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Abstract It is well known that Ω2S2n+1 is approximated by Ratk(CP n), the space of based holomor-
phic maps of degree k from S2 to CP n. In this paper we construct a space Gn

k which is an analogue of
Ratk(CP n), and prove that under the natural map jk : Gn

k → Ω2S2n, Gn
k approximates Ω2S2n.
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1. Introduction

Let Ratk(CPn) denote the space of based holomorphic maps of degree k from the Rie-
mannian sphere S2 = C∪∞ to the complex projective space CPn. The basepoint condi-
tion we assume is that f(∞) = [1, . . . , 1]. Such holomorphic maps are given by rational
functions:

Ratk(CPn) = {(p0(z), . . . , pn(z)) : each pi(z) is a monic polynomial over C

of degree k and such that there are no roots common to all pi(z)}.

There is an inclusion

ik : Ratk(CPn) ↪→ Ω2
kCPn � Ω2S2n+1.

Segal [9] proved that ik is a homotopy equivalence up to dimension k(2n− 1). Later, the
stable homotopy type of Ratk(CPn) was described in [6] and [7] as follows. Let

Ω2S2n+1 �
s

∨
1�q

Dq(S2n−1)

be Snaith’s stable splitting of Ω2S2n+1. Then

Ratk(CPn) �
s

k∨
q=1

Dq(S2n−1).
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(We can rewrite this using the fact [5] that Dq(S2n−1) � Σ2q(n−1)Dq(S1).) In particular,

ik∗ : H∗(Ratk(CPn); Z) → H∗(Ω2S2n+1; Z)

is injective.
Results of [6], [7] and [9] imply that Ratk(CPn) approximates Ω2S2n+1. On the other

hand, considering the double-loop space of an even sphere, we naturally encounter the
following problem: how to construct spaces Gn

k which approximate Ω2S2n. Moreover, we
study the stable homotopy type of Gn

k .
In special cases an answer is known. We set

RRatk(CPn) = {(p0(z), . . . , pn(z)) ∈ Ratk(CPn) : each pi(z) has real coefficients}.

Let MapT
k (CP 1, CPn) denote the space of continuous basepoint-preserving conjugation-

equivariant maps of degree k from CP 1 to CPn. It is proved in [8] that

MapT
k (CP 1, CPn) � ΩSn × Ω2S2n+1 (n � 1).

Hence, there is an inclusion

hk : RRatk(CPn) ↪→ MapT
k (CP 1, CPn) � ΩSn × Ω2S2n+1.

The map hk is a homotopy equivalence up to dimension (k + 1)(n − 1) − 1. Moreover,
RRatk(CPn) is stably homotopy equivalent to the collection of stable summands in
ΩSn × Ω2S2n+1 of weight less than or equal to k. Here we define the weight of stable
summands in ΩSn as usual, but those in Ω2S2n+1 we define as being twice the usual
one. Hence, in the situation where Ω2S2n � ΩS2n−1 × Ω2S4n−1 holds, we can say that
RRatk(CP 2n−1) is a model which approximates Ω2S2n. Such a situation holds either
(i) when it is localized at an odd prime, or (ii) when n = 1, 2 or 4.

In this paper we construct spaces Gn
k which approximate Ω2S2n for all n without

localization.

Definition 1.1. For n � 1, let Gn
k denote the space consisting of all (n + 1)-tuples

(p0(z), . . . , pn(z)) of monic polynomials over C of degree k and such that if p0(α) = · · · =
pn−1(α) = 0 for some α ∈ C, then pn(α) �∈ R.

We have Gn
1 � S2n−2 (cf. Lemma 2.3 (i)). Define a map

jk : Gn
k → Ω2S2n

as follows. We embed R ↪→ C
n+1 by

r �→ (0, . . . , 0︸ ︷︷ ︸
n times

, r).

Note that R
+, the group of positive real numbers, acts on C

n+1 − R so that

(Cn+1 − R)/R
+ � C

n+1 − R � S2n.
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Then jk is defined to be the composite of maps

Gn
k ↪→ Ω2((Cn+1 − R)/R

+) � Ω2(Cn+1 − R) � Ω2S2n.

For n � 2, let
Ω2S2n �

s

∨
1�q

Dq(S2n−2)

be Snaith’s stable splitting of Ω2S2n.
From results of [3] and [5], there is a stable homotopy equivalence

Dq(S2n−2) �
s

S2q(n−1) ∨
[q/2]∨
i=1

Σ2q(n−1)Di(S1). (1.1)

Our main results are the following two theorems.

Theorem A. For n � 2, there is a stable homotopy equivalence

Gn
k �

s

k∨
q=1

Dq(S2n−2).

Theorem B.

(i) For n � 2, the map jk : Gn
k → Ω2S2n induces isomorphisms in homology groups in

dimensions less than or equal to (k+1)(2n−2)−1. Hence, jk induces isomorphisms
in homotopy groups in dimensions less than or equal to (k + 1)(2n − 2) − 2.

(ii) For n � 2, jk∗ : H∗(Gn
k ; Z) → H∗(Ω2S2n; Z) is injective.

Finally, we study the case n = 1. Recall that Brockett and Segal [2,9] showed that
RRatk(CP 1) has k + 1 connected components such that

RRatk(CP 1) �
k∐

q=0

Ratmin(q,k−q)(CP 1). (1.2)

Theorem C. There is a homotopy equivalence

G1
k � RRatk(CP 1).

2. Proofs of Theorems A, B and C

In order to prove Theorem A, we first prove the following proposition.

Proposition 2.1. Let p be a prime. Then, as a vector space, H∗(Gn
k ; Z/p) is isomor-

phic to the subspace of H∗(Ω2S2n; Z/p) spanned by monomials of weight less than or
equal to k. Here we define the weight of the (torsion-free) generators of H2n−2(Ω2S2n; Z)
and H4n−3(Ω2S2n; Z) to be 1 and 2, respectively (cf. (1.1)).
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The proposition is proved as follows. First, by constructing homology classes explic-
itly, we find a lower bound for the mod p homology of Gn

k (cf. Proposition 2.2). Next,
considering a geometrical resolution of a resultant, we construct a spectral sequence of
Vassiliev type. The spectral sequence converges to the mod p homology of Gn

k and the
E1 term coincides with the lower bound. Hence, the spectral sequence collapses at the
E1 term and the lower bound is actually an upper bound (cf. Proposition 2.4).

Proposition 2.2. Every element of H∗(Ω2S2n; Z/p) of weight less than or equal to k

is in the image of jk∗. Hence, these elements are a lower bound for H∗(Gn
k ; Z/p).

In order to prove Proposition 2.2, we first prove the following lemma.

Lemma 2.3.

(i) The (torsion-free) generator of H2n−2(Ω2S2n; Z) is in the image of j1∗.

(ii) The (torsion-free) generator of H4n−3(Ω2S2n; Z) is in the image of j2∗.

Proof.

(i) We embed R ↪→ C
n by

r �→ (0, . . . , 0︸ ︷︷ ︸
n − 1 times

, r).

Define a homeomorphism

f : Gn
1

∼=−→ C × (Cn − R)

by
f(z + α0, . . . , z + αn) = (α0, (α1 − α0, . . . , αn − α0)).

Then Gn
1 � S2n−2. Let u2n−2 be the generator of H2n−2(Gn

1 ; Z). Then it is easy to
see that j1∗(u2n−2) generates H2n−2(Ω2S2n; Z).

(ii) Let Bn be the space consisting of all n-tuples (p0(z), . . . , pn−1(z)) of monic poly-
nomials over C of degree 2 and such that

(p0(z), . . . , pn−1(z)) �= ((z + α)2, . . . , (z + α)2) for any α ∈ C.

There is an embedding s : Bn → Gn
2 defined by

s(p0(z), . . . , pn−1(z)) = (p0(z), . . . , pn(z)),

where pn(z) is chosen according to pi(z) (0 � i � n − 1) as follows: we choose the
imaginary part of the constant term of pn(z) near +∞ so that pn(α) �∈ R for any α,
a root of pi(z) for some 0 � i � n − 1.

Since Bn ∼= C
2n − C � S4n−3, there is an element v4n−3 ∈ H4n−3(Gn

2 ; Z). It is
easy to see that j2∗(v4n−3) generates H4n−3(Ω2S2n; Z). This completes the proof
of Lemma 2.3. �

https://doi.org/10.1017/S001309150300052X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150300052X


A polynomial model for the double-loop space of an even sphere 159

Proof of Proposition 2.2. By an argument quite similar to that found in [1], we
have a loop sum

∗ : Hi(Gn
k ; Z/p) ⊗ Hj(Gn

k′ ; Z/p) → Hi+j(Gn
k+k′ ; Z/p)

and the first Dyer–Lashof operation

Q1 : Hi(Gn
k ; Z/p) → Hip+p−1(Gn

kp; Z/p)

that are compatible with those in H∗(Ω2S2n; Z/p).
The structure of H∗(Ω2S2n; Z/p) is given as follows (cf. [4]).

(i) For p = 2,

H∗(Ω2S2n; Z/2) ∼= Z/2[u2n−2, Q1(u2n−2), . . . , Q1 · · ·Q1(u2n−2), . . . ].

(ii) For an odd prime p,

H∗(Ω2S2n; Z/p) ∼= H∗(ΩS2n−1; Z/p) ⊗ H∗(Ω2S4n−1; Z/p).

Moreover, H∗(ΩS2n−1; Z/p) ∼= Z/p[u2n−2] and

H∗(Ω2S4n−1; Z/p) ∼=
∧

(v4n−3, Q1(v4n−3), . . . , Q1 · · ·Q1(v4n−3), . . . )

⊗ Z/p[βQ1(v4n−3), . . . , βQ1 · · ·Q1(v4n−3), . . . ],

where β is the mod p Bockstein operation.

By Lemma 2.3, u2n−2 is in the image of j1∗ and v4n−3 is in the image of j2∗. Hence, from
the structure of H∗(Ω2S2n; Z/p), every element of H∗(Ω2S2n; Z/p) of weight less than or
equal to k is constructed in H∗(Gn

k ; Z/p). This completes the proof of Proposition 2.2. �

Proposition 2.4. The lower bound of Proposition 2.2 is actually an upper bound.

Proof. We prove the proposition along the lines of [10, p. 151]. For a locally com-
pact space X, let X̄ denote the one-point compactification of X, X̄ = X ∪ {∞}, and let
H̄∗(X; Z) be the Borel–Moore homology group H̄∗(X; Z) = H̃∗(X̄; Z).

We regard C
k(n+1) as the space consisting of all (n + 1)-tuples (p0(z), . . . , pn(z)) of

monic polynomials over C of degree k. Let Σn
k be the complement of Gn

k in C
k(n+1).

Thus

Σn
k = {(p0(z), . . . , pn(z)) ∈ C

k(n+1) : p0(α) = · · · = pn−1(α) = 0

and pn(α) ∈ R for some α ∈ C}.

From the Alexander duality, there is a natural isomorphism

H̃∗(Gn
k ; Z) ∼= H̄2k(n+1)−1−∗(Σn

k ; Z)

and so we study H̄∗(Σn
k ; Z).
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Let I : C → C
k be the Veronese embedding I(z) = (z, z2, . . . , zk). Let f =

(p0(z), . . . , pn(z)) ∈ Σn
k and suppose that p0(z), . . . , pn−1(z) have at least d distinct

common roots {α1, . . . , αd} ⊂ C which satisfy pn(αi) ∈ R (1 � i � d). We denote by
∆(f, {α1, . . . , αd}) ⊂ C

k the open simplex in C
k with vertices {I(α1), . . . , I(αd)}. (Note

that since d � k, the points I(α1), . . . , I(αd) are in general position.) Define a geometrical
resolution Σ̃n

k of Σn
k by

Σ̃n
k =

⋃
f∈Σn

k ; {α1,...,αd}
{f} × ∆(f, {α1, . . . , αd}) ⊂ Σn

k × C
k.

The first projection defines an open proper map π : Σ̃n
k → Σn

k , and this induces a map
between the one-point compactification spaces

π̄ : ¯̃Σn
k → Σ̄n

k .

It is known [10] that the map π̄ is a homotopy equivalence. Define subspaces Fs ⊂ ¯̃Σn
k

by

Fs =

⎧⎪⎨
⎪⎩

{∞} ∪
⋃

f∈Σn
k ; {α1,...,αd}, d�s

{f} × ∆(f, {α1, . . . , αd}) if s � 1,

{∞} if s = 0.

There is an increasing filtration

F0 = {∞} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk = ¯̃Σn
k � Σ̄n

k

and this induces a spectral sequence

E1
s,t = H̄s+t(Fs − Fs−1; Z) ⇒ H̄s+t(Σ̃n

k ; Z) ∼= H̄s+t(Σn
k ; Z).

Fs − Fs−1 is the space of a fibre bundle which is a fibred product of the following two
bundles. The two bundles have common base Cs(C), where Cs(C) denotes the configu-
ration space of unordered s-tuples of distinct points in C.

(i) The first bundle has an open (s − 1)-dimensional simplex as a fibre.

(ii) The second bundle is an affine ((Ck−s)n+1 ×R
s) bundle. The fibre over a collection

{α1, . . . , αs} ∈ Cs(C) consists of ((p0(z), . . . , pn(z)), (r1, . . . , rs)), where deg pi(z) =
k (0 � i � n), pi(z) (0 � i � n − 1) has roots α1, . . . , αs and pn(αj) = rj

(1 � j � s).

Consider a real s-dimensional vector bundle over Cs(C) with fibre over a collection
{α1, . . . , αs} ∈ Cs(C) being the space of functions on its points. The local system of
the vector bundle is locally isomorphic to Z but changes the orientation over the loops
defining odd permutations. Note that the bundles (i) and (ii) have this local system.
Hence, by the Thom and Poincaré isomorphisms,

E1
s,t =

{
H2(k−s)(n+1)+3s−t−1(Cs(C); Z) 1 � s � k,

0 otherwise.
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Let 1 � ∗. From the Alexander duality, we have

dim H∗(Gn
k ; Z/p) �

k∑
s=1

dim H∗−2s(n−1)(Cs(C); Z/p)

=
k∑

s=1

dim H∗(Σ2s(n−1)(Cs(C) ∨ S0); Z/p).

Since Ds(S2n−2) � Σ2s(n−1)(Cs(C) ∨ S0) (cf. [5]), we have

dim H∗(Gn
k ; Z/p) �

k∑
s=1

dim H∗(Ds(S2n−2); Z/p).

This completes the proof of Proposition 2.4, and, consequently, of Proposition 2.1. �

Proof of Theorem A. Let fk be the stable map given by the composite of maps

fk : Gn
k

jk−→ Ω2S2n �
s

∨
1�q

Dq(S2n−2) →
k∨

q=1

Dq(S2n−2).

Note that fk is compatible with the homology splitting by weights. Then, using Proposi-
tion 2.1, we see that fk induces an isomorphism in homology, hence is a stable homotopy
equivalence. This completes the proof of Theorem A. �

Proof of Theorem B.

(i) Among elements of H∗(Ω2S2n; Z/p) which are not contained in Im jk∗, the element
of least degree is uk+1

2n−2 (cf. Theorem A). Hence, the homological assertion holds.
Since Gn

k and Ω2S2n are simply connected for n � 2, the homotopical assertion
follows from the Whitehead Theorem.

(ii) Part (ii) is clear from Theorem A. This completes the proof of Theorem B.

�

Proof of Theorem C. Let (p0(z), p1(z)) ∈ G1
k. If p0(α) = 0, then we have p1(α) ∈

H+ or H−, where H+ (respectively, H−) is the open upper (respectively, lower) half-
plane. If p1(α) ∈ H+ (respectively, H−), then we give the sign ‘+’ (respectively, ‘−’) to
α. Let Xk be the space of unordered collections {α1, . . . , αk} of k points in C such that
each αi has sign ‘+’ or ‘−’ with the following condition: if αi and αj have the same sign,
then we allow αi = αj , but if they have opposite sign, then we do not allow αi = αj . It
is clear that G1

k � Xk. Let {β1, . . . , βq, γ1, . . . , γk−q} ∈ Xk, where βi has sign ‘+’ and γi

has sign ‘−’. We consider a pair of polynomials (q0(z), q1(z)) defined by

q0(z) =
q∏

i=1

(z − βi) and q1(z) =
k−q∏
i=1

(z − γi).
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Using the division algorithm we change (q0(z), q1(z)) to an element of

Ratmin(q,k−q)(CP 1).

Then we see that Xk has k + 1 connected components so that

Xk �
k∐

q=0

Ratmin(q,k−q)(CP 1).

Now Theorem C follows from (1.2). This completes the proof of Theorem C. �

Acknowledgements. Y.K. is indebted to Fred Cohen for numerous helpful conver-
sations concerning configuration spaces.
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