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REFLEXIVITY OF THE GROUP OF SURJECTIVE ISOMETRIES
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In this paper we study the problem of algebraic reflexivity of the isometry group of some important Banach
spaces. Because of the previous work in similar topics, our main interest lies in the von Neumann - Schatten
p-classes of compact operators. The ideas developed there can be used in £,-spaces, Banach spaces of
continuous functions and spin factors as well. Moreover, we attempt to attract the attention to this problem
from general Banach spaces geometry view-point. This study, we believe, would provide nice geometrical
results.

1991 Mathematics subject classification: 41B49, 47B04, 47B10.

0. Introduction

Let X be a Banach space. Denote by B(X) the algebra of all bounded linear
operators acting on X. A subset £ C B(X) is called algebraically [topologically]
reflexive if the implication

TeBX), Txeéx(VxeX)=>Tek
[TeB(X), Txcéx(Vxe X)=> T € €]

holds true. This concept of reflexivity is very useful in the analysis of operator algebras
(see [10] and the references therein). Most of the published work is about the reflexivity
of derivation algebras and automorphism groups. For results on the algebraic
reflexivity of derivation algebras see papers by BreSar, Kadison, Larson, Sourour and
Semrl [3, 4, 8, 11]. A theorem, due to Shul’man, on the topological reflexivity of a
derivation algebra acting on a C"-algebra can be found in [17]. For results on algebraic
reflexivity of the automorphism group see papers by BreSar and Semrl [4] and (5]. In
a recent article [13] of the first author it was proved that the automorphism group of
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B(H) is topologically reflexive. Moreover, it was also shown there that the auto-
morphism group of C(H) (the ideal of compact operators) is not topologically reflexive.

Another natural group, which makes sense not only for Banach algebras but for all
Banach spaces as well, is the Banach-Lie group of all surjective (hence bijective)
isometries. This group reflects the geometric properties of the underlying space. In [13]
it was proved that the isometry group of B(H) is algebraically and topologically
reflexive. It was also shown that, similarly to the case of the automorphism group
above, the isometry group of C(H) is not topologically reflexive. The argument given
there could actually be extended to all von Neumann-Schatten p-classes of compact
operators so their isometry groups are topologically nonreflexive as well. In this paper
we intend to investigate the reflexivity of the isometry group of some well-known,
important Banach spaces.

Our paper is organized in three sections. The first section is the main one. Its
purpose is to show that the isometry groups of von Neumann-Schatten p-classes are
algebraically reflexive. As in many other results, the case p =2 is a trivial exception.
Namely, it is an easy consequence of the definition that the isometry group of a Hilbert
space H is reflexive if and only if the dimension of H is finite. The above mentioned
result, together with the results in [13] establishes very natural examples of operator
algebras for which the notions of algebraic and topological reflexivity differ. It aiso
shows that for isometry groups of C*-algebras one cannot hope to prove that they are
topologically reflexive if and only if they are algebraically reflexive. This contrasts
the notion of algebraic and topological irreducibility of C*-algebras acting on Hilbert
spaces where such theorem, due to Kadison’s transitivity theorem, exists.

Since the problem of the algebraic reflexivity of isometry groups can be formulated
for all Banach spaces, we devote the second section to study it in the context of some
classical Banach spaces. However, we are able to give some positive results only for
£,-spaces and function spaces. This is because we can think of them as commutative
analogues of von Neumann-Schatten classes so we are able to apply some ideas from
the first section. This section, together with some open problems collected at the end of
the paper, should be understood as our proposal for further investigations of the
algebraic reflexivity problem of isometry groups from purely Banach space geometry
view-point. We feel that the study in this generality could result in deep geometrical
theorems.

Our work on operator algebras in the first section somehow naturally points to the
directions of JB*-triples. In C*-theory there is only one family of type I von Neumann
factors, namely B(H) for different H. In JB*-theory there are six families of such
factors, B(H) being only one of them. As mentioned before, the isometry group of
B(H) is algebraically reflexive. However, we are able, using the ideas of the first
section, to find some type I von Neumann factors in the JB*-category whose isometry
groups are not algebraically reflexive. This shows that the algebraic reflexivity
distinguishes type I von Neumann JB*-factors, so our work could be of some interest
in the JB*-theory as well.

Let us fix the notation. In what follows, H stands for a complex infinite dimensional
separable Hilbert space. For any real number 1 < p < 0o we denote by C,(H) the von
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Neumann-Schatten p-class of compact operators acting on H. By definition
C..(H) = C(H). Each of these spaces has a specific Banach algebra norm, called p-norm.
When we are dealing with these spaces, we always consider C,(H) equipped with this
p-norm. If Q is a compact Hausdorff space, then C(Q) denotes the Banach space of all
continuous complex-valued functions on Q with the usual sup-norm.

Finally, for the sake of a simplified writing, we use the following notion. If X is a
Banach space and T € B(X), then we say that T is a locally surjective isometry if for
every x € X there exists a surjective isometry U, € B(X) such that Tx = U,x. With this
notion the set of all surjective isometries of X is algebraically reflexive if and only if
every locally surjective isometry of X is a surjective isometry. Note that in [8, 11, 4, 5] a
similar terminology is used concerning the algebraic reflexivity of derivation algebras
and isomorphism groups of operator algebras.

1. Isometries of C,(H)

In this section we prove that the group of all surjective isometries of C,(H) is
algebraically reflexive. This contrasts the previous result that the group of all surjective
isometries on C,(H) is not topologically reflexive. During the proof of our result, the
need for consideration of triple homomorphisms naturally arises. These mappings
generalize the usual *-homomorphisms of operator algebras. They are well understood
only in the case of triple isomorphisms. Possibly noninjective or nonsurjective triple
homomorphisms could be important for the notion of direct limit in the category of
JB*-triples. In Theorem 1.5 we describe the general form of a triple homomorphism
® : C,(H) — B(H). Using this result, in Theorem 1.6 we prove the algebraic reflexivity
of the isometry group of C,(H) (p # 2). Recall that the Hilbert-Schmidt class C,(H)
is a Hilbert space and hence every isometry on it is locally surjective.

It is a well-known result of Arazy [1] (for the simplest proof, see [7]) that for every
surjective isometry ® of C,(H) (p # 2), there exist unitaries U, V and antiunitaries
U’, V' (conjugate-linear surjective isometries) on H such that @ is either of the form

D(A) = UAV (A e C,(H))
or of the form
O(A)=UAV (A € C,(H)).

This result was extended by Sourour [18) to symmetric norm ideals which are not
isomorphic to the Hilbert-Schmidt class C,. A symmetric norm ideal is an ideal 7 of
compact operators equipped with a Banach norm v satisfying the following conditions

(i) v(A) = ||A] for all rank one operators A.
(ii) v(UAV) = v(A) for all unitary U, V and A € J.

(iii) Finite rank operators are dense in J.
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In what follows, let (7, v) be a symmetric norm ideal, which is not isomorphic to C,.
We begin with a few lemmas which are needed in the proofs of the main results of
this section.

Lemma 1.1. Let ®: 7 — J be a locally surjective isometry. Then ® is an isometry
and it maps partial isometries into partial isometries.

Proof. From the form of surjective isometries of J it is easy to see that every such
mapping preserves the set of partial isometries. Since the limit of a convergent
sequence of partial isometries is also a partial isometry, we have the statement. O

Lemma 1.2. If ®:J — B(H) is a continuous linear mapping which preserves the set
of all partial isometries in J, then ® is a triple homomorphism in the sense that

®(AB'A) = D(A)DB)'®(4) (4,Be J).

Proof. We shall say that the operators A, B € B(H) are orthogonal to each other
if A*B = AB* =0 holds true. We first prove that @ preserves the orthogonality between
partial isometries. In fact, let U, V' be orthogonal partial isometries in 7. Let o € C
be an arbitrary number of modulus 1. It is easy to verify that aU + V is also a partial
isometry. Let P = ®(U), Q = ®(V). Since ® preserves the partial isometries, we obtain
that

aP+ Q= (P + Q)P + Q) (P + Q) =
aP +Q + (PP*'Q + a’PQ*P + QP*P) + (xPQ*Q + aQP*Q + aQQ*P).

If we multiply the above equation by a, it follows that
«’PQ*P + «*(PQ"Q + QQ*P) + a(PP*Q + QP*'P) + QP*'Q =0

holds for every o of modulus 1. Considering some particular values of a, we obtain
that

PQ*P =0, PQ*'Q + QQ'P =0, PP*'Q + QP'P =0,QP'Q = 0.
Let us muitiply the second equation by P* from the left. We obtain
P'PQ*Q +(Q'P)(Q"P)=0.

Since P,Q are partial isometries, it follows that the operators P*P and Q°Q are
projections. From the equality above we infer that the product of these projections is
selfadjoint and so they commute. But in this case their product is a positive operator.
If we now take the equation P*PQ°Q = —(Q*P)*(Q’P) <0 into consideration, we get
that P’PQ*Q =0. This implies that Q*P = 0. The relation QP° =0 can be obtained
using a similar argument.
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Let A€ J be a finite rank operator. Then A can be written as a finite linear
combination of pairwise orthogonal partial isometries of finite rank. To see this, let
|A] = 3", .P; be the spectral resolution of the absolute value of A. Denote by U the
partial isometry corresponding to the polar decomposition A = U|A|. It is easy to
verify that the operators V, = UP, are pairwise orthogonal partial isometries and
A =3, V. Then we compute

D(AA"A) = (D(ia?l/,-) = z":a?(D(V,.) =

(gaid’(V;)) ( Z a,-m(vi))'(g a.-d>(V.-)) — O(A)D(A) O(A).

Since ® is continuous, we infer that
DO(AA*A) = D(A)YD(A) D(A4)
holds for every A € J. Let us linearize this equation, i.e. replace A by 4+ B. We
have
®(AA’B+ AB’A+ BA*A+ AB*B+ BA*B+ BB*A) =
DO(A)YDP(A) D(B) + O(A)YP(B) ®(A) + ©(B)D(A) D(A)+
O(A)YD(B) D(B) + D(B)YD(A)Y D(B) + ©®(B)D(B) ®(A).

Let us replace B by aB where a is an arbitrary real number. Considering some
particular values of «, it follows that

O(AA'B + AB'A+ BA'A) =
O(A)D(A) B(B) + D(A)D(B) O(4) + B(B)D(A) D(A).

If we replace B by iB, respectively we multiply the above equation by i and compare
the obtained equations, we arrive at

®(AB'A) = ®(A)D(B)®(4) (A, B € C,(H)). 0

Remark. Triple homomorphisms represent an important class of morphisms on
operator algebras. The reason is that every surjective isometry on a C*-algebra (more
generally, on a JB*-triple) is a triple homomorphism [9, 6). Hence, one can deduce an
algebraic property from a metrical one. This is a very important step, since the
-algebraic properties are usually much easier to handle than the metrical ones.

Lemma 1.3. If (U,) is an arbitrary family of pairwise orthogonal partial isometries,
then the series . U, converges strongly to an operator T € B(H). Moreover, T is also a
partial isometry.
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Proof. Let x € H. We have
(Ux, U,x)y =0 (n#m).
Since U; U, are pairwise orthogonal projections, we infer that
1UxII* = (U Upx, x) = IU; Ux|I*

and so Y llUx|* <oo. This gives the convergence of the series Y., U,x(x € H).
Moreover, since every finite partial sum of )_, U, is a partial isometry we obtain that
the family of these partial sums is uniformly bounded. The first assertion now follows.
It remains to prove that T is a partial isometry. Using the strong convergence of
> .U, it is easy to see that ) U,U, converges weakly to T°T. But the terms in
3" U,U, are pairwise orthogonal projections. Therefore, this series converges strongly
to T*T. Since the multiplication is continuous on every bounded subset of B(H) with
respect to the strong operator topology, hence we obtain that }_ U, U;U, = TT'T in
the strong operator topology. But U,U, U, = U, holds for every n and thus we have
TT"T =T, i.e. T is a partial isometry. ]

Lemma 1.4. Let ®: J — B(H) be a continuous triple homomorphism. Let (P,) be a
maximal family of pairwise orthogonal rank-one projections in B(H) and denote
T =Y, ®(P,). Then the mapping ¥ : J — B(H) defined by

Y(A) = T*®(4) (Ae )
is a continuous Jordan *-homomorphism on J. Moreover, we have

O(A) = T¥(4) (A€ ).

Proof. Obviously, ® preserves the partial isometries and, by the proof of Lemma
1.2, their orthogonality as well. Consequently, by Lemma 1.3, T is a well-defined
partial isometry. Let Q =Q, be the nth partial sum of Y, ®(P), ie. let
0=0,=3,.,P(P). We define A; ={Ae C,(H): QAQ = A}. Let A€ A,. If m > n,
then

O(P,) ®(4) = O(P,)" D(Q)D(4") ®(Q) = 0.
Therefore, we have
Y(A) = T*®(A) = ®(Q) P(A).

If we linearize the equation characterizing triple homomorphisms in A, we obtain
that

®(AB'C + CB'A) = ©(A)D(B) O(C) + O(C)D(B) ®(A4). (n
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From (1) we have
20(4) = O(A)D(Q)" D(Q) + P(Q)P(Q)" P(A).

Using the fact that ©(Q)'®(Q) and ®(Q)P(Q)" are projections, it is an easy algebraic
manipulation to prove that the above equation implies

D(A)D(Q) D(Q) = V(Q)P(Q) P(A) = D(A4). (2)
For an arbitrary 4 € 4, we now compute
Y(47) = D(Q)"D(A”) = B(Q)' D(AQ°4) =
D(Q)" D(A)D(Q)' D(A) = (B(Q)" P(A))’ = ¥(A)’ (3)
and using (2) we obtain

Y(4") = ®(Q)"®(47) = D(Q)'®(QA°Q) =
D(Q) D(Q)P(4) ®(Q) = B(4)' P(Q) = ¥(A4)". @

The equations (3) and (4) give us that ¥ is a Jordan *-homomorphism on A4,. Now,
the first statement follows from the continuity of W together with the fact that for
every A € J the sequence (Q,AQ,) converges to 4 in J.

Let us consider the last assertion. From (4) we know that

D(Q)P(Q)'D(4) =D(4) (A€ Ay
This gives us first that
TOQ)YD(A) =D(A) (A€ Ay
and then that
TT*®(A) = D(4) (4 e )
Since T*®(4) = W(A), the proof is complete. 0

Theorem 1.5. Let ®: 7 — B(H) be a continuous triple homomorphism. Then ® is
of the form

O4) =) U, AU+ ) V;A'V; (A€ Cy(H) (5)
a B

where U,, U, are isometries, V;, Vy are antiisometries such that the ranges of the operators
U,, V; form a pairwise orthogonal family and the same holds true for the ranges of the
operators U,, V.
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Proof. We use the notation of Lemma 1.4. So, we have a continuous Jordan
*-homomorphism ¥ : J — B(H). Observe that ¥ is continuous on F(H) with respect
to the operator norm topology. Indeed, just as in the proof of the previous lemma one
can verify that W, preserves the positive operators and hence it preserves the order.
Let Ae F(H) be an arbitrary positive operator. Then we have A? < ||4]A.
Consequently, we obtain

Y(A)" < [|AI¥(A).

Since W(A) > 0, we infer that |W(A)|* < [|Al[¥(A)Il. Therefore, |¥(4)| < |4l holds
true for every positive operator A € F(H). If A € F(H) is self-adjoint, then we
compute

I = I¥AY = I¥A)I < 1471 = I14)1%

Since the operations of taking real as well as imaginary parts of operators are
continuous in the operator norm topology, we have the continuity of Wq,. This
implies that there is a unique continuous Jordan *-homomorphism J on C(H) that
extends W|z,. Since the norm v majorizes the operator norm, it is clear that J,; =Y.
[19, Lemma 3.1] states that every Jordan *-homomorphism of a C*-algebra into a von
Neumann algebra has an ultra-weakly continuous extension onto the second dual
which is also a2 Jordan *-homomorphism. The second dual of C(H) is B(H). Let
J : B(H) — B(H) denote the corresponding extension of J.

{19, Lemma 3.2] states that if J is a Jordan *-homomorphism of a von Neumann
algebra into the algebra of all bounded operators acting on a Hilbert space, then there
exist central projections E, F in the C*-algebra generated by the range of J such that
E + F = I and the mappings

A J(A)E, A~ J(AF
are a “-homomorphism and a *-antihomomorphism, respectively. It is a well-known
result of Arveson [2, Proposition 2.1] that on B(H) every normal “-endomorphism is of

the form

A Y UAUL

where the operators U, are isometries with pairwise orthogonal ranges. Similarly, every
normal *-antiendomorphism of B(H) is of the form

A ;V,A‘V;,

where the operators V; are antiisometries with pairwise orthogonal ranges.
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Let us now consider our Jordan ‘-endomorphism J on B(H). Using the results
mentioned above, it follows that J can be written in the form

Ar Y UAU; + Y VAV,
E B

where {U,} is a family of isometries and the elements of {V;} are antiisometries such
that the whole family {U,, V;} consists of operators having pairwise orthogonal
ranges.

Obviously, we have

W(A) =) UAU;+Y VAV (A€
a B

From Lemma 1.4 we obtain that

®(A) =Y TUAU; +> TVA'V;  (Ae ).
x B

It remains to prove that TU, are isometries, TV; are antiisometries and the family
{U,, V;} consists of operators having pairwise orthogonal ranges. It is obvious that

(TU)(TU,) = U'T*TU,. (6)

We have obtained in the proof of Lemma 1.3 that T°T = }_ ®(P,)®(P,), where this
series converges strongly. Moreover,

O(P) O(P,) = T'®(P,) =¥(P,)= Y UPU; +Y V;PV;.

Using the pairwise orthogonality of the ranges of U,, V;, we infer from (6) that

(TUY(TU,) =) U;U,PU;U,=> P, =1

The relation (TV;)’(TV;) = I can be proved in a similar way. Therefore, the operators
TU,, TV, are isometries and antiisometries, respectively. Moreover, the same argument
can be applied to verify that, for example,

(TUY)(TVy) =U;T' TV =0

holds true. The pairwise orthogonality of the ranges of operators which belong to the
family {TU,, TV} is now easy to see. a

Remark. The converse of the statement of our previous theorem is also true. We
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mean that every mapping of the form (5) is a continuous triple homomorphism. This
can be verified by an elementary computation.

Proposition 1.6. Let (J,v) be a symmetric norm ideal. Then the isometry group of
J is algebraically reflexive unless J is isomorphic to the Hilbert-Schmidt class.

Proof. Let ®: 7 — J be a linear mapping which is a locally surjective isometry.
Since the norm v dominates the operator norm, this mapping is continuous when
viewed as a mapping ® : 7 — B(H). It follows from what we have proved above that
@ is of the form

D) =) UAU;+) VAV (Aed) Q)
x B

where U,, U, are isometries, V;, V; are antiisometries such that the ranges of the
operators U,, V; forms a pairwise orthogonal family and the same holds true for the
ranges of the operators U,, V5. But since @ is locally surjective, it follows from the
form of the surjective isometries of 7 that ® maps rank-one operators into rank-one
operators. It implies that the right side of (7) reduces to only one term. So, let us
suppose that, for example, ® is of the form

A UAU* (8)

where U’, U are isometries. Since ® is a locally surjective isometry, we easily have that
®(A) has densc range whenever A has. Therefore U’ is surjective. Similarly, if 4 is
injective, then ®(A4) is also injective which implies that U* is injective. It follows that
U, U’ are unitaries and, consequently, @ is surjective. This completes the proof. O

Theorem 1.7. If p#2, then the group of all surjective isometries of C,(H) is
algebraically reflexive.

2. Isometries of £,-spaces and function spaces

In some sense, the commutative counterparts of the C,(H) spaces are the classical
£,-spaces (1 < p < 00), ¢, corresponds to C(H) and £, is the commutative analogue of
B(H). In what follows we consider our problem for these spaces and we prove that,
with the trivial exception p =2, the groups of their surjective isometries are also
algebraically reflexive.

Let us first describe the surjective isometries of these Banach spaces. We begin with
¢, (1 < p < o0, p € 2). Following the same argument that was carried out to determine
the surjective isometries of L,[0, 1] in [15, 15. Theorem (Lamperti), p. 275], one can see
that every surjective isometry on each of the spaces £, (1 < p <oo,pe€?2) is of the
form
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f1fog ©)

where 7 is a sequence with terms of modulus 1 and ¢ : N - N is a bijection.

Since ¢, can be considered as the algebra of all continuous complex-valued functions
defined on a locally compact Hausdorff space and vanishing at infinity, by the well-
known Banach-Stone theorem it follows that the surjective isometries of ¢, are also of
the form (9).

To determine the surjective isometries of the remaining space ¢, let SN stand for
the Stone-Cech compactification of N. Every function f € £, has a unique extension
f € C(BN) having the same norm as f € £, has. The mapping

f=7

is an isometric isomorphism between £,, and C(fN). Let ®: ¢, — £, be a surjective
isometry. Using the Banach-Stone theorem again, we infer that

()M =in)-f(@() (neN)

where 7:fN—- C is a continuous function with values of modulus 1 and
¢ : BN — BN is a homeomorphism. Since the element of N are isolated in SN and the
elements of BN\N are not, we get that the restriction ¢ of ¢ onto N is a bijection of N.
Consequently, we arrive at

O()(n) =1(n)-fle(n)) (neN)

where © =17, . This means that the surjective isometries of £,, are also of the form

(9).

Theorem 2.1. The groups of all surjective isometries of the spaces £,, (1 < p < 00, p #2)
and cy are algebraically reflexive.

Proof. Let A be any of the spaces £, (1 < p < 00, p# 2),¢,. Consider a locally
surjective isometry ® : A — A. Let (e,) denote the standard base in A which means
that ¢, is the sequence whose terms are all 0 with the exception of the nth one which is
1. Since @ is a locally surjective isometry, by (9) we obtain that for every n € N there
exist a k(n) € N and a complex number 4, with modulus 1 such that ®(e,) = A, €y-
Let n # m. From ®(e, + ¢,) = ®O(e,) + ®(e,,) and (9) we infer that k(n) # k(m). We next
assert that k: N — N is a surjective function. To this end, let us consider a sequence
(x,) € A with nonzero terms. Using the equality

o o) = Cn0ten 10y

and the form (9) of surjective isometries, it follows that the sequence on the left side
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of (10) has only nonzero terms. This gives the surjectivity of k. We then easily obtain
that the range of @ contains every cofinite sequence. Since ® is an isometry, we have
the surjectivity of @.

We now consider the case of £,,. The same argument that was followed above (the
only exception is that we choose (a,) € ¢;) yields that the range of ® contains every
cofinite sequence. Plainly, £, is a unital C*-algebra and, by (9), ® maps the unitary
elements of £, into unitary elements. A well-known theorem of Russo and Dye (16,
Corollary 2] asserts that every unitary preserving mapping on a unital C*-algebra is a
Jordan *-homomorphism multiplied by a fixed unitary element. This gives us that there
is a fixed sequence 7 € ¢, with terms of modulus 1 and a Jordan *-homomorphism
J: 2, — £, such that ®(f) =1-J(f) (f € £,). We obtain that the range of J contains
every cofinite sequence. But it was proved for an arbitrary *-homomorphism of £, that
if its range contains the cofinite sequences, then it is automatically surjective [14,
Theorem 3)]. This completes the proof of the theorem. O

In the following theorem we solve our reflexivity problem for C(Q) under a not too
restrictive condition on Q. We recall that a topological space is called first countable if
each of its points has countable neighbourhood base.

Theorem 2.2. Let Q be a first countable compact Hausdorff space. Then the group
of all surjective isometries of C(Q) is algebraically reflexive.

Proof. Let ®: C(Q) — C(Q) be a locally surjective isometry. Similarly to the proof
of Theorem 2.1, by the Banach-Stone theorem it is easy to see that ® maps continuous
functions with modulus 1 into functions with modulus 1. Applying the theorem of
Russo and Dye [16, Corollary 2] again, we obtain @ is a *-homomorphism multiplied
by a fixed continuous function with modulus 1. Without any loss of generality we may
assume that this function is 1. One can check that in this case we have ®(1) = 1. It is
a folk result that every endomorphism of C(€2) which maps 1 into 1 is of the form

fofop

with some continuous function ¢ :Q~ Q. Since ® is an isometry, by Urysohn’s
lemma, in our case ¢ is surjective. It remains to prove that ¢ is injective as well. To
this end suppose, on the contrary, that there are different points x, y € Q such that
o(x) = o(y) = z. We construct a continuous function f: Q — C in the following way.
Let (U,) be a monotone decreasing sequence of open sets in Q such that N, U, = {z}. By
Urysohn’s lemma, for every n we have a continuous function f, : Q — [0, 1] such that

f(2)=1andf(t) =0 (t € Q\U,).
Let

N'._.‘
:
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It is easy to see that f is a continuous function and f(t) = 0 if and only if t = 2. Since
® is a locally surjective isometry, there exists a homeomorphism ¢ : Q — Q and a
continuous function 7 : Q — C having modulus 1 such that

foo=0(f)=1-foy.

It follows that

Xy C(fop) 'O = o¥)'0) =y '(2)-

Since ¥ is bijective, this is a contradiction. Consequently, ¢ is injective which implies
the surjectivity of @. [}

Remark. As for the general case, we suspect that there exists a “big” compact
Hausdorff spaces Q with the property the group of all surjective isometries of C(Q) is
not reflexive. This is only a conjecture, the proof is missing.

3. Isometries of spin factors

In this section we prove that for every infinite dimensional Hilbert space the
isometry group is algebraically nonreflexive not only with respect to the original
Hilbert space norm, but also with respect to the so-called spin norms. Moreover, we
give a complete algebraic characterization of the locally surjective isometries of spin
factors.

Spin factors are very interesting structures coming from mathematical physics
(anticommutation relations) and holomorphy (bounded symmetric domains). In
particular, it is a JB’-triple (see [6] and [9]). JB"-triples form an operator theoretic
category which is naturally equivalent to the geometric category of bounded symmetric
domains. Every C*-algebra is a JB'-triple. B(H) and spin factors are examples of type
I von Neumann triple factors. The aim of this section is to point out the possible
interest of the algebraic reflexivity concept in the theory of JB*-triples. It is known that
the group of surjective isometries of B(H) is both topologically and algebraically
reflexive [13]. We prove below that the corresponding group of a spin factor is not
algebraically reflexive and so the algebraic reflexivity distinguishes (to some extent) the
type [ JBW*-factors.

Spin factors can be defined in more than one way. For the purpose of this paper,
being operator theoretic in its spirit, we use the following approach.

Let W be a complex Hilbert space with inner product {.,.} and let x— X be a
conjugation on it. This means that ~: W — W is a conjugate-linear isometric mapping
satisfying X = x. Using polarization, it is easy to see that (X,7) = (y, x) holds for all
x,y € W. Every Hilbert space has many conjugations. For example, if {e,} is a
complete orthonormal system in W, then for x=),(x,e)e, we can define
X =) (e, x)e,. This gives a conjugation on W.
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In what follows, let W be equipped with a fixed conjugation. One can prove that
every system of pairwise orthogonal symmetric unit vectors can be extended to a
complete orthonormal family of symmetric elements. Using some elementary
computations, we can verify that a norm can be defined on W by

202 = (x, x) + V{6, )2 = [(x, D2 (x € W).

It is easy to see that the norm [|x|| is equivalent to /(x, x) and so (W, || ||) is a Banach
space. When we are speaking about metrical properties of spin factors without specific
mentioning of the involved norm, we always mean the spin norm |.]|.

We define an algebraic operation, called triple product, on W by

Axyzl = (x, )z + (2, y)z2— (2,X)Y (x,y,ze W).

Then the C*-axiom ||[xxx]|| = ||x|* is satisfied.
Note also that, when dim W > 3, W is algebraically simple with respect to the triple
product. A subspace J C W is called a triple ideal if the condition

WWJTL, IWIW], [TWW] C J

holds true. The spin factor W is said to be algebraically simple if {0} and W are the
only ideals of W. Now, let dimW > 3. If 7 € W is an ideal and x € J is a nonzero
element, then for y € {X}* we have

(x, x}y + {y, X)x = (x, x)y + {y, x)x — {y, X)X = 2[xxy] € J.

Since (x,x) # 0, this implies y € J. Thus 7 is of codimension at most one. Since
dim W > 3, it follows that J contains two linearly independent vectors, say a,b. By
what is proved above, we obtain J D {a}* + {b}* =W since @, b are linearly
independent. This gives us that 7 = W, i.e. W is algebraically simple.

A linear mapping ¢ : W — W is called a triple homomorphism if

d([xyz]) = [p(x)¢(NP(2)]  (x,y.zeW).

The kernel of a triple homomorphism is always a triple ideal of W. If dimW > 3, it
follows that every nonzero homomorphism of W is injective.

In the sequel we suppose that W is an infinite dimensional spin factor. We shall
characterize the locally surjective isometries of W as the nonzero triple
homomorphisms of W. To this end we need the following lemmas.

Lemma 3.1. Let u € W be a nonzero tripotent, i.e. [uuu]l = u. Then we have either
(u,uy =1 and (u,u) =0 or else (u,u) =2 and there exists a complex number o of
modulus 1 such that 4 = au.
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Proof. For all ue W we have [uuu] = (u, u)u — 1 (u, %)4. If [uuu] =u and u,u are
linearly independent, then the first possibility holds true. If there exists an « € C such
that # = au, then it is obvious that |«| = 1 and so (u, u) = 2 follows. O

Lemma 3.2. Let ¢ : W — W be a nonzero triple homomorphism. Let u € W be such
that {(u,u) = 1 and {u,u) = 0. Then ($(u), ¢(u)) = 1 and ($p(u), p(u)) = 0.

Proof. Clearly, u is a tripotent. Therefore, ¢(u) is also a tripotent and, by Lemma
3.1, there are two possibilities. Suppose that ¢(u) = agp(u), || =1 and {p(u), ¢p(u)) = 2.
Since ¢(fuuui]) = [¢(w)p(u)p(u)], we have

0 = p((u, wh + (&, whu — (u, W) =
(B(w), $)$(@) + ($(), () D) — (D), P PG) =
26(@) + ($(), D)) — ($(@), xp(W))ad(u) = 2¢(@)

and thus ¢(@) = 0. But this is impossible since ¢ is injective. By Lemma 3.1 we obtain
the statement. O

Lemma 3.3. Let ¢, u be as in the previous lemma. Then we have {(¢(u), p(u)) = 0.

Proof. We already know from Lemma 3.2 that (¢(x), ¢(u)) = 1 and (¢(u), p(u)) = 0.
Since ¢([uuu]) = [p(w)PpW)P(u)] and 2[utiu] = 2{u, Wyu — {u, u)u =0, we have

0 = 2[p(w)dp(@PW)] = 2(p(w), d@)P) ~ ($(u), P P{) = 2(p(u), $(@))(w).

Therefore, (¢(u), p(u)) = 0. O

Lemma 3.4. Let ¢ : W — W be a nonzero triple homomorphism. Then ¢ is an
isometry in the Hilbert space norm of W and thus, it preserves the inner product.
Moreover, ¢ is of the form ¢ = Py, where |B| =1 and  is an isometry with respect to
{., .} which preserves the conjugation. In fact, \ is a triple homomorphism as well.

Proof. Let 0# x € W. There exists a 2-dimensional subspace V C W such that
V=V and xeV. Indeed, if x and X are linearly independent, we may take
V = span{x, X}. Otherwise we can choose a nonzero vector x, € YW which is orthogonal
to x and satisfies X; = x,. Then we may define V = span({x, x,}.

Take a=a €V with (a,a) = 1. There exists b € V which is orthogonal to a and
satisfies (b, b) = 1. Since b € V, we have b = aa + fb. Froma = (b,a) = (b,a@) = (a, b) =0
it follows that we may assume b = b as well. Now define u = (a + ib)+/2. It is easy to
verify that u, ¥ are orthogonal tripotents.

Since u,u €V and V is 2-dimensional, there exist «, f € C such that x = au + fu.
Then
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(@(x), (x)) = (xp(u) + BP(), a(u) + B(@))

and, by Lemma 3.2 and Lemma 3.3, we have

(p(x), p(x)) = lal*(P(u), p(w)) + 1B (P(®), p@)) = |xI* + |B)* = (x, x).

This implies that ¢ is an isometry with respect to the Hilbert space norm of W.
Finally, ¢([xyz]) = [¢(x)@(y)¢(2)] gives us that

(D(x), (M) P(2) + (d(2), () P(x) — (H(2), PN $(Y) =
(x, V) #(2) + (z, Y P(x) — (2, X)d(F) = d({x, y)z + (z, y)x — (2, X)Y) =
($(x), d() P(2) + ((2), P P(x) — (D(2), P(X))P().

Consequently, we have

($(2), 9N D) = ($(2), ¢(x)) $()-

Hence, if we take some fixed x € W with (x, x) = 1, we get

() = (), 6N @(¥) = ($(X), d(x)) P(y) = xd(y).

Since ¢ is an isometry, the scalar a is of modulus 1. If > = «, then elementary calculation
shows that y = },q& defines a conjugation-preserving triple homomorphism. O

Observe that only elementary computations are needed to verify the converse of
the above statement. Therefore, we have the following corollary.

Corollary 3.5. A linear mapping ¢ : W — W is a nonzero triple homomorphism if
and only if it is of the form ¢ = By, where |Bl = 1 and  is an isometry with respect to
{., .) which preserves the conjugation.

Theorem 3.6. A linear mapping ¢ . W — W is a locally surjective isometry of the
infinite dimensional spin factor W if and only if it is a nonzero triple homomorphism.

Proof. First, let ¢ : W — W be a locally surjective isometry. It is known that every
surjective isometry of a spin factor (even that of a JB"-triple) is a surjective triple
homomorphism [6, 9]. It follows that ¢ preserves the tripotents. Let u € W be a tripotent
satisfying (u, u) = 1 and (u, u) = 0 (see Lemma 3.1). Then elementary computation shows
that u is also a tripotent. If a is a complex number of modulus 1, we set v = u + au. Then
(0,v) = (u,u) + jo> (@, 7) =1+ 1 =2and 5 = u+ & u = &(u + af) = a. It follows that v is
a tripotent. Since in this case ¢(v) is also a tripotent, we have [www]=w for
w = ¢(u) + ap(@). As w, = ¢(u) and w, = ¢(u) are tripotents, after a rather elementary
but tedious expansion of both sides of [www] = w, we obtain that
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0 = 2afw, w,w,] + &[w, w,w,] + 2[wowyw,] + ¥ [wyw, w,].
Inserting o = +1, i, we get
[wiwywy] = [wywyw ] = [wow,w) ] = [w,wyw,] = 0. (11)

Now take an arbitrary x € W. From the first three paragraphs of the proof of
Lemma 3.4 we can learn that x is of the form x = au + fu where u,u are tripotents
satisfying (u,u) = (@, u) =1, (u,4) =0 and «, f are scalars. Denote w, = ¢(u) and
w, = ¢(u). Using (11) we have

[p(X)P(x)p(X)] = [(aw, + pwr)aw, + Bw,)(aw, + Bw,)] =
oo [wywywy] + BIBE[waw,w,] = alal*w, + BIBIw, = alal’d(u) + BIBI ().

Now we compute [xxx] and ¢([xxx]). We have
2uut] = (u, wu+ @ uwu— u,du=u—-u=0

and in a similar way [ufiu] = [G%u] = [ausi] = 0. Thus [xxx] = «|a|’u + B|B*4 and so
(12) implies ¢([xxx]) = [p(x)¢(x)¢p(x)]. Similarly to the last part of the proof of Lemma
1.2, after linearization it follows that ¢ is a triple homomorphism. This finishes the
proof of the first implication.

In order to prove the converse direction, we must verify that every nonzero triple
homomorphism of W is a locally surjective isometry of W. So, let ¢ be a nonzero triple
homomorphism. Using Lemma 3.4, we may assume that ¢ preserves the conjugation,
i.e. $(x) = $(X) holds for every x € W.

Take x e W. Since x =1(x+X)+i5(x—X), there exist symmetric unit vectors
h,k € W and real numbers y, § such that x = yh + iék. Suppose that h, k are linearly
independent. We have (h, k) = (h, k) = (k,h) and then it follows that (h, k)€ R.
Consequently, the vector I, = k — (k, h)h # 0 satisfies I, = I,. Thus k can be written as an
orthogonal sum k = ah + I with some symmetric unit vector ! which is orthogonal to h.
This shows that we can form complete orthonormal systems ({h,l e, ...} and
{d(h), §(1), f., ...} consisting of symmetric vectors. Recall that since ¢ is a nonzero triple
homomorphism, it preserves the inner product of W. We define a surjective inner product
preserving mapping U : W — W by U(h) = ¢(h), U(l) = ¢(l)and U(e,) = f, forevery a. It
is easy to see that U(X) = U(x) for all x € W. One can verify by a short computation that
every conjugation preserving isometry with respect to the Hilbert space norm of W is
isometric with respect to the spin norm as well. Since x is a linear combination of h, land U
equals ¢ on {h, I}, we obtain that ¢(x) = U(x) where U is a surjective isometry of W.

The case when h and k are linearly dependent can be treated in a similar but even
simpler way. O

Finally, the above statements result in the following theorem.
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Theorem 3.7. Let W be an infinite dimensional spin factor. Then the group of all
surjective isometries of W is algebraically nonreflexive.

Proof. If ¢: W — W is a nonsurjective isometry with respect to the Hilbert space
norm which preserves the conjugation (see the construction of U above), then ¢ is a
triple homomorphism and hence a nonsurjective locally surjective isometry of W. O

We wish to close this section with some remarks on general JB'-triples. If such a
triple W contains a direct summand which is isomorphic to an infinite dimensional spin
factor, then its isometry group is not algebraically reflexive. This is easy to see since
in W=W, ®Spin(H) the sum of idy,,, and an injective triple homomorphism of
Spin(H) is again an injective triple homomorphism and consequently an isometry.

In general JB’-triples one should turn attention, we believe, to the representation
theory. Every extreme point of a dual ball of W generates a type I representation.
These representations come in 6 generic types; rectangular, simplectic, hermitian, spin
and two exceptional. The rectangular factor has a reflexive isometry group. The
methods of this paper and some known results about isometries of simplectic and
hermitian factor, as well as associated C, classes, should be sufficient to prove that
their isometry groups are reflexive. The exceptional factors are finite dimensional and
so their isometry groups are also reflexive.

It is therefore reasonable to expect that nonreflexivity of the isometry group of W
indicates the presence of infinite dimensional spin representations. There is at this
moment a, seemingly nontrivial, obstacle in our attempt to verify such a conjecture. If
W has an infinite dimensional spin representation, then its second dual, which is also
a JB*-triple, contains spin factor as its direct summand and hence its isometry group is
nonreflexive. However, this does not trivially imply that the isometry group of W is
also nonreflexive. The verification of this conjecture should be the cornerstone of
general theory of reflexivity of isometry groups of JB*-triples, which we plan in the
near future.

4. Open problems

The algebraic properties of surjective isometries of Banach algebras attracted the
attention of many mathematicians (see [6] and the references therein). We therefore
think that it would be worthwhile to study the problem of reflexivity of the group of
surjective isometries in the setting of general Banach spaces and examine its relations
to the geometry of Banach spaces.

We collect below some problems which we think are of interest.

Problem 1. Let X be an infinite dimensional Banach space which is linearly
homeomorphic to a Hilbert space. Is the group of all of its surjective isometries
algebraically nonreflexive?

We think that the answer to this problem is affirmative.
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Problem 2. What is the relation between the algebraic reflexivity of the isometry
groups of X and X*?

Problem 3. Let A be an infinite dimensional von Neumann factor acting on a
separable infinite dimensional Hilbert space. Is the group of its surjective isometries
algebraically reflexive?
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