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A Further Decay Estimate for the
Dziubański–Hernández Wavelets

Shinya Moritoh and Kyoko Tomoeda

Abstract. We give a further decay estimate for the Dziubański–Hernández wavelets that are band-

limited and have subexponential decay. This is done by constructing an appropriate bell function and

using the Paley–Wiener theorem for ultradifferentiable functions.

1 Introduction

Our aim in this note is to give a further decay estimate for the Dziubański–Hernández

wavelets. Their wavelet ψ satisfies the estimate of the form |ψ(x)| ≤ Cδ exp(−|x|1/δ),

δ > 1. (See [DH].) By constructing an appropriate bell function, we can show,

for example, that some of their wavelets satisfy the estimate of the form |ψ(x)| ≤
Cδ exp{−|x|/(log |x|)δ}, δ > 1, for large values of |x|. It is to be noted that none of

them can have exponential decay.

Their wavelet ψ is constructed by putting its Fourier transform ψ̂(ξ) = eiξ/2ba(ξ),

where ba(ξ), 0 < a ≤ π/3, is an even function on R whose restriction to [0,∞) is a

bell function associated with the interval [π, 2π]. (See also [AWW, BSW, HW].) The

function ba is defined by using a cutoff function ϕa belonging to every Gevrey class

Γ
δ , δ > 1.

The outline of this note is as follows. In Section 2, we begin with the definition of

the space of all ultradifferentiable functions f of class (Mn) and of class {Mn}. (See

[Ko] as well as [Bj] and [Ro].) After giving a special sequence Ln, n = 0, 1, 2, . . .
of positive numbers, we define the p-logarithmic Gevrey classes γ p,δ and Γ

p,δ , p =

1, 2, 3, . . . , δ > 1. The Paley–Wiener theorem for ultradifferentiable functions is also

recalled. Our theorem, giving the further decay estimate mentioned above, is stated

in Section 3. The proof is carried out in Section 4, where we give a natural extension

of Proposition 2.6 in [DH] and calculate the function associated with the sequence

Ln by using the technique in [Ma].

2 Notation, Definitions, and Results

This section is divided into three subsections as described above.

Received by the editors November 28, 2006.
Published electronically December 4, 2009.
AMS subject classification: 42C40, 46E10.
Keywords: wavelets, ultradifferentiable functions.

133

https://doi.org/10.4153/CMB-2010-027-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-027-3


134 S. Moritoh and K. Tomoeda

2.1 Ultradifferentiable Functions

Let R be a one-dimensional real Euclidean space. Let Mn, n = 0, 1, 2, . . . , be a

sequence of positive numbers. We assume that Mn satisfies the following conditions:

M2
n ≤ Mn−1Mn+1, n = 1, 2, 3, . . . ,(2.1)

Mn+1 ≤ AHnMn, n = 0, 1, 2, . . . ,(2.2)

∞∑

n=1

Mn−1

Mn

< ∞,(2.3)

where A and H are constants independent of n. Note that the Gevrey sequences nnδ ,

δ > 1, satisfy all the conditions.

The function M(ρ) defined by

M(ρ) = sup
n≥0

log
ρnM0

Mn

, ρ > 0,

is called the function associated with the sequence Mn. If Mn = nnδ , then M(ρ) is

equivalent to ρ1/δ ; limρ→∞ M(ρ)/ρ1/δ
= δ/e.

An infinitely differentiable function f on an open set Ω in R is said to be an ultra-

differentiable function of class (Mn) (resp. of class {Mn}) if for each compact set K in

Ω and each h > 0 there is a constant C (resp. there are constants h and C) such that

sup
x∈K

∣∣∣
( d

dx

) n

f (x)
∣∣∣ ≤ ChnMn, n = 0, 1, 2, . . . .

We denote by E
(Mn)(Ω) (resp. E

{Mn}(Ω)) the space of all functions of class (Mn) (resp.

of class {Mn}) on Ω. Let K be a compact set in R. Then we denote by D
(Mn)
K (resp.

D
{Mn}
K ) the space of all functions of class (Mn) (resp. of class {Mn}) with compact

support contained in K. We can introduce natural locally convex topologies in these

spaces.

2.2 Logarithmic Gevrey Classes

Let us give a sequence Ln, n = 0, 1, 2, . . . , satisfying conditions (2.1), (2.2), and (2.3).

Putting log0 σ = σ and logp σ = log(logp−1 σ) for p = 1, 2, 3, . . . (if logp−1 σ > 0),

we define the p-logarithmic function lp,δ(x) for large values of x as follows:

lp,δ(x) = (log x)(log2 x) · · · (logp−1 x)(logp x)δ, p = 1, 2, 3, . . . , δ > 1.

It is easy to see that the sequence Ln = (nlp,δ(n))n satisfies conditions (2.1), (2.2), and

(2.3) for large values of n. We only note that the function x logk x, k ≥ 1, is convex

for large values of x. For large values of ρ, the function associated with the sequence

Ln can be written as

(2.4) L(ρ) = sup
n≥n0

[n log ρ − n(log n + log2 n + · · · + logp n + δ logp+1 n)],
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where the integer n0 is sufficiently large. We now define the p-logarithmic Gevrey

classes as follows.

Definition Let p = 1, 2, 3, . . . , δ > 1, and Ln = (n lp,δ(n))n. Then

γ p,δ
= E

(Ln)(R) and Γ
p,δ

= E
{Ln}(R).

We remark that the spaces γ p,δ and Γ
p,δ are continuously included in γq,ε and Γ

q,ε

respectively if and only if p > q or p = q, δ ≤ ε. Furthermore, the space Γ
p,δ is

continuously included in γq,ε if and only if p > q or p = q, δ < ε. (See [Ko, pp. 52–

53].) This is a generalization of [DH, Lemma 2.4].

2.3 The Paley–Wiener Theorem

The most fundamental result for ultradifferentiable functions is the following Paley–

Wiener theorem:

Suppose that Mn satisfies conditions (2.1), (2.2), and (2.3) and that K is a compact

set in R.

An entire function u(ζ) on C is the Fourier–Laplace transform of an ultradiffer-

entiable function ϕ(x) ∈ D
(Mn)
K (resp. D

{Mn}
K ), u(ζ) =

∫
R

ϕ(x)e−ix·ζ dx, if and only

if for any h > 0 there is a constant C (resp. there are constants h and C) such that

|u(ζ)| ≤ C exp{−M(|ζ|/h) + HK (ζ)}, ζ ∈ C,

where HK (ζ) = supx∈K Im(x · ζ) is the support function of K.

3 Statement of the Theorem

Our theorem is now stated as follows.

Theorem There exists a Dziubański–Hernández wavelet ψ that satisfies the following

decay estimate:

For any p = 1, 2, 3, . . . and any δ > 1, there is a constant C p,δ such that

|ψ(x)| ≤ C p,δ exp{−|x|/lp,δ(|x|)}

for large values of |x|.

4 Proof of the Theorem

The Denjoy–Carleman–Mandelbrojt theorem states that if Mn satisfies conditions

(2.1), (2.2), and (2.3), then for any compact set K with interior points there is a

function ϕ ∈ D
(Mn)
K (⊂ D

{Mn}
K ) such that ϕ(x) ≥ 0 and

∫
R

ϕ(x) dx = 1. A natural

extension of Proposition 2.6 in [DH] can be stated as follows.

Proposition 1 There exists a cutoff function which belongs to every Γ
p,δ with p =

1, 2, 3, . . . and δ > 1.
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Proof We employ the regularization procedure used in the proof of Proposition 2.6

in [DH], taking one additional parameter p (= 1, 2, 3, . . . ) into consideration. Let h

be an infinitely differentiable nonnegative function with compact support contained

in the interval [−1, 1] such that h(−x) = h(x), x ∈ R, and
∫

R
h(x) dx = 1. Let Nm

be an increasing sequence of large positive integers such that
∑

n≥Nm

(
n lm,δm

(n)
)−1

< 2−m,

where δm = 1 + 1/m. By choosing an =
(
n lm,δm

(n)
)−1

for Nm ≤ n < Nm+1, we have

that
∑

n≥N1
an ≤

∑∞
m=1 2−m

= 1.

Define the function ϕ(n)(x), n ≥ N1, as ϕ(n)(x) = haN1
∗ haN1+1

∗ · · · ∗han
(x), where

ha(x) = (1/a) h(x/a), so that
∫

R
ha(x) dx = 1. We note that ϕ(n) is a function with

compact support contained in the interval [−1, 1].

We shall show that for any p = 1, 2, 3, . . . and any δ > 1, there is a constant C p,δ

such that for every N = 0, 1, 2, . . . and every x ∈ R, it holds that

(4.1)
∣∣∣
( d

dx

)N

ϕ(n)(x)
∣∣∣ ≤ (C p,δ)N+1

(
N lp,δ(N)

)N

for all n ≥ n(p, δ, N). Take m and n so large that m > p, δm < δ, and n > Nm + N.

Then
( d

dx

)N

ϕ(n)(x) = haN1
∗haN1+1

∗· · ·∗haNm
∗
( d

dx

)
haNm+1

∗· · ·∗
( d

dx

)
haNm+N

∗· · ·∗han
(x).

We have, for n ≥ Nm,
∫

R

∣∣∣
( d

dx

)
han

(x)
∣∣∣ dx =

1

an

∫

R

1

an

∣∣∣
( d

dx
h
)( x

an

)∣∣∣dx ≤
C

an

≤ C n lm,δm
(n).

Thus, using the equality
∫

u ∗ v = (
∫

u)(
∫

v) and Young’s inequality sup |u ∗ v| ≤
(
∫
|u|)(sup |v|), we conclude that

∣∣∣
( d

dx

)N

ϕ(n)(x)
∣∣∣ ≤

1

aN1

(
sup
x∈R

h(x)
)
·CN

(
(Nm + N) lm,δm

(Nm + N)
)N

≤ (C p,δ)N+1
(

N lp,δ(N)
)N

.

Observe that Nm depends on both p and δ. It is now easy to see that ϕ(n) converges to

a function ϕ which satisfies (4.1) with ϕ(n) replaced by ϕ. The proof is complete.

In order to use the Paley–Wiener theorem stated in Subsection 2.3, it is necessary

to have an asymptotic estimate for L(ρ) of (2.4) in Subsection 2.2. Let σ = log ρ.

Then we can write

L(ρ) = B(σ) = sup
n≥n0

[nσ − n(log n + log2 n + · · · + logp n + δ logp+1 n)].

Let

B1(σ) =
eσ−1

σ(log σ) · · · (logp−2 σ)(logp−1 σ)δ
.
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Proposition 2 We have that

B(σ) ∼ B1(σ) as σ → ∞, that is, lim
σ→∞

B(σ)

B1(σ)
= 1.

Proof We use the same technique as in [Ma, pp. 122–123], which treats the case

where δ = 1. We note again that the number n0 appearing in the definition of B(σ)

is sufficiently large when σ = log ρ is very large.

Put αn = log Ln − log Ln−1, n = 1, 2, 3, . . . . Then we have

αn = (1 + log n) + log2 n + · · · + logp n + δ logp+1 n + o(1), n → ∞

and that αn is increasing for n ≥ n0.

Let N(α) be the distribution function of the sequence {αn}, that is, let N(α) be

equal to the cardinality of the set {n : αn < α}. If m = N(α), then we have

(1 + log m) + log2 m + · · · + logp m + δ logp+1 m + o(1) < α ≤

(1 + log(m + 1)) + log2(m + 1) + · · · + logp(m + 1) + δ logp+1(m + 1) + o(1).

Because logk α = logk+1 m + o(1) if k ≥ 1, it holds that

log N(α) = log m = (α − 1) − log α − · · · − logp−1 α − δ logp α + o(1).

We now need to use [Ma, Lemma 1.8 III], which reads as follows.

Lemma ([Ma, 1.8 III]) Let {νn} and {λn} be two increasing sequences of positive

numbers tending to infinity.

Put {
N(x) = 0, 0 < x ≤ ν1,

N(x) = λn, νn < x ≤ νn+1, n ≥ 1,

and

λ0 = 0, Nn =

n∑

i=1

(λi − λi−1)νi .

Then we have for νm ≤ x ≤ νm+1, m ≥ 1, that

∫ x

0

N(t) dt = max
n≥1

(λnx − Nn) = λmx − Nm.

By putting νn = αn and λn = n in this lemma, we obtain

B(σ) =

∫ σ

α1

N(α) dα =

∫ σ

α1

[1 + o(1)]
eα−1 dα

α(log α) · · · (logp−2 α)(logp−1 α)δ
.

It is easy to see that B1(σ) ∼ B ′
1(σ), so in [Ha, Theorem 19] tells us that B(σ) ∼

B1(σ). The proof is complete.
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If we put σ = log ρ in Proposition 2, then we have

(4.2) L(ρ) ∼
ρ

e(log ρ) · · · (logp−1 ρ)(logp ρ)δ
.

We finally return to the argument given in [DH, Section 3]. By Proposition 1,

we can choose, as in [DH, p. 401], a cutoff function ϕa belonging to every Γ
p,δ ,

p = 1, 2, 3, . . . , δ > 1. The function ϕa is compactly supported in the interval

[−a, a], 0 < a ≤ π/3. Set θa(x) =
∫ x

−∞
ϕa(t) dt , which belongs to every Γ

p,δ ,

p = 1, 2, 3, . . . , δ > 1. Then, [Ru, Theorem A] tells us that Sa(x) = sin(θa(x))

and Ca(x) = cos(θa(x)) belongs to every Γ
p,δ , p = 1, 2, 3, . . . , δ > 1, since the

sequence An in [Ru] is equal to (Ln/n!)1/n and is increasing. We remark that the

compositions of two ultradifferentiable functions are well studied. (See also [DH,

Theorem 3.3].) Since Γ
p,δ is a topological algebra under the pointwise multiplication

by [Ko, Theorem 2.8], it follows that the function ba(x) = Sa(x − π)C2a(x − 2π)

belongs to every Γ
p,δ , p = 1, 2, 3, . . . , δ > 1. By the remark in Subsection 2.2 about

the inclusions among the classes of ultradifferentiable functions, the function ba also

belongs to every γ p,δ , p = 1, 2, 3, . . . , δ > 1. By using the Paley–Wiener theorem

in Subsection 2.3 (with the choice of h = 1/e) and the asymptotic estimate (4.2),

the Dziubański–Hernández wavelet ψ, whose construction based on a bell function

is described in Section 1, satisfies the estimate

|ψ(x)| = C |̂ba(x + 1/2)| ≤ C p,δ exp{−L(e|x + 1/2|)}

≤ C p,δ exp{−|x|/lp,δ(|x|)}

for large values of |x|. The proof of the theorem is now complete.

Remark 1. We had tried to include the case where p = 0 in the theorem, but in vain.

This is because we cannot have Proposition 2 in that case. Mandelbrojt treats the

problem for all p ≥ 0, and this is possible because his problem treats the case where

δ = 1.

Remark 2. Our attempt to use as many logarithms as possible in search of better

estimates seems to be quite universal in analysis. See, for example, the “calculus of

infinities” of du Bois-Reymond in [Ha].
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