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SUMMARY 

Momentum and energy transport by buoyancy-Cor iolis waves is illustrated 
by means of a simple model example. The need for careful consideration of 
a complete problem for mean-flow evolution is emphasised, especially when 
moving media are involved. Then a recent generalisation of the wave-action 
and pseudomomentum concepts is introduced, and used to exhibit in a very 
general way the roles of wave dissipation, forcing, or transience in the 
mean flow problem, for a certain class of 'nearly-unidirectional' mean 
flows. This class includes differentially-rotating stellar interiors, 
which could well be systematically changed by wave transport of angular 
momentum. Similar results hold for MHD and self-gravitating fluids. Finally 
the physical distinction between momentum and pseudomomentum is discussed. 

1. INTRODUCTION 

Some of the most spectacular natural manifestations of wave transport 
effects are those believed on the basis of recent evidence to occur in the 
stratospheres of Earth and Venus1 . Closely analogous effects appear 
likely to influence the evolution of the rotation of stellar interiors5, 
and to be important in other astrophysical contexts6. They are often 
associated with rather complicated kinds of low-frequency fluid-dynamical 
waves, in which buoyancy and Coriolis forces are essential. The waves set 
up a 'radiation stress' whereby the mean azimuthal velocity at one height 
and latitude can undergo systematic acceleration at the expense of a 
corresponding deceleration at a more or less distant location. Thus 
transport of angular momentum by the waves is involved. This transport can 
result in drastic changes to the pattern of differential rotation (which 
in turn can drastically affect the wave propagation and lead to some 
interesting feedback effects^-
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An idealisation illustrating this kind of 'radiation stress' phenomenon 
is the model problem suggested in figure 1. Inertio-gravity waves, which 
are the simplest type of buoyancy-Coriolis wave, are being generated by a 
slippery, corrugated boundary moving parallel to itself with constant 
velocity c: 

FIGURE 1. Inertio-gravity waves being generated in a stably-stratified 
fluid (specific entropy increasing upward) by a rigidly-moving boundary. 
The frame of reference is rotating with constant angular velocitySL= (0,0,JL) 
and the effective gravity g = (0,0,g) = constant. (It can be shown that the 
waves have their crests or~lines of constant phase sloping forward, unlike 
the sound waves which might be generated if the boundary moved much faster .) 

Here the Cartesian x direction plays the role of the azimuthal direction, 
and the mean state is assumed independent of x. The mean pressure gradient 
has no x-component; thus the fluid is free to accelerate in the x direction 
in response to the radiation stress. 

If the waves are being dissipated in some layer L at the top of the 
picture, there is a systematic tendency for the mean flow to accelerate 
there. So the wave-drag force which the boundary exerts on the fluid is not 
felt at the boundary, as far as the mean flow is concerned; it is felt at 
L. This is a typical radiation-stress effect. 

If the waves were generated not at a boundary but by a moving system 
of heat sources and sinks in some layer in the interior of the fluid, then 
total momentum would be constant, and the mean acceleration at levels where 
the waves are dissipated will be accompanied by a corresponding deceleration 
where they are generated ' . The close connection between mean flow changes 
and wave dissipation or forcing can be verified by detailed solution of 
the appropriate sets of equations, but is not usually obvious from the 
equations themselves. 

Where the waves are dissipated will depend not only on the physics of 
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the dissipative processes but also upon the solution of the wave propagation 
problem for the particular mean-flow profile involved. Other things being 
equal, we usually get enhanced dissipation of the waves in places, if any, 
where their intrinsic frequency (i.e. frequency in a frame of reference 
moving with the local mean flow u ) is Doppler shifted towards zero - that 
is, we tend to get enhanced dissipation near an actual or virtual 'critical 
line'8 u(y,z) = c. 

In this review I shall pay particular but not exclusive attention to 
the class of problems exemplified by figure 1. Their characteristic feature 
is the existence of a coordinate x (cartesian or curvilinear) such that mean 
quantities are independent of x, and 'mean' can be defined as an average 
with respect to x. Such problems, which I shall call 'longitudinally 
symmetric' happen to comprise an area of recent advances, and also serve 
to illustrate some of the subtleties and pitfalls which can arise in thinking 
in general terms about the transport of conservable quantities such as 
energy and momentum by waves in material media,and most particularly waves 
in moving media. (We are, of course, dealing with moving media par excellence 
as soon as Coriolis forces are relevant.) In section 2 some of these points 
are illustrated by describing in more detail what happens in the problem 
of figure 1. Most of the phenomena encountered can be found in one or other 
of several related problems which have been discussed in the literature by 
Eliassen , Phillips10, Matsuno1 , Uryu , Grimshaw1 , ancj others. 

In sections 3 and 4 I turn from illustrative example to general theory, 
and survey some very recent developments which appear to be of quite wide 
significance, but which have proved to be especially powerful for longitud­
inally symmetric problems. A simple yet very general version of the 
'wave-action' concept is involved, resulting from a synthesis and extension 
of ideas from 'classical field theory and the more recent work of 
Eckart , Hayes16, Dewar1 , and Bretherton1 . Equally relevant is the 

pioneering work of Eliassen & Palm and Charney & Drazin ; and a related 
21 but not identical line of development is contained in the work of Soward 

on the Braginskii dynamo problem. A remarkable feature of the general 
results is that they enable useful statements to be made without requiring 
validity of approximations of the 'slowly-varying wavetrain' type and 
attendant concepts like 'group velocity'. Also, they can be developed for 
finite-amplitude waves22. Their special value in longitudinally-symmetric 
problems is that they lead to ways of expressing the problem for the 
mean-flow changes which do directly exhibit the abovementioned general 
connection between those changes and wave dissipation or forcing . 

Finally (section 5) I shall make some remarks about that elusive entity, 
or rather, nonentity, wave 'momentum'. 
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2. MORE ABOUT THE PROBLEM OF FIGURE 1 

2.1 Equations 

The simplest relevant set of model equations is the usual set for a 
Boussinesq, incompressible, stratified tluid in a rotating trame of 
reference, with constant angular velocity JL : 

H,t + W«7B + 2-QrA~ + Po"lvP ~ e ! = -S (2.1a) 

6ft + u.Ve = -Q (2.1b) 

^•u = 0 . (2.1c) 

Here u = (u,v,w) is velocity, ( ) t stands for d( )/6t, z is the unit vector 
(0,0,1), Q is the buoyancy acceleration given by minus the effective 
gravity-plus-centrifugal acceleration (assumed constant in this model) 
times the fractional departure of the density from its constant reference 
value p0. For descriptive purposes we shall think of e as a measure of 
temperature or potential temperature. The departure of the pressure from 
the hydrostatic value associated with p0 is denoted by p . The terms X = 
(X,Y,Z) and Q may be thought of as representing arbitrary body forces and 
heating, which may or may not be functionally related to the fields of motion 
but which in any case will be zero if the waves are neither dissipated nor 
generated internally. 

2.2 Excess momentum flux, and the mean-flow problem 

Let an average with respect to x be denoted by an overbar: for instance 
the mean velocity in the x-direction in figure 1 is u(y,z). If we average 
(2.1a) and make use of (2.1c) the result may be written in suffix notation 
(i,j=l,2,3) as 

Gi,t + <uiSj + Ecrij> , j + (2^'i " §5i " -<uiuj>,j " *i • (2.2a) 

(It will be convenient in what follows to use (x,y,z) and (u,v,w) 
interchangeably with (x2,X2,Xj) and (u^rUnrUo).) Here ( ) ' is defined as 
( ) - ( ) , the departure from the mean, and ( ) • means d ( )/dx^ . Eq.(2.2a) 
contains mean-flow quantities only, except for the term involving the 
Reynolds stress u<u^ . The equation tells us that u^u< is the excess mean 
momentum flux due to the waves. Note that u<u< is a wave property, by which 
I mean something which can be self-consistently evaluated as soon as you 
know the linear wave solution, i.e. when you know the fluctuating quantities 
( )' to leading order. 
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It might be tempting to conclude that nothing more need be said: Eq. 
(2.2a) states that the momentum transport by the waves is equal to u^u^ ; 
so 'obviously' -u^u^ is the stress whose divergence will give the mean 
acceleration u t, or at least the contribution to this acceleration 
attributable to the waves. The average of Eq.(2.1b), namely 

ef t + {Uj6}fj = -{u<e'}fj - 5 , (2.2b) 

is irrelevant, one might think, because how, after all, can the excess heat 
flux û 'e' due to the waves affect momentum transport? 

This conclusion would, however, be wrong (for reasons to appear 
shortly) , and the fact that it has appeared in the past literature 
illustrates the dangers of 'incomplete reasoning' about wave transport 
effects on the basis of superficial consideration of a relevant-looking wave 
property - in this case the excess momentum flux u<u^. Another illustration 
will be encountered in section 2.6. In fact the only safe general recipe 
for getting a self-consistent picture is to include a consideration of the 
complete problem for the mean flow and its solution correct to second order 
in the wave amplitude a. In the present example, the wave properties u<u^ 
and u^e' appear as forcing terms in the mean-flow problem; and both turn 
out to play essential roles. 

The result of averaging (2.1c) is 

V.u = 0 , (2.2c) 

and this completes the set of equations, (2.2), for the mean quantities u 
p and 6 . To obtain a well-determined model problem it is simplest to suppose 
that the flow is bounded laterally by a pair of vertical walls y = 0, b 
on which the normal component of velocity vanishes, implying that 

v = 0 o n y = 0 , b . (2.3) 

We must beware, however, of assuming that w vanishes at z = 0; in fact for 
a rigidly-translating, corrugated boundary whose shape is described by a 
given function h , 

z = h(x-ct, y) , (2.4) 

where h=0(a), h=0, and c is a (real) constant, it can be shown that 

w = (v'h)fY + 0(a
J) at z = 0 . (2.5) 

This illustrates the fact that w , which is an average along a horizontal 
line such as / in figure 1, can represent a vertical mass flux, into or out 
of the thin region betweeen / and the actual boundary, which is continuous 
with a horizontal, 0(a) mass flux within that region, associated with any 
tendency for the disturbance velocity to be one way along troughs and the 
other way along ridges in the boundary. 
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In fact, such a tendency turns out to be the rule rather than the 
exception when Coriolis effects matter; for instance if h is of the form 
a sin k(x-ct) then v' for conservative, plane inertio-gravity waves on a 
uniformly stratified basic state of rest turns out to be exactly in 
quadrature with w' and therefore exactly in phase with h at z=0. This can 
easily be verified by setting 9 z = constant, u = 9 y = 0 , and X=0, Q=0, 
and calculating the elementary plane-wave solutions cc exp i(kx + mz -ut) 
of the linearised disturbance equations derived from (2.1) (namely (3.2) 
below). Other pertinent features of such plane-wave solutions are that 9', 
being proportional to the vertical displacement through the basic stable 
stratification 9 _ , is (like h at z=0) in quadrature with the vertical 
velocity w ; also incompressibility dictates that u' is in phase with w , 
since (2. lc) implies iku ' + imw' = 0 . Thus u'w', v '9' are nonzero, and v 'w', 
w'9' zero, in a plane inertio-gravity wave. The frequency of such a wave, 
co (= kc), satisfies the dispersion relation 

u2 = (9fZk
2 + 4jl2m2)/(k2 + m2) (2.6) 

when u = 0. (It should be noted that this implies that c must lie between 
4JZ /k and 9 z/k

2 for the inertio-gravity waves to be generated.) 

2.3 Solution 

I shall now describe, for the simplest relevant example, the result 
of solving the 0(a2) mean flow problem; X and Q will be set to zero, so that 
we are talking about the effect on the mean flow of the waves alone. The 
waves are supposed to have propagated upwards as far as L either because 
they are being dissipated there or because a finite time has elapsed since 
the bottom boundary started moving. Well below L we can take the waves to 
have reached a steady state and the moticn to be conservative - we assume 
that X'and Q'are zero there as well as X and Q. To keep life as simple as 
possible we shall assume that 0 = 0 initially, and follow its evolution as 
long as it can be considered to be 0(a2) . We also take 9 „ = constant + 0(a) 
for the moment. 

The simplest kind of mathematical analysis for the waves (we omit the 
details, since the results of section 4 will supersede them) makes the usual 
kind of 'slowly-varying' approximation, in which the plane wave solution 
is locally valid. This involves inter alia an assumption that the layer L 
is sufficiently deep compared with a vertical wavelength. We also take h 
to be of the form a.f(y).sin k(x-ct) , where f(y) is a sufficiently 
slowly-varying function (which we assume vanishes at y=0,b). Then by the 
properties of plane inertio-gravity waves previously mentioned, the 
important term on the right of the x-component of (2.2a) is -(u'w') „ and 

7 7~ ' 

that on the right of (2.2b) is -(v 9 ) y . The remaining terms are not of 
course exactly zero, because plane waves represent only the leading 
approximation; but in fact it is consistent to neglect them. The response 
of the mean flow to the forcing -(v'9') together with the forcing 
represented by the inhomogeneous boundary condition (2.5) involves a mean 
'secondary circulation' indicated schematically by the arrows in figure 2. 
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The picture assumes that the wave amplitude is a maximum near y=jb and falls 
monotonically to zero on either side, so that (v'9') changes sign once, 
near y=jb. The mean flow feels an apparent 'heating' on one side of the 
channel, and 'cooling' on the other (about which more will be said in section 
2.5). This gives rise to an 0(a) mean vertical velocity w which beautifully 
satisfies the boundary condition (2.5) and, by Eq.(2.2c), demands a mean 
motion across the channel, i.e. a contribution to v, in the vicinity of the 
layer L where the wave amplitude goes to zero with height. 

Ha 

u.. 

FIGURE 2. Left: end view (looking along the x axis) of the problem of figure 
1. Right: typical profile of the mean acceleration in the longitudinal or 
x direction. The left-hand picture indicates how the secondary circulation 
v, w is closed by a mass flux 'in the bottom boundary', associated with a 
positive correlation between the disturbance y-velocity, v', and the depth 
-h of the corrugations in the boundary. 

The Coriolis force associated with this 0(a2) contribution to v accounts 
for a contribution to u t which is generally comparable with that from the 
Reynolds stress divergence -(u'w') , in the x component of Eq.(2.2a). In fact 
the two contributions, in the present simple problem, can be shown to stand 
approximately in the ratio 

Reynolds stress divergence 
Coriolis force associated with wave heat flux 

- GO* 
(2.7) 

The two contributions are comparable in magnitude whenever the Coriolis term 
is significant in the dispersion relation (2.6); indeed if k2<<m2 in (2.6), 
cô  i 4jlr and the two contributions are almost equal and opposite. In that 
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case an estimate of effective momentum transport from the Reynolds stress 
-u 'w' alone could be too large by an order of magnitude. (It is always wrong 
in order of magnitude in another example, namely that of quasi-geostrophic, 

11 19 

vertically propagating Rossby waves11'1'' - in which case it is too small, 
by a factor of order the Rossby number.) Only when both contributions are 
accounted for will the calculated total rate of change of mean momentum 
{/u tdydz agree, as it must, with minus the horizontal wave-drag force F 
exerted by the fluid on the lower boundary. F is defined correct to second 
order as the integral with respect to y of 

? = P'h,x |z=0 + 0 ( a 3 ) ' <2-8) 

This agreement (the detailed verification of which is omitted here) provides 
a useful check on the correctness of the overall picture. 

2.4 Lagrangian-mean flow and 'radiation stress' 

There are crucial differences between the foregoing picture, which is 
based on Eulerian averaging, that is averaging at fixed values of (y,z), 
and the same problem solved using a Lagrangian mean (definable approximately 
as the mean following a fluid particle) . It turns out that the Lagrangian-
mean secondary circulation is negligible sufficiently far below L. In a 
region of steady waves, when Q=0, the fluid particles merely oscillate about 
a constant mean level, and have no systematic tendency to migrate up or down. 
This is no more than might be expected for adiabatic motion in stable 
stratification. So in a Lagrangian-mean description there is no secondary 
circulation linking the regions of wave generation and dissipation, and thus 
no 'Coriolis' contribution to the effective transport of momentum by the 
waves. The analogue, in the Lagrangian-mean momentum equation, of the 
Reynolds stress -u'̂ u'̂  in the Eulerian-mean momentum equation (2.2a), thus 
gives a more direct description of the momentum transport, as was recognised 
by Bretherton1*'' 2 ° , who suggested that it be identified as the radiation 
stress. Its xz component, taking the place of -u'w' in the present, 
Eulerian-mean description, is equal to the 'wave-drag' force in the x 
direction per unit area across a material surface whose undisturbed position 
is a plane z = constant - which force is evidently the same as (2.8) when 
z=0. These ideas have been further developed by Grimshaw for the 
slowly-varying case, and an exact 'generalised Lagrangian-mean' descrip­
tion for arbitrary, finite-amplitude waves has been developed by Andrews 
& Mclntyre . The reader is referred to those papers for more discussion 
of the differences between the Lagrangian and Eulerian-mean descriptions, 
and to Bretherton26 tor a sufficient physical explanation, in terms of the 
average Coriolis force on a thin piece of fluid bounded above by a corrugated 
material surface and below by a flat, 'Eulerian' control surface, as to why 
the corresponding momentum fluxes differ in general; see also (4.7) and 
(4.9) below. 

2.5 More details about the Eulerian-mean secondary circulation 

Returning to the example of figure 2, we describe in a little more detail 
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how, in the present description, the forcing term -(v '9') y 'gives rise' 
to the Eulerian-mean vertical velocity w, since this will help motivate the 
more general analysis of section 4. In the region below L, where we may 
suppose the waves to be in a steady state and not dissipating (X'=0, Q'=0), 
the forcing term -(v'9') ,, is in fact balanced mainly by w § „ on the left 
of (2.2b), when we rewrite that equation with the aid of (2.2c) as 

§,t + v 9/y + w efZ = -(v'e')(V . (2.9) 

The term v 9 ., is 0(a) and therefore negligible, because v is 0(a2), and 
9 ., is also 0(a'i) for the following reason. We have taken u=0(a ), which 
' ¥ . — o 

implies that 9 =0(a ) because the x component of the curl of (2.2a) gives 
Ly 2 

(when x=0 and v,w are 0(a)) 

9fV = -2J1U ) Z + 0(a2) . (2.10) 

(This is known in geophysical fluid dynamics as the 'thermal wind 
equation '.) The other term 9 t on the left of (2.9) turns out to be negligible 
unless we are within a distance of order the 'Rossby height' 

HR = 2Jlb/(9(Z)'
/l 

q 

from the layer L where the waves are unsteady or dissipating . This point 
will be further explained in section 4.6 below. Thus, sufficiently far below 
L we have a balance between w9 _ and -(v '&') ,, , which implies that 

t 6 r X 

w = -f„ , (2.11) 

where we have defined 
f = v'9'/(9(Z) , (2.12) 

again using (2.10) and our temporary assumption that u=0(a ) in order to 
neglect § v z . 

There is another didactic point to be made here, incidentally: it has 
often been assumed in the literature, for instance in connection with 
thermodynamic arguments, that the nonzero value of v'9' signifies a tendency 
for the waves to transport heat across the channel. Even more than with 
u'w' , this is true but misleading. There is no tendency at all for the 

mean temperature to rise on one side and fall on the other, if we are 
sufficiently far below L. The adiabatic heating or cooling associated with 
w closely compensates the divergence of v '6' . This compensation is 
intrinsic to the nature of the wave motion, as is underlined by the 
already-mentioned consideration that individual fluid particles are not 
being heated or cooled below L, because the motion is adiabatic there. 

The right-hand half of figure 2 schematically indicates the profile 
of the mean acceleration u t. if the layer L is shallower than the Rossby 
height HR, then additional contributions to v and v7 arise in a layer of depth 
HR centred on L. These adjust the values of 9 t and u t in such a way as 
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to keep the thermal-wind equation (2.10) satisfied; there is 'room' for such 
a circulation only in a layer of depth HR (see Eq.(4.12) below). 

It turns out that Eq.(2.11) still holds for mean flow profiles u(y,z) 
and §(y,z) which vary sufficiently slowly and are such that the Richardson 
number 6 ,/(u _ ) 2 is large. Then 

v = fiZ (2.13) 

can be significant below L. The associated Coriolis force does not, however , 
lead to an acceleration of the mean flow well below L, because it turns out 
that it is always cancelled by an equal and opposite Reynolds stress 
divergence if the waves are steady and conservative. The fact that this 
cancellation must take place will be seen as a corollary of the much more 
general results to be described in section 4. 

2.6 Energetics 

Our simple example is also quite instructive as regards questions of 
energy transport. Suppose that the waves are dissipating in the layer L and 
heating the fluid there. (The amount of heat involved does not change 9 
significantly within the Boussinesq approximation, but that is beside the 
point.) What is the source of this energy? Obviously, the work done by the 
agency moving the bottom boundary. How does the energy get from the boundary 
up to L ? Answer: there is a vertical energy flux p 'w' due to the waves. 
Indeed, the rate of working by the boundary 

-Jc = -cp'hfX|z=0 = P'w'|z=0 , (2.14) 

in virtue of (2.8) and the fact that w'= -ch v. All the quantities involved 
here are wave properties. 

What we must not forget, however, is that this simple picture, while 
correct to 0(a) , depends crucially on the circumstance that u is zero, apart 
from the 0(a) contribution indicated in figure 2. If we look at the 
similar problem in which the boundary is brought to rest 
and the fluid is moving past it with velocity u = -c + 0(a ) , the picture 
is quite different. Clearly the boundary can now do no work. The source of 
energy is now the kinetic energy of the mean flow near L, whose density is 
changing at a rate pQ times 

( I " 2 ) ,t = G5,t ="cS,t + °(a4> • (2.15) 

The integral of (2.15) over the y? domain is, indeed, equal to Fc, by the 
remarks above Eq.(2.8). 

In t h i s p r o b l e m there is no need for the waves to transport 
any energy into L at all; and indeed it does turn out that there is no net 
transport, despite the fact that p'w' is still the same as before. Note first 
that in the region of steady, conservative waves below L, the work done 
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across a material surface corrugated by the waves is obviously zero, because 
in the present p r o b 1 e m such a surface is immobile. Alternatively, 
in an Eulerian-mean description of the energy budget correct to 0(a) , based 
on the model equations (2.1) and (2.2), the total energy tlux across a 
horizontal control surface contains two terms which combine to cancel the 
contribution f p'w'dy . The first comes from the 0(a2) part of the advection 
by w of the leading contribution jp0(u + u ) to the total kinetic energy: 

p0w'(l-u
2 + uu' + £u'2) = pQu u'w' + 0(a

2) . (2.16) 

(This contribution to the total Eulerian energy tlux has been drawn 
attention to in the literature just about as often as it has been forgotten 
about'.) The second contribution is the mean pressure-working Jpwdy 
associated with the y-dependent part of the mean pressure whose gradient 
balances the Coriolis force associated with u . 

The general conclusion to be drawn is that, whenever moving media are 
involved, we must expect that a solution to the 0(a) mean flow problem will 
be essential to a self-consistent picture of the way in which waves 
contribute to the energy budget. We must also remember that, as always, use 
of the energy concept requires us to pay attention to frames of reference! 
There is no such thing as 'the' net energy transport due to the waves; and 
the transport can be identified with p'u' only if the medium is everywhere 
at rest. 

None of this affects the quite separate fact that the wave property 
p u i s the quantity usually related to the group velocity (when that concept 
is applicable). It usually turns out that 

p'u' = Ex(group velocity relative to the local mean flow) (2.17) 

for plane waves, where E is intrinsic wave-energy density, a wave property 
which in the present problem takes the form 

E =!/2-p0( y'
2 + e'2/efZ) . (2.18) 

(The second term is the available potential energy ' associated with 
vertical displacements of particles in the stable stratification; there is 
no internal energy because our model assumes incompressible flow. Brether-
ton & Garrett have analysed the idea of wave-energy as a physical concept 
in some depth, and in particular have established conditions under which 
E can be uniquely defined in a general manner independent of the mathematical 
formulation of the wave problem. I shall not go into that here except to 
say that, roughly speaking, E is the work you would do in setting up the 
disturbance, in a frame of reference in which the mean flow is at rest -
which clearly makes approximate sense in problems of moving media only when 
the mean state varies sufficiently little over a wavelength.) I said that 
(2.17) 'usually' holds, by the way, because there are some exotic cases such 
as Rossby waves where the two sides differ by an identically nondivergent 
term. However, in the case of our plane inertio-gravity waves the two sides 

https://doi.org/10.1017/S0252921100112515 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100112515


301 

can be verified to be equal. 

3. THE GENERALISED WAVE-ACTION PRINCIPLE 

I deliberately avoided writing down the full conservation equations 
for the energy budget, partly because the details get quite complicated for 
all but the very simplest mean flow structures. Besides, I want to leave 
space to introduce another kind of conservable quantity, generalised 
wave-action, which apart from its wider significance will lead to a more 
powerful approach to problems of the kind just discussed. This approach will 
depend in no essential way upon any 'slowly-varying' approximations. 
Wave-action is an O(a') wave property which, in its most general form, 
satisfies a conservation relation, apart from source terms in x' and Q', 
for any mean-flow structure whatever. This remarkable property is to be 
contrasted with the equation for wave-energy, whose 'right-hand side' 
contains a complex of terms representing exchange of energy with the mean 
flow: 

|£- + V. (HE + p'u') = 
ot 

= P o [ - 5 i , j " i ^ ^ i j - S i 2 j > e , i ^ " i ^ z ^ ^ z t + U j ^ z j ) ] 

-PofH'-5' + e'Q'/efZ] . O.I) 

Wave-energy fails to be conserved as soon as you have a moving medium. Eq. 
(3.1) is just for the Boussinesq case, and is derived by dotting the 
linearised versions of (2.1a) with p0u' and of (2.1b) with pQ6'/8 z and 
adding. We should always keep in mind that (3.1), as implied by the 
discussion just given in section 2.6, represents only a part of the whole 
energy budget. The linearised equations corresponding to (2.1) are 

Dtu/ + u'.Vu + 2_Q.Au' *• p0"Vp' - 6'i = -X' (3.2a) 

Dte'+ u'.Ve = -0/ (3.2b) 

F.u' = 0 , (3.2c) 

where the linearised material derivative 

Dt( ) = ( ) i t + u.V( ) . 

Here we shall define the generalised wave-action correct to 0(a) only. 
(It can be defined exactly, for finite-amplitude disturbances, once one has 
the generalised Lagrangian-mean description , but that is beyond the scope 
of this review.) Two preliminaries are needed. The first is to introduce 
the 0(a) particle displacement field J(x,t), which is defined to satisfy 
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V.I = 0 , 1=0, and 

D t I = ^ -

where u i s the Lagrangian dis turbance ve loc i ty 

u1 = u ' + f.Vu . 

2 
For the problem of figure 1, (3.3) simplifies, correct to 0(a )f to 

W M D..J = iT 7u,y + rn ,z 

(3.3a) 

(3.3b) 

(3.4) 

where f , *\, and £ are the components of /, 

The second preliminary is a formal device (see Hayesio and Bretherton''J) 
which is introduced for the sake of the greatest possible generality: we 
reinterpret the Eulerian averaging operator ( ) as an ensemble average, over 
an ensemble or wave solutions distinguished by a single, smoothly varying 
parameter a . In a stochastic problem oc would range over a 'sample space'; 
but random waves are merely one possible case. In the deterministic problem 
of figure 1, for example, we can generate a suitable ensemble just by 
translating the boundary and the wave pattern a distance <x in the x 
direction. Then ~ may be trivially re-defined in terms of an integral over 
a rather than over x. For the axisymmetric mean flows important in 
astrogeophysical applications the principle is the same but the details less 
trivial ' . Quite generally, we have the basic property 

H ),«} = f< )>,« (3.5) 

whenever the ensemble of disturbance fields depends differentiably upon the 
parameter a , which we shall take to be the case. 

Instead of dotting the linearised momentum equation (3.2a) withpQu', 
we now take its dot product with the derivative pn 5 n

 an<3 average. After 
some manipulation there results ' 

dA 
at 

+ * B = -Po( |r<x .X' + £ 0q') + 0(a4) 

where 

and 

5 = a A + I, a. P' 

q' = - 6' - J.Ve + 0(a3), 

(3.6) 

(3.7a) 

(3.7b) 

(3.8a) 

so that q' = 0 and 
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(3.8b) 

Thus q' = 0 when Q' = 0, i.e. q' = 0 for adiabatic motion. So A is conserved, 
with flux g , whenever x' and Q' are zero. 

In the derivation of (3.6) , the property (3.5) , and its corollary that 
if f'(x,t,a) and g'(x,t,a) are any two disturbance fields then 

f',a 9' = -f'9',cx - (3.9) 

are needed a number of times. Also (2.2) are used, with X and Q =0(a ). 

Eq. (3.6) corresponds when x' and Q' are zero to one of a class of exact 
conservation relations pointed out by Hayes16, which arise from replacing 
certain space or time derivatives by ( ) _, in the classical 'energy-
momentum-tensor formalism . The relationship between these exact conserv-
ation laws and the adiabatic conservation laws discovered by Whitham is 
discussed in some detail in Hayes' paper. Hayes took the range of a to be 
(0,2rr), which makes A unique and is convenient for applications to periodic 
or almost per iodic waves, since a may then be interpreted as phase. However , 
it is convenient here not to fix the range of a , in order to leave a little 
more flexibility in applications. Then A is defined only up to a 
multiplicative constant. 

Hayes called his conserved quantity the 'action' irrespective of what 
variational principle was used as the starting point. It can be shown" that 
A (with 0<a<2rr) is equal to Hayes' invariant when the governing variational 
principle is Hamilton's principle, expressed in its classical sense in terms 
of the particle displacements J. A is to be carefully distinguished from 
the other conservable quantities to which other variational principles may 
lead, via Hayes' modification of the energy-momentum-tensor formalism, and 
which may or may not be wave properties. For example, Hayes' invariant is 
not a wave property when the Clebsch-Herivel-Lin variational principle-^0 

is used as the starting point. 

A, or more properly its generalisation to finite amplitude 2, repre­
sents the fundamental, exactly conservable wave property which, in problems 
of slowly-varying, conservative waves (X, Q both zero), reduces to the 
adiabatically-conserved wave-action whose physical meaning and precise 
relation to Whitham's adiabatic invariants was elucidated by Bretherton & 

Oft 

Garrett . The connection between A and Bretherton & Garrett s wave-action 
22 can be made via the scalar virial theorem , i.e. the result of dotting the 

momentum equation with 5 rather than with J _ . (This reduces to 
equipartition of energy in the non-rotating case.) Bretherton & Garrett s 
wave-action is defined in those 'slowly-varying' circumstances in which the 
wave-energy E is uniquely defined, and is then equal to E divided by the 
intrinsic frequency, or frequency in a frame of reference moving with the 
local mean flow, to*. 

The result (3.6), or more generally (3.11) below, appears to have two 
distinct types of application. One is the same as that envisaged by 
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Bretherton & Garrett, namely to computing the spatial and temporal 
dependence of wave amplitude. The second application is to the calculation 
of mean-flow evolution. Both applications depend on the fact that A and B 
are wave properties, and it has been found in both applications that the 

2 "i 
required information is obtained, in at least some cases , from far less 
computation than would otherwise be needed. 

For reference we quote the corresponding result for a compressible fluid 
of density p and general equation of state 

p = S(6,p) , ;3.10) 

where p is pressure and 9 potential temperature or specific entropy; 9 still 
satisfies Eq. (2. lc)in either case. The result is almost as simple as before 
(again quite unlike the corresponding wave-energy equation): 

IT + ^§ = -P'la. .X 
l

n q" + 0(a3) , s p ; a <3 (3.11) 

where A and Bare still given by (3.7) with p0 replaced by p, the mean density, 
and 32 

px = p' + J.Vp 

l = j5-1ds(e,p)/de . 

(3.12) 

(3.13) 

The definitions of _? and q' are the same as before, except that because of 
compressibility we have V.I = - px /p + 0(a2) (p' = p'+ f. Vp ) . 

4. THE GENERALISED ELIASSEN-PALM RELATIONS, AND THE CONNECTION BETWEEN 
MEAN-FLOW ACCELERATION AND WAVE GENERATION OR DISSIPATION IN LONGITUD­
INALLY-SYMMETRIC PROBLEMS 

4.1 Conservation of pseudomomentum 

For simplicity we now revert to the assumption that the mean flow is 
independent of xif as in the example of figure 1 (where i=l) . That is, the 
mean flow is invariant to translations in the x^ direction. Associated with 
this invariance is a conservable wave property 

-PoI,i-<u' + ^ A I (4.1a) 

because in this case we may replace { ) & by -( ) ^ in the generalised 
wave-action principle (3.6). The associated flux is 

'ij uj P i r j , i P (4.1b) 

and (3.6) is replaced by 
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P i,t + Qij,j = Po<J,i-S' + Uq,) + 0(a > • < 4 - 2 > 

(Of course I could have derived (4.2) in the first place by dotting (3.2a) 
with -J ; rather than I _ . But I wanted to go via the wave-action principle 
because of its importance as the starting point for applications in various 
other contexts. For instance it is not quite so obvious how to find the 
analogue of (4.2) in the more general Kind of longitudinally-symmetric 
problem where the mean flow is rotationally invariant, until we take (3.6) 
or (3.11) as starting point and apply it to the ensemble generated by 
rotating the disturbance pattern22,25.) For reasons to be explained in 
section 5 I shall call P^ the density of pseudomomentum. 

There is still no obvious connection between (4.2) and the mean-flow 
equations (2.2) - although there would have been at this stage had we been 
working with the generalised Lagrangian-mean description . Because we are 
using the Eulerian-mean description, some more analysis will be needed. 
First, we use the remarks in section 2.5 to motivate a simple transforma­
tion 23,24,32 Qf t n e mean-flow equations, which will take them one step 
closer to the connection with (4.2). The idea is to subtract out the 
contribution to the 0(a) Eulerian-mean secondary circulation expressed 
by the stream function "f of (2.12). The second and final step^'4'2-^' 
24,26,32-35 wm involve manipulation of the linearised equations in a way 

I Q 

foreshadowed by the celebrated work of Eliassen & Palm and recently 
brought to a very general form by Andrews & Mclntyre J' . 

4.2 Preliminary transformation of the mean-flow problem (2.2) 

Now take x=x-, as the direction of symmetry. Define v and w by 

V = f,z + 7* ' w = - i^y + w* , (4.3) 

so that v , w represent the 'residual' 0(a2) mean secondary circulation 
left over after subtracting out the part corresponding to (2.12). Then a 
small amount of manipulation converts the mean-flow problem (2.2) into the 
form 

K (4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

(4.4e) 

where 

, t + 

e 

V 
2J lu 

-e 

, t + 

uy = 

+ Uzw 

, t + P 

-

t y 

t + P , t z + 

— _* 
e , y v 

_* 
v , y 

n , y " 

+ e 

+ w 

2JL 

s x y , y 

f v * t t 

_* 
w , t t = 

_* 
z w = • 

* 
'z = 0 

' °z 

s x z , 

= - ? , t 

- z " , t 

G,z -

= S , z 

z 

Q 

(4.5a) 
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s x y = u 'v ' - u z v-e ' /e f Z (4.5b) 

s x z = u ' w ' + u y v ' e ' / 9 , z (4 .5c) 

G = w'e' + v ' e ' § ry/e j Z (4.5d) 

Y = ( v ' 2 ) f y + ( v ' w ' ) f Z + ( v ' 6 ' / S f Z ) f Z t + Y + 0 ( a 4 ) ( 4 . 5 e ) 

Z = ( v ' w ' ) f y + (w ' 2 ) z - ( V e V § f Z ) f y t + Z + 0 ( a 4 ) . (4 .5 f ) 

C o r r e c t t o O ( a ^ ) , (4 .4) can be r e g a r d e d a s a s e t of e q u a t i o n s for t h e f i v e 
unknowns 

{ u f t , v* , w*, 6 > t , p)t) , (4.6) 

since Uy, Uz, 6 y and 6 z can be regarded as known 'coefficients' apart from 
contributions 0 ( a ) . We are of course thinking of the linearised wave 
problem as having been solved, so that the wave properties on the right are 
known forcing terms. 

The transformation (4.3) is dependent on our choice of coordinates; 
a coordinate-independent preliminary transformation may be used instead, 
at the cost of getting more complicated-looking versions of the results3 . 

4.3 Excess momentum fluxes and generalised Eliassen-Palm relations 

We now multiply the x component of (3.2a) by y] and then by I 2 , 
and average. The resulting pair of relations reduces, after a little 
manipulation in which we use (3.4), (3.9) (with a replaced by x), and our 
assumption that u = (u,0,0) + 0 ( a ) , to 

- l r - T T _ n ZZT- - ZtT- j . ir, , ^ 2 \ u v + Po 7,xP " UzV" = 7X + X u y < T > , t + C/u > , t + ° < a > (4 .7a) 

" ^ + Po'1 £xP. ' " uy&~' = T*~' + TPiO1) ft + ( T O f t + 0 ( a 4 ) . (4.7b) 

The second term in (4.7b) is to be compared with (2.8), the wave-drag force 
per unit area, and indeed - i?vp' and - £ vp' are the excess momentum fluxes 
(or minus the radiation stress components) in one of the forms in which 
they appear in Lagrangian-mean analogues of (2.2a) 3'18'22. Eqs.(4.7) 
relate these to the 'Eulerian' excess momentum fluxes u'v' and u'w'. Note 
that - v„p' and - I „p' are also equal to the y and z components of the 

/, A , X 

nonadvective part of the flux of the pseudomomentum component P-.; see 
(4.1b). 

Next we multiply (3.2b) by rj and average to get 

-v'e' + (̂ e')ft + je^irf) ft + e^rju7 = -yo7 + o(a4) , (4.8) 

and I times the first plus f\ times the second of (3.4) gives 
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(Yji) ft = V^ + 1?W' (4.9) 

These may be used to eliminate Iv' and TJW' from (4.7). The result is a pair 
of relations like (4.7) except that Sxy and Sxz appear in place of u v' and 
u 'w' , and the remaining terms, apart from r\ xp' and J xp' , are either of 
the form ( ) t or contain a factor x' or Q'. If the first relation is 
differentiated with respect to y and the second with respect to z, and (4.2) 
used to eliminate the two terms in p' , there results 

=xy ,y
 + Sxz,z = C?x'>,y + <*x >,z + 

+ l,x-x + £,x<3 ~ Uz(^/
e,z),y + uy<7Q /e,z>,z 

&[<TO, y + <TO,z - p'1*! - { u 2 [ ( ^ + ie y ^) /e f Z ] - i i y ^ } f 

12" + {uy[(r;e' + iey T)/eiZ] + iyjf + iu z ^} . J - ( a 4 ) 

,Y 

( 4 . 1 0 a ) 

By multiplying (3.2b) by 6', averaging, and differentiating with respect 
to z, we get 

G I Z = -(e'Q'/efZ)( Z + &t-ie'
2/e,z],z + o(a

4) (4.10b) 

4.4 Deductions 

The results (4.10) imply that the 0(a) forcing terms on the right of 
the mean-flow problem (4.4) can be expressed as a sum of terms each of which 
falls into one of three categories: 

(i) the Eulerian-mean external forcing terms X and Q (which we shall 
choose to regard as unconnected with the waves), 

(ii) wave terms of the time-differentiated form ( ,t ,and 

(iii) wave terms all involving x', Q', or q' , that is, all depending 
explicitly on the forcing or dissipation of the waves. 

This immediately shows that in the problem of figure 1, for instance, 
the forcing of mean-flow changes vanishes below the layer L, where the waves 
are steady and conservative, for any initial profiles of mean flow and 
stratitication, no matter how complicated, and no matter whether or not 
approximate, 'slowly-varying' descriptions of the waves are valid. 

It also carries the implication that although strictly conservative 
waves or instabilities (X', Q' and q' zero) can change the mean flow if they 
themselves are growing or decaying in amplitude, such changes are temporary 
in that no net change to the mean flow persists if the waves propagate cut 
of the region of interest. This is almost obvious J from the fact that all 

•) 
the 0(a) wave terms on the right of (4.4) can then be written in the form 
(~) t ,with the aid of (4.10) . However , if a very small amount of dissipation 
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is present, its effects can be greatly enhanced by the occurrence of 

mean-flow changes that would otherwise be temporary. For a striking example 

of this, see reference 11. A change in the mean-flow profile due to wave 

transience can bring about an approach to 'critical-line' conditions 

somewhere, giving the dissipation terms a chance to take over locally, in 

turn causing further and more permanent mean-flow changes. Theoretical work 

on such highly nonlinear feedback effects, which could easily be important 

in the evolution of stellar differential rotation, for example, is still 

in its infancy ' . 

4.5 Extensions 

Precisely analogous results, enabling the same qualitative conclusions 

about mean-flow evolution to be drawn without solving wave problems in 

detail, have been derived for: 

1) rotationally as well as translationally invariant mean flows, with 

mean velocity predominantly in the longitudinal (azimuthal) direction22-2-5/ 
32 

2) a fluid with a general equation of state p = S(9,p); the Boussinesq 

approximation is not essential 2 ' 2 5 ' -*2 

3) a self-gravitating fluid22 

4) a conducting fluid,with mean magnetic field as well as mean velocity 

predominantly longitudinal^ . 

4.6 Simplifications for the problem of section 2 

It is of interest in connection with the previous discussion to exhibit 

the approximate form taken by the transformed mean-flow problem for the 

almost-plane inertio-gravity waves of figure 1. A self-consistent set of 

approximations requires that the Richardson number 6 _/(u _)2be large, and 

the depth of the layer L, and other scales of mean variation in the vertical, 

including the Rossby height Hp = 2J2b/(§ -)"1 , large compared to the vertical 

radian wavelength m . The horizontal scale b is then large also, compared 

with k , assuming that both terms in the dispersion relation (2.6) are not 

too different in magnitude. The upshot of such approximations is that all 

the terms of the form (~) or (~T z in (4.10) become negligible, and (4.4) 

can be shown to simplify, when X and Q are zero, to 

V - 2J2v* = -l^T - t^-' + p*Vlit (4.Ua) 

2JlUrt + p r t y = 0 (4.11b) 

(4.11c) 

(4.lid) 

(4.lie) 

-e 
f 

§ , t 
_* 

t 

+ 

+ 

+ P 

§ , 2 
_* 
W ' Z 

, tz 

_ * 
,w 

= 

= 

= 

0 

0 

0 

. 
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According to the second and third equations the mean flow stays in 
geostrophic and hydrostatic balance as it changes: knowledge ofp t implies 
knowledge of u h and § i- . (The thermal-wind equation (2.10) holds, with 
its O(a^) contribution negligible). If we eliminate u ,. and 9 t in favour 

_ , t , t. _ ^ 

of p i. in (4.11a) and (4.lid) , and cross-differentiate to eliminate v and 
w via (4.lie), there results 

/* ^1 i H *" i 7 

{& + £ - £ dij P,t = 2-A{ J,x.r + r,xq' - P;lPlrt)ry . (4.12) 

The form of the elliptic operator on the left shows why the Rossby height 
HR = 2Jlb/(§ z )

/ j - takes over as the vertical scale of the response of the 
mean flow, whenever the forcing on the right of (4.12) is confined to a layer 
L of depth smaller than HR . 

PSEUDOMOMENTUM IS NOT MOMENTUM 

It is surprising how of ten one seems to encounter the conceptual mistake 
that since waves can transport momentum, they must possess it. No less than 
Lord Rayleigh-*6 appears to have been under this impression when he wrote 
that 'if the reflexion of a train of waves exercises a pressure upon the 
reflector, it can only be because the train of waves itself involves 
momentum'. Nowadays one often reads about 'the momentum of the waves' and 
about waves 'exchanging')their) momentum with the mean flow, and suchlike; 
and there appears to be a tendency to assume that this momentum which the 
waves are supposed to have is to be identified with the wave property P̂  
defined in (4.1a), or rather the wave property 

J?L = Eki/<y
+ , (5.1) 

to which P̂  can be shown to reduce in those 'slowly-varying' circumstances 
where Bretherton & Garrett's2" arguments apply. 

On the other hand, as Brillouin37 pointed out in 1925, Rayleigh's 
statement is a non sequitur because in a material medium you can perfectly 
well have a nonzero flux of momentum unaccompanied by any momentum density 
- try leaning against a brick wall. Two specific counterexamples to 
Rayleigh's statement which I happen to know are the obvious one of waves 
in solids (phonons)3''3° , and a simple fluid-dynamical example I published 
in 19734 . In the latter example, a packet of 'inertia' (pure Cor iolis) waves 
propagates along a waveguide comprising an incompressible, homogeneous 
liquid between rigid, parallel boundaries in a rotating frame of reference. 
The mean momentum is zero, for reasons of mass continuity. Nevertheless 
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there is a non-zero recoil force when the wave packet is reflected from an 
immersed obstacle. 

That problem has the further interesting feature that the wave packet 
does have a well-defined 'fluid impulse', I, which gives the recoil force. 
I is not equal to the integral of P; indeed it can have the opposite sense! 
(In fact the momentum flux due to the mean pressure p plays a leading role 
in this particular problem.) 

An example of a somewhat different kind is the celebrated problem of 
a packet of electromagnetic radiation in a refractive medium. This problem 
has long been controversial, but has been convincingly clarified in recent 
years by Penfield & Haus , Gordon39, and Peierls3 , to whose papers, 
together with the review by Robinson , the reader is referred for some very 
interesting history. In this problem, provided we neglect dispersion, there 
is a definite, non-zero total momentum M^ which travels with the waves. 
Again, this is not generally equal to the integral of P̂  (or rather its 
electromagnetic counterpart, the 'Minkowski quantity'), nor is it equal to 
the electromagnetic part of the total momentum (the 'Abraham quantity'). 
On the other hand recoil forces, are, this time, simply related to P: (but 
not to M^!) in at least some circumstancesJ . 

Brillouin's point is that waves don't have to possess momentum; the 
examples show that in fact they sometimes do and sometimes don't - and that 
when they do, the momentum is not necessarily related to recoil forces. The 
wave property PJ may or may not be closely related to either; and whether 

2 it is depends in fact on global considerations - on the full 0(a) mean 
problem and its boundary conditions. So we must either say that P; may 
sometimes 'be interpreted' as momentum, and sometimes not, depending on the 
global problem - surely a most unsatisfactory conceptual structure - or we 
must decide that P^ is simply an entity in its own right, not necessarily 
related to any momentum, whereupon the conceptual problems disappear. This 
is why I like to have a separate name 'pseudomomentum' for P: , just as one 
likes to have separate names for other pairs of quantities, like energy and 
torque, which have the same dimensions but different physical natures. I 
want to use the term 'momentum' in its ordinary, elementary sense, of course 
(which we use when thinking intuitively about forces and accelerations). 
The terminology follows the usage of workers in solid-state physics, to whom 
all this has naturally been more obvious than to most. Blount and Gordon-'* 
have carried the terminology, and the distinction between momentum and 
pseudomomentum, into classical electrodynamics, and shown how it helps 
clarify the issues of the so-called Abraham-Minkowski 'controversy' over 
electromagnetic waves referred to above. 

'But,' the reader may say, 'you said in section 3 that Hayes' 
conservation relation results from replacing certain space or time 
derivatives by ( ) a in the variational derivation of the conservation 
relation for the energy-momentum tensor. So the result of going in the 
reverse direction, which is just (4.2) without the 'dissipative' terms, is 
nothing but the conservation law satisfied by the 'momentum' part of the 
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energy-momentum tensor itself. So surely PJ is a momentum. ' 

My reply is that that would follow if the same mathematical formalism 
always represented the same physical entity. Here, however, the blanket 
term 'energy-momentum tensor' tends to obscure the fact that different 
variational principles, springing from different basic formulations of the 
physical problem, can be used as starting point. Different basic formul­
ations carry different implications about the kinds of invariance 
properties associated with conservation laws. Certainly Eq. (4.2) is 
associated with invariance under translations in space, just as is 
conservation of momentum. But the translational invariances referred to 
are in fact quite different, a point well made by Peierls^ . Conservation 
of the i-component of momentum, for instance, depends on invariance of the 
basic physical problem, including force potentials (e.g.gravitational) , 
under translations in the x^ direction-. Conservation of P^ depends on 
translational invariance of the mean flow, insofar as it enters into the 
disturbance problem. This condition does not necessarily involve external 
force potentials. Other necessary conditions for the two kinds of conserv­
ation law to hold are also quite different. For instance, whether or not 
momentum is conserved has nothing to do with whether or not the motion is 
adiabatic, while conservation of PJ does depend on the motion being 
adiabatic since it requires, inter alia, that q' = 0 in (4.2). 

It is the description in terms of particle displacements (and Hamilton's 
principle in the classical sense) that lies behind the appearance of 
pseudomomentum rather than momentum in the 'energy-momentum' tensor. By 
contrast, if we form components of the Eulerian-mean energy-momentum tensor 
from the usual pure-Eulerian variational principle in fluid dynamics, 
namely the Clebsch-Herivel-Lin principle , then in place of P̂  and its flux 
Qji we get the Eulerian-mean density and flux of momentum, 

pu[ and - p6\j - putUj , (5.2) 

to within an identically nondivergent contribution. This should be no 
surprise in view of the foregoing remarks on translational invariance. 
Conservation of pseudomomentum, as distinct from momentum, is connected 
with invariance to a displacement of the disturbance pattern while mean 
particle positions are kept fixed, as distinct from a displacement of the 
whole system, particles as well as disturbance patternJ . The idea of fixed 
mean particle positions' cannot be directly expressed within a purely 
field-theoretic or Eulerian description, which does not keep track of where 
fluid particles are. But it is implicit in a description of the disturbance 
in terms of particle displacements (from 'mean particle positions') . (What 
this means for finite-amplitude disturbances is dealt with in reference 22.) 

One possible reason why momentum and pseudomomentum have sometimes been 
mistaken for one another may be that in certain examples, even more idealised 
than those already cited, not only are both quantities conserved (requiring 
X'and Q'to be zero in the case of pseudomomentum) , but also their conservation 
relations reduce to the same form. If in these examples we generate the waves 
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starting from an initial state in which momentum and pseudomomentum are both 
zero, it can happen that they evolve in parallel and remain equal. The 
simplest example is the trivial one of an electromagnetic wave in vacuo. 
Here there is no medium present to make the translational symmetry 
operations different. But there are also examples involving waves in media, 
all of them longitudinally-symmetric problems, in which the longitudinal 
components of pseudomomentum and mean momentum evolve in parallel. Perhaps 
the most celebrated example is that of Stokes' periodic waves on the surface 
of an infinite, inviscid ocean. The initial conditions of no motion are 
hidden in the assumption of irrotational motion* Approximate longitudinal 
symmetry would be enough for approximate conservation of pseudomomentum; 
but we need also that there be no mean horizontal pressure gradient and that, 
concomitantly, the mean mass continuity equation (which constrains the 
distribution of mean momentum but not that of pseudomomentum) plays no 
significant role. Exactly the same considerations explain why a further such 
example is provided by the problem of section 2, in the case when HR << H, 
the scale of the layer L. Eqs. (4.11) then imply that, for conservative 
waves, 

Poa,t = pl,t <5=0' Q=0' H R « H ) . (5.3) 

These examples are very special, and in any case the question of whether 
or when there happens to be a momentum density equal to P^ is not the most 
relevant one in practice. Statements which are more useful and general can 
be made about the fluxes of momentum and pseudomomentum. Especially when 
a Lagrangian-mean description is used, the excess momentum flux due to the 
waves is often simply related, although not usually equal, to the flux of 
pseudomomentum. it is basically this fact which accounts for examples of 
the kind just mentioned, it is also why (4.2) could be used to eliminate 
the terms in p' during the derivation of (4.10a) from (4.7). The reasons 
for the existence of such relations are hinted at by Eqs. (2.14), (2.17), 
(5.1), and the well-known argument about the relation between wave-drag, 
phase speed, and the rate of working across a material surface. 

More explicitly, in many 'slowly-varying'situations it turns out that 
the mean flow can be defined in such a way that 

(1) the excess momentum flux is the only wave term in the leading 
? 

approximation to the 0 ( a ) mean-flow problem (Eqs.(4.11) provide an example 
of this), and 

(2) the excess momentum flux is then either equal to the pseudomomentum 
flux, or differs from it by a contribution C^J which in some cases does not 
cause systematic mean-flow changes because it can be balanced quasi-
statically by the reaction of the medium. 
When MHD effects are not involved, and the fluid is compressible, Ĉ -s is 
an isotropic, pressure-like contribution which can be thought of as a kind 
of acoustic 'hard-spring' effect coming from the nonlinearity of the 
equation of state 1 8 , 3 7 ' . Analytically this results from redefining the 
mean pressure in such a way as to avoid having a wave term in the equation 
of state for the mean flow. For electromagnetic waves in refractive media 
CJJ is again isotropic 2'-" and comes from 'electrostrictive' and 'mag-
The same remark applies in the classical theory of sound waves. 
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netostrictive ' effects . In MHD problems C ^ is not, however , isotropic'. 

Whether or not such statements are helpful or misleading depends on 
whether or not, in the problem in question, the difference C^A between the 
pseudomomentum and excess momentum fluxes has time to be balanced quasi-
statically by the mean stress in the medium (it usually does have enough 
time in 'slowly-varying' situations) , as well as on whether that mean stress 
happens to affect the answer to the particular question being posed. (To 
take a classical example, C^ is relevant to the force exerted by the 
absorption of acoustic waves into the end wall of a closed container, but 
not into an absorber immersed within a larger volume of fluid ' . It is 
presumably the former situation more than the latter , incidentally, to which 
the problem of solar wind acceleration by Alfven radiation pressure is 
analogous.) When (5.1) holds, and 'group velocity' is meaningful, it is 
often true that the analogue of (2.17) holds also, namely that Q;^ equals 
p^ times the jth component of the group velocity. So there are some 
slowly-varying situations (those in which the questions being asked permit 
CJJ to be ignored in some sense) where one can say mnemonically that the 
waves transport momentum as if a local momentum density equal to P^ were 
being carried along through a vacuum at the group velocity. But the 
difficulty of saying in general terms when this mnemonic is applicable, and 
when it isn't, brings us back in the end to the point made earlier: the only 
safe and completely general recipe for studying wave transport effects is 
to consider not only the 'wave properties', which can be evaluated from the 
0(a), linearised problem, but also a self-consistent analysis, correct to 
0 ( a ) , of whatever global mean-flow problem is relevant. 
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