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§ 1. Introduction.

In a lecture at the Oslo Congress in 1936, Marcel Riesz1 introduced
an important generalisation of the Riemann-Liouville integral of
fractional order. Riesz's integral Iaf of order a is a multiple integral
in m variables which converges uniformly when the real part of a
•exceeds m —2 and so represents an analytic function of the complex
variable a. This integral is important in the theory of the generalised
wave equation, for it provides a direct method of solving Cauchy's
initial-value problem. The most recent developments2 show that it
is likely to be also of great importance in quantum electrodynamics.

Let us denote the m variables which appear in Riesz's integral
by (t, xlt x2, . . . xn), or, more briefly, by (t, xt), so that m = n + 1. The
variable t is treated separately because it is to be the time-variable
in the applications of the theory. Let us denote the " interval" in
the sense of special relativity between the two point-events P(T;X;)
and Q{t;Xi) by s, so that

s* = (T-t)*-i(Xi-xi)*. ' (1.1)
t = i

When P is fixed and Q varies, the equation s = 0 represents the
light-cone of special relativity; it is the characteristic cone of the
generalised wave equation

1 ' - dt2 jTi 8a;;2

Inside the characteristic cone, s2 is positive, outside it, negative. The
half of the cone on which t < T is called the retrograde cone and will
be denoted by D(P).

In the problem of Cauchy for the wave equation (1.2), we have
to find the solution, given the values taken by u and its first partial
derivatives on an n-dimensional manifold or hypersurface S. S is

1 C unptes rendus du congrh international des mathe'maticiens (Oslo, 1936). Tome 2,
pp. 44-45.

- See a letter in Nature, 157, 734 (1946), by T. Gustafsou.
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26 E. T. COPSON

spatially-directed in the sense of special relativity; that is, the tangent-
plane to S at any point R cuts the characteristic cone with vertex R
only at R. The surface 8 and the retrograde cone D(P) bound a
hypervolume which we denote by D(P,S). The Riesz integral i&
then defined to be

= frn \
am\a) J

W, A)
where dQ denotes the element of hypervolume at Q and

Hm(a) = TTt»>-12«-ir(la)r$a-lm+ 1). (1.4)

The integral is then an analytic function of a, regular when
Rl a > Max (m — 2, 0), provided that/is continuous. Its characteristic
properties are expressed by the equations

/«/<•/=/«+/•/, L / « + 2 / = / " / »

where L now refers to the variables (T, I , ) .
In all applications, the fundamental problem is the analytical

continuation of I" f into the half-plane Rl a > 0. Riesz himself has
published no solution of this problem. The cases of greatest physical
importance are those for which m = 3 or 4 and S is the hyperplane
t = 0; in these cases it has been shown x that the analytical continua-
tion can be carried out by a simple change of variable and integration
by parts. Quite recently, the general case has been discussed by
Fremberg,2 who uses a rather complicated change of variable which
makes his work difficult to follow. In the present paper it is shown
that the methods used in the simpler cases are also applicable in the
general case and lead to the desired results. It is shown incidentally
that, when S is the hyperplane t = — oo , I '" ' 2 / is simply the retarded
potential.

§2. A transformation of Riesz's Integral.

Since Iaf(P) is to be defined for all positive values of T, the
hypersurface S and the retrograde cone D(P) must bound a hyper-
volume no matter how large T is. Hence S cannot be a closed surface.
We write the equation of S in the form S(t, xt) = 0 where the function

1 Baker and Copson, The Mathematical Theory of Hut/gens' Principle (Oxford, 1939),
pp. (iO-61. Copson, Proc. Boy. Soc. Edin. (A) 71, 260-272 (1943).

- Kutujl. Fysiograjiska ScillslM-pets i Lund Forhandlingar, Bd. 15, Nr. 27 (1945).
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£ and its first partial derivatives are assumed to be continuous. Then
since S is spatially-directed,

/ ^y > 0
•everywhere on $, a relation which implies that S is not a closed
surface and has no singular points. The analytical continuation with
respect to a is to be carried out for any fixed values of T and X^. It
follows that the expression on the left-hand side of (2.1) has a positive
lower bound S, depending on T and Xlt on the portion S' of S cut off
by the retrograde cone; thus on S',

^) 2 -2« 2 >s > 0. (2.2)

No radius vector from P inside D(P) can touch S since S is
spatially-directed. Moreover, every such radius vector cuts S in the
same number of distinct points, since S has no singular points. But
$ and D(P) bound a hypervolume; hence every radius vector from P
inside D(P) cuts 8 in one point. We shall denote the point where the
radius vector from P(T;Xt) through Q(l;Xj) cuts 8 by ^ ( T ; ^ ) .

Similar considerations show that any line parallel to the axis of t cuts
S in one point only, so that we may write the equation of S in the
form t = S{xi). By (2.2), the inequality

S (dJL\ ^ 1 — S < 1 (2.3)
i \dXiJ

then holds everywhere on S'.
We now change to new variables {xlt x2 xm) defined by

Xi = Xi (i = 1, 2, 3 , . . . , n = m— 1)

a» = + V {(T- ty - 2 {Xi - Xi)2}
i

where summation with respect to i is always over the range 1, 2, 3,. . .n.
This is a (1,1) transformation which maps the interior of the retro-
grade cone on xm > 0. Since

O(X1, X%, Xn, t) Xm

___ - ,

o(z1, x2, • •.. xm_i, xm) r

Riesz's integral becomes
1 r T a. —m + 1

,Xt)= w±~- f(T - r, Xi) ~m— dxi dx2...dxm (2.4)
where integration is over the hypervolume in xm > 0 bounded by the
hyperplane xm = 0 and the hypersurface X whose equation is
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{T-S (Xi)}0- = E {Xi -Z,-)* + «„*. (2.5>

Evidently every radius vector from P'(XV X2,... Xn, 0), which is
the image of P, cuts £ in one point R', since this radius vector is the
image of a radius vector through P. I t is convenient to use spherical
polar coordinates (r, 9, ̂ 1 ( $„,.. .<f>n_x) denned by

Xi = Xi + lt r sin 6, xm = r cos 9 (2.6)

where ln = c o s <f>lt

ln-i = sin <f>L cos 02,
?n_2 = sin <f>l sin ^2 cos ̂ 3,

l2 = sin ^j sin <f)2... .sin ^>n_2 cos ^ . j ,
Zj = sin <f>x sin i^2. . . .sin </>n_2 sin i,,_].

If we make this change in (2.4), the angle 9 varies from 0 to \n, whilst
the angles <f> vary so that the line whose direction-cosines in
n-dimensional space are (lx, l2,.. .ln) sweeps out the whole solid angle
Qn. Hence </>j, <f>2,... <j>n_2 vary from 0 to n, <f>ll_1 from 0 to 2n. The
coordinates of R' are then

£: = Xi + liP sin 9, $m = p cos 6 (2.7)

where p is a continuous function of the variables 9 and (f>. With this
change of variable, we have l

1 f f*T fp
/»/= u / > /(r-r,xi)ra-1cos"-"!+10sin™-2ecZ/-^dDn (2.8)

" m ( a ) J nn J 0 J 0

w h e r e

dQ,, = s in n~2 <f>i s in " ~ 3 < £ 2 . . . . s i n <£„ _ 2 cZ^x (i^2...d<j>n _ 2.

T h e t o t a l sol id ang le is

lCr (2'9>
The analytical continuation of / " / depends on the formula (2.8),

which shows that, so far, / " / is regular when Rl a > Max (m —2, 0).

§ 3. A lemma.

We shall carry out the analytical continuation of Iaf by in-
tegrating (2.8) by parts with respect to 9. In doing so, we shall need
the following lemma.2

1 Cf. Baker and Copson, loc. cit., \>. 60, equation (7.41).
S Cf. Fremberg, loc. cit., p. 270.
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OiNr THE RtESZ-RlEMANX-LlOUVILLE INTEGRAL 29

/ / the first partial derivatives of S(^) are continuous, dp / 89 = apcos (f

where a = 1 + sin 6 S

The function a is continuous on S.
If p is a continuous function of 9, </> satisfying an equation

\p {p, 0, <f>) = 0, where i/r has continuous first partial derivatives, then
dp 189 exists and is given by

dp 5i/r / Sip
89~ ~ ~891 ~8~p

at any point where dip/dp is not zero. In the present case it follows
from (2.5) that p satisfies the equation ip = 0 where

f^p-T + Sfo), ^=Xt+liP sin 9,
and so

dp _ p p cos 9
W ~~ 1 + p sin 9

where* p = S ^ ^ - -

To complete the proof of the lemma, we have to show that
1 + p sin 6 does not vanish on S. Now

by (2.3). Hence • •

l + p s i n 0 ^ 1 - | p | ^ l - V ( l - 3 ) > £ S

which was to be proved.

§ 4. The analytical continuation of I" f.

Ij f and S have continuous partial derivatives of order k <\(m — 1) and
if Rl a > Max (0, m — 2k — 2), then I-f is equal to

+ f ["" 9k (P, &) pa cos * ~m + 2k +1 9 sin m ~ 2fc - 1 9 dddClA (4.1)

Km (a, k) = w»»-' 2« + fc - i T (fa) T (\a ~ \m + fc + 1)

and /o = /

/*+1 = (m - 2ft - 3) / , + 2 («,- - Z , . ) | £ (4.2)
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30 E. T. COPSON

9t+i .=ft(T - p, ^) a + op sin 6 ^ + (1 + a sin 9) S(f, - x A

+ aagk sin 0 + (m - 2ifc — 2) <jk. (4.3)

There are two points about the recurrence formulae which must
be emphasised. In (4.2), we regard fk as a function of the independent
variables x1; x2,. . .xn, r and the spherical polar coordinates are intro-
duced only when we substitute for fk in (4.1). Similarly in (4.3) gk is
a function of the independent variables £1( £2; •••£»> p; it would be
more correct .but more cumbrous to write

'P s

The theorem is evidently true when k = 0. We shall prove it in
the general case by induction. The functions fk and gk are continuous
if the kth. partial derivatives of / and S are continuous; for, in
the construction of fk and gk by the recurrence formulae starting
with / 0 and g0, a discontinuity could arise only from the successive
derivatives of a and a sin 9, and these are all continuous since 1 + p
sin 9 > I 8 > 0.

We assume then that Iaf is equal to the expression (1.1) that the
derivatives of order k + 1 are continuous and that Rl a > m — 2k—2 > 1.
The expression (4.1) consists of two terms which we treat separately.
The first term is .

A = v ] ,-r \ P"Ft(P, 6) cos"-»+2* + iflBin»-2t- 2 0 de d£ln,
i i ,n (a, K) JanJo

where
Fk(P,9)=\P fk(T-r,xi)r--1dr.

J o
If we integrate by parts with respect to 9, we obtain

7, = ——!—- f f* ooB - » + » + ^ A T j , {p, 9) Bin»-»-

the terms at the limits vanishing1 since Rla > m — 2k — 2 > 1.
Moreover

sin•

1 If m = 2/. + 3, there is a contribution from the lower limit 6=0, and this is ira-
por tanfc in § 6.
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= --5T- ^E + -^T s i n m~2k~3 9 + (m-2k-3) Ftsinm-*-* 9cos 6i ?p dd dtf J

I fp 8f,.(T r x •) dx- )
= fi(T—p, £•) <rpa c o s 9 + I £ ^ - ' - —-rl r°-~l dr r$\r\m k~ 6

( Jo SaTj • 80 )

+ (m -• 2k- 3) if1!, sin'" ~^-*9cos ^

= -̂  /fc apa cos 0 + z,lir cos 0^- r a - 1 rfr :-sin 'n-2'--3 ̂

+ (m - 2k - 3) ^t. sin m~ 2k ~ *6 cos 9

~ fi& p°-cos 9 smm--k 3 9-\-\ Ys (xl — XA -^- r"--1 dr sin m~~'-~4 6 cos &
Jo 3 ^

+ (m - 2k - 3) 2*1,, sin » - 2<- - * 0 cos 0

= ft apacos6»sin'"-2 i-3 6 + fP//+1 (T —r, xt) r"-1- drs,mm-2lc-i9cos d
Jo

where/i. denotes / t (T-p, f.) and where/i+)L is defined by (4.2). We
have thus proved that 7j is equal to

1 r f f f " , /»,
^—?—i. J_ i\ fi + i(T~ r, xi)r'l-1cosa-m+2k+39sinm-u'-i9 drd9dQn

Km (a, K -f- I) L J J J0
J ' ' «

+ J J /^ ap" cos * -m + 2k +3 9 sin m -2 k ~ 3 0 d9 dQn"l.

The second term in (4.1) is

7 2 = Km(a,k) \nn T ^ (^' *<> A-ooB-^«*+^Bin-»- 0 d0 dQB

1 " f fJ" «
I I cos
Jfi J n

-#m(a, k +

on integrating by parts, the terms at the limits vanishing as before.
Remembering that £ = Xt +ltp sin 9, we have

d r
^ I ^ . ( P , ft)p°

= ' - ^ ap cos 0 + S Z; - | ^ (p cos 0 -f ap sin 0 cos 6)

]-pasmm-2i-z 9 + (m-2k -2) ^.p^sin^
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= p»sin"!-2*-30co8 0!ap °^- sin 0 + (1 + c/sin 6) 2 (f;-X,-) J£
( d p og;

-\- a a gk s in 6 + \m — 2k — 2) grA. -

where gr̂ +1 is defined by (4.3). Hence
l C r *>n

U- = ~Km(a,k+l)\aJ0 ^ + n ~ ^ } p a ° O S a~m + 2*+ s

Adding the expressions for /j and 72, we obtain

+ [ [" g*+ip*cos—'•>+**+* Bain"-**-* 6 dddClJ (4.4)
J n n J 0 J

which completes the induction, apart from the consideration of the
region in which (4.4) is valid. But both integrals converge uniformly
with respect to a when El a > Max (0, m — 2k — 4), and so the
result is proved.

§ 5. The limit of Iaf as a —> -f 0 when m is even.

By § 4, /"/ is regular in the half-plane Rl a > Max (0, m — 2k— 2),
provided that the derivatives of / and 8 of order k < | (m — 1) are
continuous. It is necessary to consider separately the cases when
in is even or odd. If m = 2p + 1, the largest possible value of
k is p — 1; and if the derivatives of order p — 1 are continuous;
/"/ is regular in Rl a > 1. If m = 2p -f 2, the largest possible
value of k is p; and if the derivatives of order j> are continuous, 7°/ is
regular in Rl a > 0. In the latter case, /"/is equal to

f f f *' f• / - r— 1 c o s " - ^ 6 dr d6 d£ln

3rJ'2a+*+lr(|a+ 1) T(|a+ 1) L Jnjo J oJp

f I ~] (5 .1)f I
J°« Jo

By the recurrence formulae (4.2) and (4.3), fv is independent of a,
whereas gP is a polynomial in a of degree p — 1.

The second term in square brackets in (5.1) evidently contributes
nothing to the limit of Iaf a s a - > + 0 . To deal with the first term,
we use the following lemma of Fremberg.1

i Fremberg, loo. cif., p. 274. I am grateful to a referee for pointing out that
Frembergs lemma, which omits reference to any "unspecified parameters", is really
insufficient. The unspecified parameters are to be the angle-variables 6 , <j> ,... <j>n_v
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Let g (x, y) be a function of x and y and certain unspecified parameters
which is absolutely inferrable over O^x^a, O^y^ b and which is
continuous at (0,0) uniformly with respect to the parameters.

Let 1 I g (x, y) dx be bounded uniformly with respect to the parameters
J o i

and with respect to y in 0 5S y rg -q :g 6.

fb '
Le g (x, y) dy be bounded uniformly with respect to the parameters

J o ,
•and with respect to x in 0 ^ x 5S £ ;£ a. Then, as a—> + 0,

> y)xa~ly*-1 dxdy->g (0, 0),
J o J o

uniformly with respect to the parameters.
We have assumed throughout this work that the surface S is

spatially-directed. It is readily seen that this implies that p, which
is a continuous function of the angle-variables 9 and tf>, has a positive
lower bound a. Moreover, the part of the range of integration with
respect to r between a and p contributes nothing to the limit of I"f.
Hence we apply the lemma to

*-1cos"-1 9 dr dd

»-i ,,a-i drdy—J'JV.
J 0 J 0

where y — cos 9. Evidently fp, being a continuous function of x{ and
r, is a function of r and 9, and therefore of r and y, which fulfils the
conditions of the lemma; the " unspecified parameters " are the angle-
variables <f>. Hence, as a -> + 0,

J-*\fp{T-r, Xi)\ =fp(T,Xi).
L J r=0

But since the limit of J is independent of the variables <f>, we have

by (2.9) with n = 2̂ ) + 1.

From (4.2), we have

fk (T, X,) = (m-2k- !)/, ._! (T, X,) = ^ " ~ _ ^ / ( r , X,). (5.3)

In the present case, m = 2p + 2, so that
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Substituting in (5.2), we obtain the final result that

lim l«f{T,Xi)=f(T,Xi)

when m = 2p -f 2, provided that the partial derivatives of f and S of
order p are continuous.

§ 6. The limit of Iaf as a-> + 0 when m is odd.

If m — 2p + 1 and the derivatives of / and S of order p — 1 are-
continuous, / " / is regular in Rl a > 1 and is equal to

-Yttairtta-T) [ la, J7 \j> " ' r"~
[^ 9P-i pacosa-20sin25 dOdCl\ (6.1)

«n Jo ™J
To continue the function into Rl a > 0, we have to assume that the
derivatives of order p are continuous and again integrate by parts-
with respect to 6. The first term inside the square brackets is

so that, when,we integrate by parts, the terms at the limits do not
vanish: there is a non-vanishing term arising from the lower
limit 6=0.

Carrying out the integration by parts, we obtain for /*/

Jnn \ Jo ' e=o J n n J o

+ f [" p*cos*6\ap sin 8 ?^P^1
Janio [ op

and this provides the analytical continuation into Rl a > 0. When
a-> + 0, all the terms inside the square brackets, except the second,
remain finite, and so contribute nothing to the limit of /" / . As for
the second term, we recall that p is a continuous function of 6 and <j>
with positive lower bound a, and the part of the range of integration
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with respect to r between a and p again contributes nothing. Hence,
since xt = Xt when 6 — 0,

+ 1) jo

= 2F",lima ["fp-iiT-r.X^r^dr,
A" T!p a-> +0 JO

the integrand now being independent of the angle-variables <f>.
To calculate this limit, we use the result that, if g (x) is con-

tinuous at 0,

lim a f g (x) x"-1 dx = g (0).
a-> + 0 J 0

Hence we have

lim l i (T,Xi)=-^p / , _ x (T, X,) =f(T, Xt)

by (2.9) and (5.3). We have thus proved that

lim I«f(T,Xi)=f(T,Xi)

when m = 2p + 1 provided that the partial derivatives of f and 8 of order
p are continuous. The results of § 5 and § 6 agree with those of
Fremberg.

§ 7. Retarded potentials.

The transformation (2.4) of Riesz's integral leads to an interesting
generalisation of the ordinary retarded potential. Let us suppose
that m ̂  4, that / and 8f/ 8t are continuous and that $ is the hyper-
plane i = — a. Then, when Rla > m — 2,

If x a~m+i
/ • / = = — f(T - r, Xi) ^-~— dx, dx2.. . .dxm, '

V

where integration is over the hypervolume F bounded by xm = 0,
r = T + a. We shall denote the boundary of V by S and the direction-
cosines of the outward normal by (Ax Am).

Integrating by parts, we have
™ a—m+2

V
f „ a-m+2 " I J \ AT fl~ f>~ \

~ \ m »7" 7 ' ! axmf-
V
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But since Rl a > m — 2, the portion 2^ of S on which xm vanishes
makes no contribution, and we may replace integration over 2 b y
integration over S2, the curved part of }£. The resulting formula
provides the analytical continuation into Rla > m — 4, as may be
seen by introducing spherical polar coordinates.

In particular, we have

/-»/_ * T [f_(T-r>*i)x ,7v
J 2m-27Tim-l r(jTO-l) L J r "l

If we integrate by parts again and remember that AHi = - 1 on S,, we
obtain

/ » - 2 f =
 1 [f(T-r, Xi)

On S,, cffi = rfa-'j cZa;2... rfa;n and integration is over

Lastly, if we make a-> + oo , we have

Tm-2{('p XA — - f /(-' ~ r> xi) 7 J i

i J (i , A J - 2m _ 2 ^ . i r ( ^ m — X) J r '" x 2 ' " • "'

where integration is over the whole n-dimensional space. This-
formula is a generalisation of the ordinary retarded potential, to which
it reduces when m = 4. For in the latter case we have

which is a solution of Lu = f, since LI2f = I°f = / .
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