaces. This proves equivalence

of conditions (i) and (ii), and the assertion on existence of subtori S and their

dimension. For any such subtorus S, all orbits in the affine variety G=H are closed,

and the isotropy groups are finite abelian groups. This implies the latter assertion. &

Remark. Lemma 1 extends to arbitrary homogeneous spaces G=H, except for the

assertion that SnG=H is an affine algebraic variety. In fact, the quotient space SnG=H

may well be non-separated if G=H is not affine. For example, let G ¼ SLð2Þ and letH

be its standard unipotent subgroup. The diagonal torus D ffi C
� of G acts on

G=H ffi C
2
� f0g by t � ðx; yÞ ¼ ðtx; t�1yÞ. All isotropy groups are trivial, but the

quotient space is a classical example of a nonseparated scheme: the affine line with its

origin doubled.
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Next choose a subtorus S of T satisfying the conditions of Lemma 1 and let

Z ¼ SnG=H with quotient map f:G=H ! Z. Then there exists a decomposition of

Z into finitely many disjoint, locally closed subvarieties Zj (j 2 J), together with finite

subgroups Fj ( j 2 J) of S, such that every f�1ðZjÞ is equivariantly isomorphic to

S=Fj � Zj. Since S=Fj is a torus of dimension rG � rH, we have ES=Fjðs; tÞ ¼

ðst� 1ÞrG�rH , whence EG=Hðs; tÞ ¼ ðst� 1ÞrG�rHEZðs; tÞ: Likewise, we have for all large

q: jðG=HÞðFqÞj ¼ ðq� 1ÞrG�rH jZðFqÞj:

Since Z has at worst finite quotient singularities, it satisfies Poincaré duality over

C. As a consequence, each closed algebraic subvariety of codimension (say) r in Z

has a cohomology class in H2rðZÞ. This yields the (degree doubling) cycle map

cl:A�ðZÞ ! H�ðZÞ; where the left-hand side is the Chow group of Z, graded by codi-

mension (see [16] Chapter 19).

LEMMA 2. With preceding notation, cl is an isomorphism over C. Moreover, the

graded ring H�ðZÞ is isomorphic to RðSÞ 
RðGÞ RðHÞ, and the usual Poincaré poly-

nomial of Z equals

FSðt
2ÞFHðt

2Þ

FGðt2Þ
¼

FHðt
2Þ

ð1� t2ÞrG�rHFGðt2Þ
:

Proof. We use equivariant cohomology, see, e.g., [17]. Consider the action of T

on G=H, then the equivariant cohomology ring H�
TðG=HÞ is clearly isomorphic to

H�
HðG=TÞ. Since H�

GðG=TÞ ¼ H�ðBTÞ ¼ RðT Þ is a free module of rank jWj over

H�
Gð ptÞ ¼ H�ðBGÞ ¼ RðGÞ, the Eilenberg–Moore spectral sequence (see [17], III.2)

yields an isomorphism

H�
HðG=TÞ ffi H�ðBHÞ 
H�ðBGÞ H

�
GðG=TÞ;

that is,

H�
TðG=HÞ ffi RðT Þ 
RðGÞ RðHÞ:

This is a commutative, positively graded algebra, finite and free of rank jWj over its

subring RðHÞ. The latter is a Cohen–Macaulay ring of dimension rH. Thus, the ring

H�
TðG=HÞ is Cohen–Macaulay of dimension rH as well, with Poincaré series

FTðt
2ÞFHðt

2Þ

FGðt2Þ
¼

FHðt
2Þ

ð1� t2ÞrGFGðt2Þ
:

Since the subtorus S of T acts on G=H with finite isotropy groups, we have

H�
TðG=HÞ ffi H�

T=SðSnG=HÞ ffi H�
T=SðZÞ:

This is a finitely generated module over H�
T=Sð ptÞ ¼ RðT=SÞ. But T=S is a torus of

dimension rH, so that RðT=SÞ is a polynomial ring in rH variables of degree 2. Since

H�
TðG=HÞ is Cohen–Macaulay of dimension rH and finite over RðT=SÞ, it is a free

module over that ring, by the Auslander–Buchsbaum formula (see [13], 19.3).
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We claim that the canonical map

C 
RðT=SÞ H
�
T=SðZÞ ! H�ðZÞ

is an isomorphism. This follows from the Eilenberg–Moore spectral sequence again;

we provide an alternative argument which adapts to other settings. We may assume

that S 6¼ T. Choose then a primitive character w of T restricting trivially to S. Con-
sider the T-action on C by multiplication with w, the corresponding diagonal action
on Z� C, and the closed T-invariant subset Z� f0g, with complement Z� C

�
ffi

Z� T=T 0. The long exact sequence of equivariant cohomology for the pair

ðZ� C;Z� f0gÞ, together with the Thom isomorphism, yields exact sequences

� � � ! Hm�2
T=S ðZÞ ! Hm

T=SðZÞ ! Hm
T0=SðZÞ ! � � �

for all m, where the left map is multiplication by the image of w in H2T=Sð ptÞ. Since
this multiplication is injective, it follows that the canonical map

H�
T=SðZÞ=wH

�
T=SðZÞ ! H�

T0=SðZÞ

is an isomorphism. Now induction on dimðT=SÞ completes the proof of the claim.

By that claim, we have

H�ðZÞ ffi C 
RðT=SÞ RðT Þ 
RðGÞ RðHÞ:

But C 
RðT=SÞ RðT Þ ffi RðSÞ; thus, we obtain H�ðZÞ ffi RðSÞ 
RðGÞ RðHÞ. Moreover,

H�ðZÞ is the quotient of H�
T=SðZÞ by a regular sequence consisting of rH homoge-

neous elements of degree 2. Therefore, the usual Poincaré polynomial of Z equals

ð1� t2ÞrH
FTðt

2ÞFHðt
2Þ

FGðt2Þ
¼

FHðt
2Þ

ð1� t2ÞrG�rHFGðt2Þ
:

It remains to compare cohomology of Z with its Chow group. For this, we use

equivariant intersection theory, see [12] and also [6]. The equivariant Chow group

with complex coefficients (graded by codimension) A�
TðG=HÞ is again isomorphic

to RðT Þ 
RðGÞ RðH Þ, by [6] Corollary 12. Moreover, for any scheme X with an action

of T, the canonical map

RðSÞ 
RðT Þ A
�
TðXÞ ! A�

SðXÞ

is an isomorphism (to see this, choose w as above; then we obtain exact sequences

Am�1
T ðX� f0gÞ ! Am

T ðX� CÞ ! Am
T ðX� C

�
Þ ! 0;

that is,

Am�1
T ðXÞ ! Am

T ðXÞ ! Am
T0 ðXÞ ! 0

where the left map is multiplication by the image of w in A1Tð ptÞ. As a consequence,
the map

RðSÞ 
RðGÞ RðHÞ ! A�
SðG=HÞ
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is an isomorphism; it follows that the cycle map

cl:A�
SðG=HÞ ! H�

SðG=HÞ ¼ H�ðZÞ

defined in [12] 2.8, is an isomorphism as well. Finally, A�
SðG=HÞ ffi A�ðSnG=HÞ ¼

A�ðZÞ by [12] Proposition 4 and Theorem 4. &

Remark. By Lemma 2, the Betti numbers of Z ¼ SnG=H are independent of the

choice of S. But the algebra structure of H�ðZÞ may depend on S, as shown by the

example where H ¼ SLð2Þ � SLð2Þ is embedded diagonally in H�H ¼ G. Fur-

thermore, there may exist no subtorus S acting on G=H with finite constant isotropy

groups; this happens, for instance, if G ¼ SLð3Þ and H ¼ SOð3Þ.

As a final preparation for the proof of Theorem 1, we need the following easy

result of invariant theory.

LEMMA 3. We have

lim
t!1

ð1� tÞrHFHðtÞ ¼
1

jWHj
:

Moroever, the degree of the rational function FHðtÞ is at most � dimF ðH0Þ, with equa-

lity if H is connected.

Proof. The former assertion is a (well-known) consequence of Molien’s formula

for the invariant ring RðHÞ ¼ C½tH�
WH :

FHðtÞ ¼
1

jWHj

X

w2WH

1

dettH ð1� tw�1Þ
:

For the latter assertion, recall that RðH0Þ is a graded polynomial ring with homo-

geneous generators of degrees d14 � � � 4 dr, where r ¼ rH. Thus, the degree of

FH0ðtÞ is �d1 � � � � �dr ¼ � dimF ðH0Þ. Moreover, denoting G the finite group

H=H0, we have an exact sequence

1! WH0 ! WH ! G ! 1:

Thus, G acts on RðH0Þ with invariant subring RðHÞ. Since RðH0Þ is a graded poly-

nomial ring, it contains a graded G-stable subspace V such that the map

SymðV Þ ! RðH0Þ is an isomorphism. It follows that V decomposes as a direct

sum of homogeneous components Vm ; the increasing sequence of their degrees (with

multiplicities given by the dimensions of the Vm) is the same as ðd1; . . . ; drÞ. Now

FHðtÞ ¼
1

jGj

X

g2G

1Q
m detVm

ð1� tmg�1Þ

is a sum of rational functions of the same degree, equal to �d1 � � � � �dr ¼

� dimF ðH0Þ. &

We can now complete the proof of Theorem 1. By Lemma 2, the cohomology of Z

vanishes in all odd degrees, and every space H2mðZÞ is generated by algebraic classes.
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Thus, the Hodge structure on that space is pure of type ðm;mÞ, and the same holds

for the dual space H2mc ðZÞ. In other words,

EZðs; tÞ ¼
X

m

dimH2mc ðZÞðstÞm:

Using Poincaré duality and Lemma 2, it follows that

EZðs; tÞ ¼ ðstÞdimðZÞ
FHððstÞ

�1
Þ

ð1� ðstÞ�1ÞrG�rHFGððstÞ
�1
Þ
;

so that

EG=Hðs; tÞ ¼
ðstÞdimðG=HÞFHððstÞ

�1
Þ

FGððstÞ
�1
Þ

:

On the other hand, we have

jZðFqÞj ¼
X

m

dimH2mc ðZÞqm:

For, by Grothendieck’s trace formula [19], one has

jZðFqÞj ¼
X

m

ð�1ÞmTrðFrq;H
m
c ðZFq

;QlÞÞ

the equality, for large q, then follows from the proper base change theorem and the

fact that the cycle class map is an isomorphism. (alternatively, one may show directly

that

jðG=HÞðFqÞj ¼
qdimðG=HÞFHðq

�1Þ

FGðq�1Þ
;

by arguments of Galois descent). This implies (a). Taking degrees in the equality of

rational functions

FHðtÞ ¼ FGðtÞt
dimðG=HÞPG=Hðt

�1=2Þ

and using Lemma 3, we obtain that PG=Hðt
1=2Þ is divisible by

tdimðG=HÞ�dimF ðGÞþdimF ðHÞ ¼ tuG�uH :

Thus, we can write PG=Hðt
1=2Þ ¼ tuG�uH ðt� 1ÞrG�rHQG=HðtÞ for a polynomial QG=HðtÞ

with integer coefficients. Since PZðtÞ ¼ tuG�uHQG=HðtÞ, these coefficients are non-

negative. Moreover, Lemma 3 implies that QG=Hð1Þ ¼ jWGj=jWHj.

For any irreducible variety X, the degree of PXðtÞ is 2 dimðXÞ, with leading coeffi-

cient 1. It follows that the degree of QG=HðtÞ is dimF ðGÞ � dimF ðH0Þ, with leading

coefficient 1. This completes the proof of (b). Finally, (c) follows from (a), (b) and

Poincaré duality for F ðGÞ and F ðHÞ.
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Proof of Proposition 1. We may assume that both G and H are semi-simple. We

adapt the arguments of the proof of Lemma 2 to equivariant intersection cohomol-

ogy; for the latter, see [8] and [18].

Choose a Borel subgroup B of G containing T. This identifies F ðGÞ with G=B and

hence H�
HðF ðGÞÞ with

H�
HðG=BÞ ffi H�

HðG=TÞ ffi RðHÞ 
RðGÞ RðT Þ;

compatibly with the isomorphism H�
Hð ptÞ ffi RðHÞ. Consider now the H-equivariant

intersection cohomology IH�
HðX;LÞ with complex coefficients. This is a module over

the H-equivariant cohomology ring H�
HðXÞ and hence over H

�
HðF ðGÞÞ. Moreover, we

have an isomorphism of H�
Hð ptÞ-modules

IH�
HðX;LÞ ffi H�

Hð ptÞ 
C IH�ðX;LÞ

(this is proved in [18] Proposition 13, in the case where H is a one-dimensional torus

and L is constant; the general case is similar, see [7] (1.5.2) for details).
In particular, the H �

Hð ptÞ-module IH
�
HðX;LÞ is finitely generated and free. Thus,

IH �
HðX;LÞ is a finitely generated Cohen-Macaulay module of dimension rH over

H �
HðF ðGÞÞ. Since the latter ring is a finitely generated free module over RðT=SÞ, a

polynomial subring in rH variables, it follows that IH
�
HðX;LÞ is finitely generated

and free over RðT=SÞ as well. Thus, we have an isomorphism of RðT=SÞ-modules

IH �
HðX;LÞ ffi RðT=SÞ 
C V;

where V is a finite dimensional graded vector space. Let IQX;LðtÞ ¼
P

m dimðVmÞt
m,

then the preceding isomorphisms imply the equality

FHðtÞIPX;LðtÞ ¼
1

ð1� t2ÞrH
IQX;LðtÞ

and hence IPX;LðtÞ ¼ PF ðHÞðtÞIQX;LðtÞ.

Remark. We formulate a topological interpretation of the quotient polynomial

IQX;LðtÞ. Let pB:G ! G=B be the quotient map, then p�1B ðX Þ is a closed subvariety of

G, invariant under left multiplication by H and right multiplication by B.

Next let pH:G ! HnG be the quotient map and let Y ¼ pHðp�1B ðX ÞÞ. This is a

closed B-invariant subvariety of the affine algebraic variety HnG. Moreover, the

H-equivariant semi-simple local system L on a dense open nonsingular subvariety of
X corresponds to a B-equivariant semi-simple local system LY on a dense open

nonsingular subvariety of Y, since pB and pH are principal fibrations.
Now one may show like in the proof of Lemma 2 that

IQX;LðtÞ ¼
X

m

dim IHm
S ðY;LYÞ t

m;

where S is any subtorus of T satisfying the conditions of Lemma 1. In particular, if L
is the constant local system, then IQX;LðtÞ is the intersection cohomology Poincaré

polynomial of Y=S, so that the intersection cohomology Betti numbers of Y=S are

independent of the choice of S.
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2. Proof of Theorem 2

Let Y be an orbit in X. Replacing X by the union of all orbits whose closure contains

Y (an open G-invariant subset of X), we may assume that Y is closed in X. Then Y is

the transversal intersection of boundary divisors, say X1; . . . ;Xr. Choose x 2 Y and

denote by H0 its isotropy subgroup. Then H0 acts on the normal space to Y at x; this

action is diagonalizable and given by r linearly independent characters, see [4]. This

defines a surjective group homomorphism H0 ! ðC
�
Þ
r, whence an exact sequence

1! K ! H0 ! ðC
�
Þ
r
! 1;

where K is the kernel of the H0-action on the normal space. Let Kred be a maximal

reductive subgroup of K.

We claim that Kred is contained in a conjugate of H. To check this, consider the

linear action on Kred on the tangent space TxX and choose a K
red-invariant comple-

ment N to the Kred-invariant subspace TxY; by construction, K
red fixes N pointwise.

Then we can choose a Kred-invariant subvariety Z of X, such that Z is smooth at x

and that TxZ ¼ N. Therefore, Kred fixes pointwise a neighborhood of x in Z, and this

neighborhood meets the open orbit G=H.

Thus, we may assume that Kred is contained in H. Since H is connected, we can

apply [11] Theorem 6.1(ii) to the fibration G=Kred ! G=H with fiber H=Kred, to

obtain

PG=Kred ðtÞ ¼ PG=HðtÞPH=Kred ðtÞ:

Together with Theorem 1, it follows that

QG=KðtÞ ¼ QG=HðtÞQH=Kred ðtÞ:

On the other hand, the action of H0=K ffi ðC
�
Þ
r on G=K by right multiplication

defines a principal ðC�
Þ
r-bundle G=K ! G=H0. All such bundles are locally trivial,

whence PG=KðtÞ ¼ ðt2 � 1ÞrPG=H0 ðtÞ, and QG=KðtÞ ¼ QG=H0 ðtÞ: So, QG=HðtÞ divides

QG=H0 ðtÞ and the quotient has nonnegative coefficients.

By additivity, it follows that QG=HðtÞ divides PXðt
1=2Þ ; the quotient is an even poly-

nomial, RXðtÞ. Since QG=Hð0Þ ¼ 1, the coefficients of RXðtÞ are integers. However,

their nonnegativity for complete X is not an obvious fact, because of the factor

tuG�uH0 ðt� 1ÞrG�rH0 in each PG=H0 ðt1=2Þ. For this reason, we shall present an alternative

proof of the existence of RXðtÞ, which will also yield this nonnegativity property.

We begin by relating the virtual Poincaré polynomial PXðtÞ to equivariant coho-

mology of X. If V is a Z-graded complex vector space such that every homogeneous

component Vm is finite dimensional, let FVðtÞ ¼
P1

m¼�1 dimðVmÞt
m be its Poincaré

series. If X is a variety where G acts algebraically, then H �
GðXÞ is a finitely generated,

graded module over H �ðBGÞ ¼ RðGÞ. As a consequence, the series FH �
G
ðXÞðtÞ is the

expansion of a rational function, for which we use the same notation.
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LEMMA 4. For every regular embedding X, the rational function FH �
G
ðX ÞðtÞ is even,

and

FH �
G
ðXÞðt

1=2Þ ¼ FGðtÞ t
dimðXÞPXðt

�1=2Þ:

Proof. In the case where X ¼ G=H is a unique orbit, we have H �
GðXÞ ffi H �ðBHÞ ffi

RðHÞ, whence FH �
G
ðXÞðtÞ ¼ FHðt

2Þ. So the assertion follows from Theorem 1.

In the general case, choose a closed orbit Y in X, of codimension r, with comple-

ment U. The inclusion map i : Y ! X defines a Gysin morphism i�:H
�
GðYÞ !

H �
GðXÞ; of degree 2r. By [4], this map and the restriction map H

�
GðXÞ ! H �

GðUÞ fit

into a short exact sequence

0! H �
GðYÞ ! H �

GðXÞ ! H �
GðUÞ ! 0:

It follows that

FH �
G
ðXÞðtÞ ¼ t2rFH �

G
ðYÞðtÞ þ FH �

G
ðUÞðtÞ:

Since PX ¼ PY þ PU, our assertion follows by induction. &

Remark. Lemma 4 admits a simpler formulation in terms of equivariant Borel–

Moore homology HG
� ðXÞ, as defined in [12]. Indeed, by Poincaré duality, the rational

function FHG
� ðXÞ

ðtÞ is even, and FHG
� ðXÞ

ðt1=2Þ ¼ FGðt
�1ÞPXðt

1=2Þ: In fact this holds, more

generally, for every variety X where G acts with finitely many orbits.

Next let X1; . . . ;Xn be the boundary divisors of the regular embedding X, and let

z1; . . . ; zn 2 H2GðXÞ be their equivariant cohomology classes. In the ring H
�
GðXÞ, con-

sider the ideal IX of H
�
GðXÞ generated by z1; . . . ; zn, and the ideal JX, kernel of the

restriction map

r:H �
GðX Þ ! H �

GðG=HÞ ffi RðHÞ:

Clearly, IX is contained in JX, and the latter ideal is prime. Moreover, r is surjective
by [4], so that we have an exact sequence

0! JX ! H �
GðXÞ ! RðHÞ ! 0:

Examples show that IX may differ from JX; but these ideals are closely related, as

shown by the following result.

LEMMA 5. We have J2
N

X 	 IX, where N denotes the number of G-orbits in X.

Proof. We argue by induction on N. If N ¼ 1, then X ¼ G=H so that both IX and

JX are trivial. In the general case, we use the notation of the proof of Lemma 4. The

(surjective) restriction map H �
GðXÞ ! H �

GðUÞ sends IX (resp. JX) onto IU (resp. JU).

Let a 2 JX. Since J
2N�1

U 	 IU by the induction assumption, we may assume that

a2
N�1

¼ i�b for some b 2 H �
GðYÞ. Now we have in H

�
GðXÞ:

a2
N

¼ ði�bÞ [ ði�bÞ ¼ i�ðb [ i�i�bÞ ¼ i�ðb
2
[ i�i�1Þ ¼ ði�b

2
Þ [ ði�1Þ;
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by the projection formula. Moreover, i�1 is the equivariant cohomology class of Y in

X. Since Y is a transversal intersection of r boundary divisors, say X1; . . . ;Xr, we

have i�1 ¼ z1; . . . ; zr 2 IX, and a2
N

2 IX as well. &

SinceH is connected,RðHÞ is a graded polynomial ring, so that we can choose a gra-

ded subalgebra R of H�
GðXÞ that restricts isomorphically to H

�
GðG=HÞ ffi RðHÞ via r.

LEMMA 6. H�
GðXÞ is finite over its subring generated by R and z1; . . . ; zn.

Proof. Since the algebra H�
GðXÞ is positively graded, it suffices to prove that the

quotient

H�
GðXÞ=ðz1; . . . ; znÞ ¼ H�

GðXÞ=IX

is a finitely generated R-module. By Lemma 5, H�
GðXÞ=IX is a quotient of H

�
GðXÞ=J

m
X

for some positive integer m. Consider the finite filtration of H�
GðXÞ=J

m
X by the powers

of the image of JX, and notice that all the subquotients J
p
XH

�
GðXÞ=J

pþ1
X H�

GðXÞ are

finite modules over H�
GðXÞ=JX ¼ RðHÞ. Since the latter is isomorphic to R, the asser-

tion follows. &

We now need the following variant of the Noether normalization theorem.

LEMMA 7. Let A be a finitely generated, positively graded algebra over an infinite

field k. Let y1; . . . ; ym be homogeneous, algebraically independent elements of A and let

z1; . . . ; zn be homogeneous elements of degree 1, such that A is finite over its subalgebra

generated by y1; . . . ; ym; z1; . . . ; zn. Then there exist a nonnegative integer n0 and

homogeneous elements y01; . . . ; y
0
m; z

0
1; . . . ; z

0
n0 of A such that:

ðiÞ y0i � yi 2 k½z1; . . . ; zn� for 14 i4m.

ðiiÞ z01; . . . ; z
0
n0 are linear combinations of z1; . . . ; zn.

ðiiiÞ y01; . . . ; y
0
m; z

0
1; . . . ; z

0
n0 are algebraically independent, and A is finite over the sub-

ring that they generate.

Proof. The argument is similar to that of the classical Noether normalization

theorem, see [13] 13.1; we present it for completeness. We argue by induction on n,

the case where n ¼ 0 being trivial. In the general case, we may assume that

y1; . . . ; ym; z1; . . . ; zn are algebraically dependent, and we choose a polynomial

relation

Pðy1; . . . ; ym; z1; . . . ; znÞ ¼ 0:

We may assume that this relation is homogeneous and involves zn. Let d1; . . . ; dm be

the degrees of y1; . . . ; ym. Define y
0
1; . . . ; y

0
m; z

0
1; . . . ; z

0
n�1 by

yi ¼ y0i þ aiz
di
n ; zj ¼ z0j þ bjzn

where a1; . . . ; am; b1; . . . ; bn�1 are in k. Then

Pð y01 þ a1z
d1
n ; . . . ; y

0
m þ amz

dm
n ; z01 þ b1zn; . . . ; z

0
n�1 þ bn�1zn; znÞ ¼ 0:

332 MICHEL BRION AND EMMANUEL PEYRE

https://doi.org/10.1023/A:1020984924857 Published online by Cambridge University Press

https://doi.org/10.1023/A:1020984924857


Regarding the right-hand side as a polynomial in zn, the coefficient of the leading

term equals Pða1; . . . ; am; b1; . . . ; bn�1; 1Þ. Since k is infinite and by our assumptions

on P, we may choose a1; . . . ; am; b1; . . . ; bn�1 so that this coefficient is nonzero. Then

zn is integral over the subring A
0 of A generated by y01; . . . ; y

0
m and z

0
1; . . . ; z

0
n�1. We

conclude by the induction assumption for A0. &

We can now show that QG=HðtÞ divides PXðt
1=2Þ. Apply Lemma 7 to the algebra

H�
GðXÞ and to homogeneous, algebraically independent generators of its polynomial

subalgebra R; then we obtain another polynomial subalgebra R0 (restricting isomor-

phically to RðHÞ) and linear combinations z01; . . . ; z
0
n0 of z1; . . . ; zn, such that H

�
GðXÞ is

finite over its polynomial subring R0½z01; . . . ; z
0
n0 �. Let fðtÞ be the associated Hilbert

polynomial, then

FH�
G
ðXÞðt

1=2Þ ¼
FHðtÞ fðtÞ

ð1� tÞn
0 :

Moreover, fð1Þ is the rank of the R0½z01; . . . ; z
0
n0 �-module H

�
GðXÞ, a positive integer. On

the other hand, we have by Lemma 4:

FH�
G
ðXÞðt

1=2Þ ¼ FGðtÞ t
dimðG=HÞPXðt

�1=2Þ

and, by Theorem 1:

FHðtÞ ¼ FGðtÞ t
dimðG=HÞ�uGþuH ðt�1 � 1ÞrG�rHQG=Hðt

�1Þ:

This yields

PXðt
1=2Þ ¼ tn

0þuG�uH ðt� 1ÞrG�rH�n
0

QG=HðtÞfðt
�1Þ:

Since fð1ÞQG=Hð1Þ 6¼ 0, we must have rG � rH � n0 5 0; and since QG=Hð0Þ ¼ 1, the

Laurent polynomial tn
0þuG�uH ðt� 1ÞrG�rH�n

0

fðt�1Þ must be a polynomial. Thus,

QG=HðtÞ divides PXðt
1=2Þ.

If, moreover, X is complete, then the RðGÞ-module H�
GðXÞ is free by [4]. Thus, the

ring H�
GðXÞ is Cohen–Macaulay of dimension rG. Since this ring is finite over

R0½z01; . . . ; z
0
n0 �, a polynomial subring, H

�
GðXÞ is a free module over that subring,

and we have rG ¼ rH þ n0. Therefore, the Hilbert polynomial fðtÞ has nonnegative

coefficients, so that the same holds for the polynomial

tn
0þuG�uHfðt�1Þ ¼

PXðt
1=2Þ

QG=HðtÞ
:

EXAMPLE. We show that Theorem 2 does not extend to all homogeneous spaces

G=H. Let G ¼ SLð2Þ � SLð2Þ with maximal torus T ¼ D�D, where D denotes the

diagonal torus of SLð2Þ. Let n ¼

�
0 1

�1 0

�
, then the element ðn; nÞ of G normalizes T.

Let H be the subgroup of G generated by T and by ðn; nÞ. The homogeneous space

G=H is spherical, and we have TH ¼ T. Denoting by x, y the obvious coordinates on

t, one obtains RðGÞ ¼ C½x2; y2� and RðHÞ ¼ C½x2; xy; y2�, whence
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FGðtÞ ¼
1

ð1� t2Þ2
; FHðtÞ ¼

1þ t2

ð1� t2Þ2
;

PG=Hðt
1=2Þ ¼ t4 þ t2 and QG=HðtÞ ¼ 1þ t2:

We now construct a regular completion X of G=H, such that PXðt
1=2Þ is not divi-

sible by QG=HðtÞ. Consider the variety Y ¼ P
1
� P

1
� P

1
� P

1 where G acts by

ðg1; g2Þða; b; c; dÞ ¼ ðg1a; g1b; g2c; g2dÞ. Then Y is a regular embedding of G=T. More-

over, the right action of ðn; nÞ on G=T extends to the involution s of Y, defined by
sða; b; c; dÞ ¼ ðb; a; d; cÞ. The fixed point subset Ys is the closed G-orbit,

diagðP1Þ � diagðP1Þ. Since the actions of G and s commute, G acts on the quotient
Y=s. The latter is singular along the image Z of Ys; the normal space to Y=s at every
point of Z is isomorphic to the quotient of C

2 by the involution ðs; tÞ 7! ð�s;�tÞ.

Thus, blowing up Z along Y=s yields a smooth projective embedding X of G=H.
One may check that X is regular and that PXðt

1=2Þ ¼ t4 þ 3t3 þ 6t2 þ 3tþ 1, which

is prime to QG=HðtÞ ¼ t2 þ 1. One may also check that QG=H0 ðtÞ equals tþ 1 or

ðtþ 1Þ2 for the other orbits; thus, QG=HðtÞ is prime to all other QG=H0 ðtÞ.
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1974.

20. Springer, T. A.: Linear Algebraic Groups, 2nd edn, Progr. in Math. 9, Birkhäuser, Basel,
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