A POLYNOMIAL MODEL FOR THE DOUBLE-LOOP SPACE OF AN EVEN SPHERE

YASUHIKO KAMIYAMA

Department of Mathematics, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japan (kamiyama@sci.u-ryukyu.ac.jp)

(Received 12 June 2003)

Abstract It is well known that $\Omega^2 S^{2n+1}$ is approximated by $\operatorname{Rat}_k(\mathbb{C}P^n)$, the space of based holomorphic maps of degree k from S^2 to $\mathbb{C}P^n$. In this paper we construct a space G_k^n which is an analogue of $\operatorname{Rat}_k(\mathbb{C}P^n)$, and prove that under the natural map $j_k: G_k^n \to \Omega^2 S^{2n}, G_k^n$ approximates $\Omega^2 S^{2n}$.

Keywords: rational function; even sphere; loop space

2000 Mathematics subject classification: Primary 55P35

1. Introduction

Let $\operatorname{Rat}_k(\mathbb{C}P^n)$ denote the space of based holomorphic maps of degree k from the Riemannian sphere $S^2 = \mathbb{C} \cup \infty$ to the complex projective space $\mathbb{C}P^n$. The basepoint condition we assume is that $f(\infty) = [1, \ldots, 1]$. Such holomorphic maps are given by rational functions:

$$\operatorname{Rat}_k(\mathbb{C}P^n) = \{(p_0(z), \dots, p_n(z)) : \text{ each } p_i(z) \text{ is a monic polynomial over } \mathbb{C}$$
of degree k and such that there are no roots common to all $p_i(z)\}.$

There is an inclusion

$$i_k : \operatorname{Rat}_k(\mathbb{C}P^n) \hookrightarrow \Omega^2_k \mathbb{C}P^n \simeq \Omega^2 S^{2n+1}.$$

Segal [9] proved that i_k is a homotopy equivalence up to dimension k(2n-1). Later, the stable homotopy type of $\operatorname{Rat}_k(\mathbb{C}P^n)$ was described in [6] and [7] as follows. Let

$$\Omega^2 S^{2n+1} \simeq \bigvee_{s} \bigvee_{1 \leqslant q} D_q(S^{2n-1})$$

be Snaith's stable splitting of $\Omega^2 S^{2n+1}$. Then

$$\operatorname{Rat}_k(\mathbb{C}P^n) \simeq \bigvee_{s}^k \bigvee_{q=1}^k D_q(S^{2n-1}).$$

(We can rewrite this using the fact [5] that $D_q(S^{2n-1}) \simeq \Sigma^{2q(n-1)} D_q(S^1)$.) In particular,

$$i_{k*}: H_*(\operatorname{Rat}_k(\mathbb{C}P^n); \mathbb{Z}) \to H_*(\Omega^2 S^{2n+1}; \mathbb{Z})$$

is injective.

156

Results of [6], [7] and [9] imply that $\operatorname{Rat}_k(\mathbb{C}P^n)$ approximates $\Omega^2 S^{2n+1}$. On the other hand, considering the double-loop space of an even sphere, we naturally encounter the following problem: how to construct spaces G_k^n which approximate $\Omega^2 S^{2n}$. Moreover, we study the stable homotopy type of G_k^n .

In special cases an answer is known. We set

$$\operatorname{RRat}_k(\mathbb{C}P^n) = \{(p_0(z), \dots, p_n(z)) \in \operatorname{Rat}_k(\mathbb{C}P^n) : \text{ each } p_i(z) \text{ has real coefficients} \}.$$

Let $\operatorname{Map}_{k}^{T}(\mathbb{C}P^{1},\mathbb{C}P^{n})$ denote the space of continuous basepoint-preserving conjugationequivariant maps of degree k from $\mathbb{C}P^{1}$ to $\mathbb{C}P^{n}$. It is proved in [8] that

$$\operatorname{Map}_{k}^{T}(\mathbb{C}P^{1},\mathbb{C}P^{n}) \simeq \Omega S^{n} \times \Omega^{2} S^{2n+1} \quad (n \ge 1).$$

Hence, there is an inclusion

$$h_k : \operatorname{RRat}_k(\mathbb{C}P^n) \hookrightarrow \operatorname{Map}_k^T(\mathbb{C}P^1, \mathbb{C}P^n) \simeq \Omega S^n \times \Omega^2 S^{2n+1}.$$

The map h_k is a homotopy equivalence up to dimension (k+1)(n-1)-1. Moreover, $\operatorname{RRat}_k(\mathbb{C}P^n)$ is stably homotopy equivalent to the collection of stable summands in $\Omega S^n \times \Omega^2 S^{2n+1}$ of weight less than or equal to k. Here we define the weight of stable summands in ΩS^n as usual, but those in $\Omega^2 S^{2n+1}$ we define as being twice the usual one. Hence, in the situation where $\Omega^2 S^{2n} \simeq \Omega S^{2n-1} \times \Omega^2 S^{4n-1}$ holds, we can say that $\operatorname{RRat}_k(\mathbb{C}P^{2n-1})$ is a model which approximates $\Omega^2 S^{2n}$. Such a situation holds either (i) when it is localized at an odd prime, or (ii) when n = 1, 2 or 4.

In this paper we construct spaces G_k^n which approximate $\Omega^2 S^{2n}$ for all n without localization.

Definition 1.1. For $n \ge 1$, let G_k^n denote the space consisting of all (n + 1)-tuples $(p_0(z), \ldots, p_n(z))$ of monic polynomials over \mathbb{C} of degree k and such that if $p_0(\alpha) = \cdots = p_{n-1}(\alpha) = 0$ for some $\alpha \in \mathbb{C}$, then $p_n(\alpha) \notin \mathbb{R}$.

We have $G_1^n \simeq S^{2n-2}$ (cf. Lemma 2.3 (i)). Define a map

$$j_k: G_k^n \to \Omega^2 S^{2n}$$

as follows. We embed $\mathbb{R} \hookrightarrow \mathbb{C}^{n+1}$ by

$$r \mapsto (\underbrace{0, \dots, 0}_{n \text{ times}}, r).$$

Note that \mathbb{R}^+ , the group of positive real numbers, acts on $\mathbb{C}^{n+1} - \mathbb{R}$ so that

$$(\mathbb{C}^{n+1} - \mathbb{R})/\mathbb{R}^+ \simeq \mathbb{C}^{n+1} - \mathbb{R} \simeq S^{2n}.$$

Then j_k is defined to be the composite of maps

$$G_k^n \hookrightarrow \Omega^2((\mathbb{C}^{n+1} - \mathbb{R})/\mathbb{R}^+) \simeq \Omega^2(\mathbb{C}^{n+1} - \mathbb{R}) \simeq \Omega^2 S^{2n}.$$

For $n \ge 2$, let

$$\Omega^2 S^{2n} \simeq \bigvee_{1 \leqslant q} D_q(S^{2n-2})$$

be Snaith's stable splitting of $\Omega^2 S^{2n}$.

From results of [3] and [5], there is a stable homotopy equivalence

$$D_q(S^{2n-2}) \simeq S^{2q(n-1)} \vee \bigvee_{i=1}^{[q/2]} \Sigma^{2q(n-1)} D_i(S^1).$$
 (1.1)

157

Our main results are the following two theorems.

Theorem A. For $n \ge 2$, there is a stable homotopy equivalence

$$G_k^n \simeq \bigvee_{q=1}^k D_q(S^{2n-2}).$$

Theorem B.

- (i) For $n \ge 2$, the map $j_k : G_k^n \to \Omega^2 S^{2n}$ induces isomorphisms in homology groups in dimensions less than or equal to (k+1)(2n-2)-1. Hence, j_k induces isomorphisms in homotopy groups in dimensions less than or equal to (k+1)(2n-2)-2.
- (ii) For $n \ge 2$, $j_{k*}: H_*(G_k^n; \mathbb{Z}) \to H_*(\Omega^2 S^{2n}; \mathbb{Z})$ is injective.

Finally, we study the case n = 1. Recall that Brockett and Segal [2, 9] showed that $\operatorname{RRat}_k(\mathbb{C}P^1)$ has k + 1 connected components such that

$$\operatorname{RRat}_{k}(\mathbb{C}P^{1}) \simeq \prod_{q=0}^{k} \operatorname{Rat}_{\min(q,k-q)}(\mathbb{C}P^{1}).$$
(1.2)

Theorem C. There is a homotopy equivalence

$$G_k^1 \simeq \operatorname{RRat}_k(\mathbb{C}P^1).$$

2. Proofs of Theorems A, B and C

In order to prove Theorem A, we first prove the following proposition.

Proposition 2.1. Let p be a prime. Then, as a vector space, $H_*(G_k^n; \mathbb{Z}/p)$ is isomorphic to the subspace of $H_*(\Omega^2 S^{2n}; \mathbb{Z}/p)$ spanned by monomials of weight less than or equal to k. Here we define the weight of the (torsion-free) generators of $H_{2n-2}(\Omega^2 S^{2n}; \mathbb{Z})$ and $H_{4n-3}(\Omega^2 S^{2n}; \mathbb{Z})$ to be 1 and 2, respectively (cf. (1.1)).

The proposition is proved as follows. First, by constructing homology classes explicitly, we find a lower bound for the mod p homology of G_k^n (cf. Proposition 2.2). Next, considering a geometrical resolution of a resultant, we construct a spectral sequence of Vassiliev type. The spectral sequence converges to the mod p homology of G_k^n and the E^1 term coincides with the lower bound. Hence, the spectral sequence collapses at the E^1 term and the lower bound is actually an upper bound (cf. Proposition 2.4).

Proposition 2.2. Every element of $H_*(\Omega^2 S^{2n}; \mathbb{Z}/p)$ of weight less than or equal to k is in the image of j_{k*} . Hence, these elements are a lower bound for $H_*(G_k^n; \mathbb{Z}/p)$.

In order to prove Proposition 2.2, we first prove the following lemma.

Lemma 2.3.

- (i) The (torsion-free) generator of $H_{2n-2}(\Omega^2 S^{2n}; \mathbf{Z})$ is in the image of j_{1*} .
- (ii) The (torsion-free) generator of $H_{4n-3}(\Omega^2 S^{2n}; \mathbf{Z})$ is in the image of j_{2*} .

r

Proof.

(i) We embed $\mathbb{R} \hookrightarrow \mathbb{C}^n$ by

$$r \mapsto (\underbrace{0, \dots, 0}_{n-1 \text{ times}}, r).$$

Define a homeomorphism

$$f: G_1^n \xrightarrow{\cong} \mathbb{C} \times (\mathbb{C}^n - \mathbb{R})$$

by

$$f(z + \alpha_0, \dots, z + \alpha_n) = (\alpha_0, (\alpha_1 - \alpha_0, \dots, \alpha_n - \alpha_0)).$$

Then $G_1^n \simeq S^{2n-2}$. Let u_{2n-2} be the generator of $H_{2n-2}(G_1^n; \mathbb{Z})$. Then it is easy to see that $j_{1*}(u_{2n-2})$ generates $H_{2n-2}(\Omega^2 S^{2n}; \mathbb{Z})$.

(ii) Let B^n be the space consisting of all *n*-tuples $(p_0(z), \ldots, p_{n-1}(z))$ of monic polynomials over \mathbb{C} of degree 2 and such that

$$(p_0(z),\ldots,p_{n-1}(z)) \neq ((z+\alpha)^2,\ldots,(z+\alpha)^2)$$
 for any $\alpha \in \mathbb{C}$.

There is an embedding $s: B^n \to G_2^n$ defined by

$$s(p_0(z),\ldots,p_{n-1}(z)) = (p_0(z),\ldots,p_n(z)),$$

where $p_n(z)$ is chosen according to $p_i(z)$ $(0 \le i \le n-1)$ as follows: we choose the imaginary part of the constant term of $p_n(z)$ near $+\infty$ so that $p_n(\alpha) \notin \mathbb{R}$ for any α , a root of $p_i(z)$ for some $0 \le i \le n-1$.

Since $B^n \cong \mathbb{C}^{2n} - \mathbb{C} \simeq S^{4n-3}$, there is an element $v_{4n-3} \in H_{4n-3}(G_2^n; \mathbb{Z})$. It is easy to see that $j_{2*}(v_{4n-3})$ generates $H_{4n-3}(\Omega^2 S^{2n}; \mathbb{Z})$. This completes the proof of Lemma 2.3.

Proof of Proposition 2.2. By an argument quite similar to that found in [1], we have a loop sum

*:
$$H_i(G_k^n; \mathbb{Z}/p) \otimes H_j(G_{k'}^n; \mathbb{Z}/p) \to H_{i+j}(G_{k+k'}^n; \mathbb{Z}/p)$$

and the first Dyer-Lashof operation

$$Q_1: H_i(G_k^n; \mathbb{Z}/p) \to H_{ip+p-1}(G_{kp}^n; \mathbb{Z}/p)$$

that are compatible with those in $H_*(\Omega^2 S^{2n}; \mathbb{Z}/p)$.

The structure of $H_*(\Omega^2 S^{2n}; \mathbb{Z}/p)$ is given as follows (cf. [4]).

(i) For p = 2,

$$H_*(\Omega^2 S^{2n}; \mathbb{Z}/2) \cong \mathbb{Z}/2[u_{2n-2}, Q_1(u_{2n-2}), \dots, Q_1 \cdots Q_1(u_{2n-2}), \dots].$$

(ii) For an odd prime p,

$$H_*(\Omega^2 S^{2n}; \mathbb{Z}/p) \cong H_*(\Omega S^{2n-1}; \mathbb{Z}/p) \otimes H_*(\Omega^2 S^{4n-1}; \mathbb{Z}/p)$$

Moreover, $H_*(\Omega S^{2n-1}; \mathbb{Z}/p) \cong \mathbb{Z}/p[u_{2n-2}]$ and

$$H_*(\Omega^2 S^{4n-1}; \mathbf{Z}/p) \cong \bigwedge (v_{4n-3}, Q_1(v_{4n-3}), \dots, Q_1 \cdots Q_1(v_{4n-3}), \dots) \\ \otimes \mathbf{Z}/p[\beta Q_1(v_{4n-3}), \dots, \beta Q_1 \cdots Q_1(v_{4n-3}), \dots],$$

where β is the mod p Bockstein operation.

By Lemma 2.3, u_{2n-2} is in the image of j_{1*} and v_{4n-3} is in the image of j_{2*} . Hence, from the structure of $H_*(\Omega^2 S^{2n}; \mathbb{Z}/p)$, every element of $H_*(\Omega^2 S^{2n}; \mathbb{Z}/p)$ of weight less than or equal to k is constructed in $H_*(G_k^n; \mathbb{Z}/p)$. This completes the proof of Proposition 2.2. \Box

Proposition 2.4. The lower bound of Proposition 2.2 is actually an upper bound.

Proof. We prove the proposition along the lines of [10, p. 151]. For a locally compact space X, let \bar{X} denote the one-point compactification of X, $\bar{X} = X \cup \{\infty\}$, and let $\bar{H}_*(X; \mathbb{Z})$ be the Borel–Moore homology group $\bar{H}_*(X; \mathbb{Z}) = \tilde{H}_*(\bar{X}; \mathbb{Z})$.

We regard $\mathbb{C}^{k(n+1)}$ as the space consisting of all (n+1)-tuples $(p_0(z), \ldots, p_n(z))$ of monic polynomials over \mathbb{C} of degree k. Let Σ_k^n be the complement of G_k^n in $\mathbb{C}^{k(n+1)}$. Thus

$$\Sigma_k^n = \{ (p_0(z), \dots, p_n(z)) \in \mathbb{C}^{k(n+1)} : p_0(\alpha) = \dots = p_{n-1}(\alpha) = 0$$

and $p_n(\alpha) \in \mathbb{R}$ for some $\alpha \in \mathbb{C} \}.$

From the Alexander duality, there is a natural isomorphism

$$H^*(G_k^n; \mathbf{Z}) \cong H_{2k(n+1)-1-*}(\Sigma_k^n; \mathbf{Z})$$

and so we study $\bar{H}_*(\Sigma_k^n; \mathbf{Z})$.

Let $I : \mathbb{C} \to \mathbb{C}^k$ be the Veronese embedding $I(z) = (z, z^2, \ldots, z^k)$. Let $f = (p_0(z), \ldots, p_n(z)) \in \Sigma_k^n$ and suppose that $p_0(z), \ldots, p_{n-1}(z)$ have at least d distinct common roots $\{\alpha_1, \ldots, \alpha_d\} \subset \mathbb{C}$ which satisfy $p_n(\alpha_i) \in \mathbb{R}$ $(1 \leq i \leq d)$. We denote by $\Delta(f, \{\alpha_1, \ldots, \alpha_d\}) \subset \mathbb{C}^k$ the open simplex in \mathbb{C}^k with vertices $\{I(\alpha_1), \ldots, I(\alpha_d)\}$. (Note that since $d \leq k$, the points $I(\alpha_1), \ldots, I(\alpha_d)$ are in general position.) Define a geometrical resolution $\tilde{\Sigma}_k^n$ of Σ_k^n by

$$\tilde{\Sigma}_k^n = \bigcup_{f \in \Sigma_k^n; \{\alpha_1, \dots, \alpha_d\}} \{f\} \times \Delta(f, \{\alpha_1, \dots, \alpha_d\}) \subset \Sigma_k^n \times \mathbb{C}^k.$$

The first projection defines an open proper map $\pi : \tilde{\Sigma}_k^n \to \Sigma_k^n$, and this induces a map between the one-point compactification spaces

$$\bar{\pi}: \bar{\tilde{\Sigma}}^n_k \to \bar{\Sigma}^n_k$$

It is known [10] that the map $\bar{\pi}$ is a homotopy equivalence. Define subspaces $F_s \subset \tilde{\tilde{\Sigma}}_k^n$ by

$$F_s = \begin{cases} \{\infty\} \cup \bigcup_{f \in \Sigma_k^n; \{\alpha_1, \dots, \alpha_d\}, d \leqslant s} \{f\} \times \Delta(f, \{\alpha_1, \dots, \alpha_d\}) & \text{if } s \geqslant 1, \\ \{\infty\} & \text{if } s = 0. \end{cases}$$

There is an increasing filtration

$$F_0 = \{\infty\} \subset F_1 \subset F_2 \subset \cdots \subset F_k = \tilde{\Sigma}_k^n \simeq \bar{\Sigma}_k^n$$

and this induces a spectral sequence

$$E_{s,t}^{1} = \bar{H}_{s+t}(F_{s} - F_{s-1}; \mathbf{Z}) \implies \bar{H}_{s+t}(\tilde{\Sigma}_{k}^{n}; \mathbf{Z}) \cong \bar{H}_{s+t}(\Sigma_{k}^{n}; \mathbf{Z}).$$

 $F_s - F_{s-1}$ is the space of a fibre bundle which is a fibred product of the following two bundles. The two bundles have common base $C_s(\mathbb{C})$, where $C_s(\mathbb{C})$ denotes the configuration space of unordered s-tuples of distinct points in \mathbb{C} .

- (i) The first bundle has an open (s-1)-dimensional simplex as a fibre.
- (ii) The second bundle is an affine $((\mathbb{C}^{k-s})^{n+1} \times \mathbb{R}^s)$ bundle. The fibre over a collection $\{\alpha_1, \ldots, \alpha_s\} \in C_s(\mathbb{C})$ consists of $((p_0(z), \ldots, p_n(z)), (r_1, \ldots, r_s))$, where deg $p_i(z) = k$ $(0 \leq i \leq n), p_i(z)$ $(0 \leq i \leq n-1)$ has roots $\alpha_1, \ldots, \alpha_s$ and $p_n(\alpha_j) = r_j$ $(1 \leq j \leq s)$.

Consider a real s-dimensional vector bundle over $C_s(\mathbb{C})$ with fibre over a collection $\{\alpha_1, \ldots, \alpha_s\} \in C_s(\mathbb{C})$ being the space of functions on its points. The local system of the vector bundle is locally isomorphic to \mathbb{Z} but changes the orientation over the loops defining odd permutations. Note that the bundles (i) and (ii) have this local system. Hence, by the Thom and Poincaré isomorphisms,

$$E_{s,t}^{1} = \begin{cases} H^{2(k-s)(n+1)+3s-t-1}(C_{s}(\mathbb{C}); \mathbf{Z}) & 1 \leq s \leq k, \\ 0 & \text{otherwise.} \end{cases}$$

Let $1 \leq *$. From the Alexander duality, we have

$$\dim H_*(G_k^n; \mathbf{Z}/p) \leqslant \sum_{s=1}^k \dim H_{*-2s(n-1)}(C_s(\mathbb{C}); \mathbf{Z}/p)$$
$$= \sum_{s=1}^k \dim H_*(\Sigma^{2s(n-1)}(C_s(\mathbb{C}) \vee S^0); \mathbf{Z}/p)$$

Since $D_s(S^{2n-2}) \simeq \Sigma^{2s(n-1)}(C_s(\mathbb{C}) \vee S^0)$ (cf. [5]), we have

$$\dim H_*(G_k^n; \mathbf{Z}/p) \leqslant \sum_{s=1}^k \dim H_*(D_s(S^{2n-2}); \mathbf{Z}/p).$$

This completes the proof of Proposition 2.4, and, consequently, of Proposition 2.1. \Box

Proof of Theorem A. Let f_k be the stable map given by the composite of maps

$$f_k: G_k^n \xrightarrow{j_k} \Omega^2 S^{2n} \simeq \bigvee_{1 \leqslant q} D_q(S^{2n-2}) \to \bigvee_{q=1}^k D_q(S^{2n-2})$$

Note that f_k is compatible with the homology splitting by weights. Then, using Proposition 2.1, we see that f_k induces an isomorphism in homology, hence is a stable homotopy equivalence. This completes the proof of Theorem A.

Proof of Theorem B.

- (i) Among elements of $H_*(\Omega^2 S^{2n}; \mathbb{Z}/p)$ which are not contained in $\operatorname{Im} j_{k*}$, the element of least degree is u_{2n-2}^{k+1} (cf. Theorem A). Hence, the homological assertion holds. Since G_k^n and $\Omega^2 S^{2n}$ are simply connected for $n \ge 2$, the homotopical assertion follows from the Whitehead Theorem.
- (ii) Part (ii) is clear from Theorem A. This completes the proof of Theorem B.

Proof of Theorem C. Let $(p_0(z), p_1(z)) \in G_k^1$. If $p_0(\alpha) = 0$, then we have $p_1(\alpha) \in H_+$ or H_- , where H_+ (respectively, H_-) is the open upper (respectively, lower) halfplane. If $p_1(\alpha) \in H_+$ (respectively, H_-), then we give the sign '+' (respectively, '-') to α . Let X_k be the space of unordered collections $\{\alpha_1, \ldots, \alpha_k\}$ of k points in \mathbb{C} such that each α_i has sign '+' or '-' with the following condition: if α_i and α_j have the same sign, then we allow $\alpha_i = \alpha_j$, but if they have opposite sign, then we do not allow $\alpha_i = \alpha_j$. It is clear that $G_k^1 \simeq X_k$. Let $\{\beta_1, \ldots, \beta_q, \gamma_1, \ldots, \gamma_{k-q}\} \in X_k$, where β_i has sign '+' and γ_i has sign '-'. We consider a pair of polynomials $(q_0(z), q_1(z))$ defined by

$$q_0(z) = \prod_{i=1}^q (z - \beta_i)$$
 and $q_1(z) = \prod_{i=1}^{k-q} (z - \gamma_i).$

Using the division algorithm we change $(q_0(z), q_1(z))$ to an element of

$$\operatorname{Rat}_{\min(q,k-q)}(\mathbb{C}P^1)$$

Then we see that X_k has k + 1 connected components so that

$$X_k \simeq \prod_{q=0}^k \operatorname{Rat}_{\min(q,k-q)}(\mathbb{C}P^1).$$

Now Theorem C follows from (1.2). This completes the proof of Theorem C.

Acknowledgements. Y.K. is indebted to Fred Cohen for numerous helpful conversations concerning configuration spaces.

References

- 1. C. P. BOYER AND B. M. MANN, Monopoles, non-linear σ models, and two-fold loop spaces, *Commun. Math. Phys.* **115** (1988), 571–594.
- 2. R. I. BROCKETT, Some geometric questions in the theory of linear systems, *IEEE Trans.* Automatic Control **21** (1976), 449–455.
- 3. E. H. BROWN AND F. P. PETERSON, On the stable decomposition of $\Omega^2 S^{r+2}$, Trans. Am. Math. Soc. **243** (1978), 287–298.
- 4. F. R. COHEN, T. J. LADA AND J. P. MAY, *The homology of iterated loop spaces*, Lecture Notes in Mathematics, vol. 533 (Springer, 1976).
- F. R. COHEN, M. E. MAHOWALD AND R. J. MILGRAM, The stable decomposition for the double loop space of a sphere, in *Algebraic and geometric topology* (ed. R. J. Milgram), *Proc. Symp. Pure Mathematics*, vol. 32, part 2, pp. 225–228 (American Mathematical Society, Providence, RI, 1978).
- 6. F. R. COHEN, R. L., COHEN, B. M. MANN AND R. J. MILGRAM, The topology of rational functions and divisors of surfaces, *Acta Math.* **166** (1991), 163–221.
- 7. F. R. COHEN, R. L. COHEN, B. M. MANN AND R. J. MILGRAM, The homotopy type of rational functions, *Math. Z.* **213** (1993), 37–47.
- 8. Y. KAMIYAMA, Spaces of real rational functions with common roots, preprint (2002).
- 9. G. B. SEGAL, The topology of spaces of rational functions, Acta Math. 143 (1979), 39–72.
- V. A. VASSILIEV, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98 (American Mathematical Society, Providence, RI, 1994).