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Complex Monge-Ampere Measures of
Plurisubharmonic Functions
with Bounded Values Near the Boundary

Yang Xing

Abstract. 'We give a characterization of bounded plurisubharmonic functions by using their complex Monge-
Ampeére measures. This implies a both necessary and sufficient condition for a positive measure to be complex
Monge-Ampeére measure of some bounded plurisubharmonic function.

0 Introduction

We denote by PSH((2) the set of all plurisubharmonic (psh) functions in a bounded, strictly
pseudoconvex subset  of C". We use the notations d = d + 0 and d° = i(0 — 0). The
complex Monge-Ampere operator (dd)" is well defined for all locally bounded psh func-
tions, see [B-T2], and it plays a great role in pluripotential theory as the Laplace operator
in classical potential theory. However, unlike the Laplace operator, the complex Monge-
Ampere operator is nonlinear and cannot be defined without problem for all unbounded
psh functions, see [K]. Several authors have therefore extended the domain of definition of
the complex Monge-Ampere operator to some important classes of unbounded psh func-
tions, see [B], [D], [C1], [C2] and [S]. Among these results, we like to mention that (dd“u)"
will be a positive Borel measure if the function u € PSH({?) is bounded near the boundary
onN.

In this paper we study characterization of Monge-Ampere measures of bounded psh
functions in €2. To handle this problem we consider the class B of psh functions u, which
are bounded near the boundary and (ddu)" are absolutely continuous with respect to the
capacity C, introduced by Bedford and Taylor in [B-T2]. In Section 1 we obtain a compar-
ison theorem for functions in B. This theorem serves as a main tool in the proofs of this
paper. In fact, the class B is natural in the sense that the proofs of comparison theorems
in [B-T2] and [X] work without practically any change for functions in B. In Section 2 we
prove that any positive measure can be written as a Monge-Ampére measure of some func-
tion in B provided the measure is dominated by a Monge-Ampeére measure of functions
in B. In Section 3 we characterize bounded psh functions by using their Monge-Ampere
measures. As an application we prove a characterization of bounded radial psh functions
given in [P]. Finally, in Section 4 we give a both necessary and sufficient condition for a
positive measure to be complex Monge-Ampere measure of some bounded psh function.
This implies a characterization of the positive measure p such that each positive measure
fdpwith [, fPdp < 1and p > 1 can be written as a complex Monge-Ampere measure of
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some bounded psh function, whose supremum norm is uniformly bounded by a constant
depending on p.

The author would like to thank Urban Cegrell, Christer O. Kiselman and Norman Lev-
enberg for helpful comments.

1 Continuity of (dd)” and a Comparison Theorem

We begin by studying continuity of the complex Monge-Ampere operator. Let C, be the
inner capacity given by Bedford and Taylor in [B-T2], as defined by C,(E) = C,(E, ) =
sup{fE(ddCu)” ; u € PSH(Q),0 < u < 1} for any Borel subset E of . A sequence of
functions u; is said to converge to a function u in C,-capacity on a set E if for each constant
0 > 0wehave C,{z € E; |uj(z) — u(z)] > 6} — 0as j — oo. In [X] we obtain that if
locally uniformly bounded psh functions u; converge to a psh function u in C,,-capacity on
each E CC €, then (ddu;)" — (dd‘u)" weakly in (2. We generalize now this result to psh
functions which are bounded near the boundary 02 and whose Monge-Ampeére measures
have small mass on any set of small C,-capacity. Recall that positive measures p; are said
to be uniformly absolutely continuous with respect to C,, in a set E if for any constant € > 0
there exists a constant & > 0 such that for each Borel subset E’ C E with C,(E’) < ¢ the
inequality p;(E’) < € holds for all j. Now we can prove

Theorem 1 Let u € PSH(SQ). Suppose that there exists a sequence of bounded psh functions
uj in Q such that u; are uniformly bounded near OS2 for all j, (dd‘u;)" < C, uniformly on
each subset E CC Q and uj — uin C, on each E CC Q. Then (ddu;)" is weakly convergent
to (dd“u)" in Q and (dd‘u)" < C,, on each E CC .

Proof Since functions u; are uniformly bounded near 052 for all j then the limit function
uis bounded near 0f2 and hence (dd“u)" is well defined as a positive Borel measure, see [B].
To see that (dd‘u;)" — (dd‘u)" weakly in €, for a given smooth function ¢ with compact
support in 2, we write

| olddu) — @dw = | ¢[(ddu;)" — (dd° max(uj, —c))"]
+ /Q ¢ (dd max(u;j, —c))" — (dd max(u, —c))"]
+ /Q o[ (dd max(u, —c))" — (ddu)"]
&L AL+ A, + A

It turns out from Proposition 4.2 in [B-T3] that for each sufficiently large constant ¢ > 0

|A)| =

/< o [(dduy)" ~ (dd max(u;, ~))"]|

< rr}’;lx|¢|</ 7C(dd”uj)” + /u.<c(ddc max(u;, fc))n>.

u]'7
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Using Lemma 1 in [X] we have

Zuj

/ (dd”max(uj, —c))" < / (— — —)n(ddc max(u;, —c))"
uj<—c uj<—c ¢

< 2" /uj<c/2 (7% - uj>n<ddcmax<ucj, 1>>"
< 2“(n!)2/ (dduj)".
uj<—c/2

Hence for each c large enough and all j we have proved the following estimation

41| < (1+2"(n))?) max |¢] (dd“u;)".

uj<—c/2

Since C,{u < —c/2} — O0asc — oo and u; — u in C, we have that C,{u; < —c/2}
uniformly converge to zero for all j as ¢ — oo. Hence the uniformly absolute continuity
of (dd‘u;)" implies that the last integral converges to zero uniformly for all j as ¢ — oo.
Thus, for any & > 0 we can take a constant ¢ > 0 such that |A;| < e for all j, and by
Corollary 2.3 in [D] we can also require that |A;] < e. However, for such a fixed constant ¢
the convergence assumption implies that functions max(u;, —c) converge to max(u, —c) in
C, oneach E CC Qas j — oo and hence we conclude by Theorem 1 in [X] that A, — 0
as j — oo. Therefore, we have shown that (ddu;)" converges weakly to (dd‘u)".

It remains to show (dd‘u)" <« C, on any open set E CC ). For any ¢ > 0 we
choose 0 > 0 such that inequalities (dd‘u;)"(E’) < ¢ hold for all j and all Borel sets
E' C E with C,(E") < 4. For such a subset E’ we take an open set G with E/ C G C
E and C,(G) < ¢ and then choose a sequence of non-negative smooth functions v,
which increase to the characteristic function of G in Q. Then [, (dd‘u)" < [.(dd‘u)" =
Mmoo fo Yr(ddu)" = limgooo limjeo fo Yr(ddu))" < limjeo [ (dduj)" < e
Hence (dd‘u)" < C, on E and we have completed the proof of Theorem 1.

In this paper we denote by B the class of all psh functions u in 2, which are bounded
near the boundary 02 and have absolutely continuous Monge-Ampére measures with
respect to C, on each E CC (). The class B includes all limit functions u of Theo-
rem 1. On the other hand, each function u in B is a decreasing limit of bounded func-
tions u; = max(u, —j). Applying the quasicontinuity of psh functions with respect to C,,,
see [B-T2], and Dini’s theorem, we obtain that u; — u in C, on each E CC €). Hence
the class B consists precisely of all functions u given in Theorem 1 as shown by the weak
convergence (dd‘u;)" — (ddu)" and the following fact.

Lemma 1 Suppose that a sequence of bounded psh functions u; in Q decreases to a psh
function u, which is bounded near the boundary 0. If (dd‘u)" < C, on any relatively
compact subset of () then we have (dd“u;)" < C,, uniformly for all j on each E CC (1.

Proof By the proof of Theorem 2.7 in [D] we have that v(dd‘u;)" — v(dd‘u)" weakly in
Q for any locally bounded psh function v on €2. Thus, Lemma 1 follows directly from
Theorem 3.2 in [B-T3].
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Bedford and Taylor in [B-T2] proved the comparison theorem for bounded psh func-
tion, which has wide application on the Dirichlet problem. In [X] we have obtained a
stronger inequality than the comparison theorem. Now we generalize it to functions in B.

Lemma2 Ifu,v € Bsatisfy lim, 0 (u(z) — v(z)) > 0, then for any constant r > 1 and all
w; € PSH(Q) with0 <w; <1, j=1,2,...,n, we have

1
—/ (v—w)"ddwy A - ANddw, +
u<vy

()2 (r—wp)(ddv)" < / (r — wy)(ddu)".

uv

Therefore, under the additional assumption (ddv)" > (dd‘u)" in €, we obtain that the set
{u < v} is empty.

Proof We may assume that there exists a subset E CC 2 such that {u# < v} C E. Other-
wise, replace u by u + 26 and then let § N\, 0. Write uy = max(u, —k) and v; = max(v, —j).
Then {u < v;} C E for sufficiently large k and j. By Lemma 1 in [X] we have that for any
constantr > land all w; € PSH(Q) with0 <w; <1,j=1,2,...,n

1
/ (vi—u)" ddwy A\ - -/\ddcwn+/
u<vj

(7’1!)2 up<vj

(r—w)(ddv))" < / (r—w))(ddCu)",

up<v;j

where k and j are large enough. Since ux N\, u then (dd‘uy)" — (dd‘u)" weakly and by
Lemma 1 we have that (dd“u;)" < C,, uniformly for all k in the set E. Similarly, (dd‘v;)" <
C, uniformly for all j in E. Letting j — oo and then k — o0, we can easily get the required
inequality by the same argument as in the proof of Lemma 1 of [X]. Thus the proof is
complete.

2 Range of (dd°)"

Now we begin to discuss the range of the complex Monge-Ampeére operator. We need a
lemma.

Lemma 3 Ifv € B and f is a non-negative continuous function with compact support in 2,
then there exists a function u in B such that (dd“u)" = f(dd“v)" and lim,_,9q u(z) = 0.

Proof Suppose that p(z) be a defining function of 2 and that |v(z)| < ain a neighborhood
of @\ Q', where supp f CC Q' CC Q. For a sufficiently large constant b we define
o) = max(v(z) —a—1, bp(z)) inQ\Q;
vz —a—1 in Q.
Then it is easy to see that ¥ € B, lim,_,9q ¥(z) = 0 and f(ddv)" = f(dd“v)". So without
loss of generality we may assume that lim, ,po ¥(z) = 0 and 0 < f < 1. Choose a de-
creasing sequence of smooth psh functions v; which vanish on 92 and decrease to the v in

2. So f(dd“v;)" — f(dd‘v)" weakly and v; — v in C, on any relatively compact subset of
€1, see [B-T2]. Since every f(dd‘v;)" can be considered as a bounded continuous function
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times Lebesgue measure in (2 it follows from [B-T1] that there exists u; € PSH(Q2)NC (9}
such that (ddu;)" = f(dd‘v;)", and u;(z) = 0 on 0f). Since the comparison theorem
in [B-T2] gives the inequality 0 > u; > v; > v with v(z) = 0 on 0, then by passing
to a subsequence we may assume that #; converge to a psh function u in 2 almost every-
where with respect to Lebesgue measure, where u vanishes on 0€2. On the other hand,
(dd°u;)" — f(dd’v)" weakly and by Lemma 1 we have that (dd‘u;)" < C, uniformly
for all j on any relatively compact subset of 2. Therefore, to see (dd‘u)" = f(ddv)" it is
enough to show that u; — u in C, on Q. Now for any given § > 0 we choose a strictly
pseudoconvex set E with supp f CC E CC Q such that |u(z) —u;(z)| < dforallz € Q\ E
and all j. It follows from the quasi-continuity of psh functions, see [B-T2] that for each
positive constant £ < § there exists an open set U C E with C,,(U) < ¢ such that both u
and v are continuous in E \ U and hence they are bounded, say u > —cand v > —c on
E\ U. Since u = (m}-_ﬂ)@ u;)*, it turns out from Hartog’s Lemma that

u(z) +6 > u(z) + € > uj(2)
holds forallz € E\ U and j > jo. So for such j > j, we have
Cu{z € QO lu(z) — uj(2)| > 40}
< Cu{z € E; |u(z) +6 — u;j(2)| > 30}
<Cu{z€E;u(z)+6 —uj(z) > 35} +C,(U)

< sup{/u_uj>26(u+j§)n(ddcw)” ;w e PSH(Q),0 <w < 1} +e

§sup{i (u—u; —0)"(ddw)" 5w € PSH(2),0 <w < 1}-1-6
" u>uj+o

1 n
< sup{(s— lim (max(u, —k) —u; — 6) (ddw)" ; w € PSH(Q),0 < w < 1}

n -
k— o0 max(u,—k)>u;+d
+ €.

The last inequality follows from Fatou Lemma. Hence, by Lemma 2 we have

Ci{z € Q; u(z) — uj(z)| > 40} <

n!)?
( n) lim (ddu;)" + ¢
o k— o0 J max(u,—k)>u;+6

12
_ () / (dd°uj)" +¢
on u>u;+0

(n!)z/
< (u—u;)f(ddv;)" + O /(ddcu-)” +e
gntl {u>uj+6}\U ! f ! ( U ! )
! 2
< (5”31 / (e +u — u;) f(dd°v,)"
{u>uj+6}\U

+ O(/(ddﬂq)”) +e.
U
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Let p;(z) be a defining function of the strictly pseudoconvex set E. We define i =
max(u, apl(z)) and @1; = rnax(uj, apl(z)) in a neighborhood E’ of E, which contains the
set {u > uj+¢6}. Sinceu > —cand u; > v; > v > —conE \ U, then for sufficiently large
constant a we have (i) if; = u;j and # = u on an open neighborhood of supp f but outside
U; (ii) allz; = 2 = ap;(2) in E" \ E; (iii) {#;} is uniformly bounded in E’; (iv) #; — @ in
L(E"). Since the uniformly bounded functions ii; converge to i in L(E’) and (dd‘v;)" < C,
uniformly for all j on E’, it follows from Hartog’s Lemma that there exits a subset U; of E
and an integer j; > jo such that fUl le +—dj|(ddv;)" <eandi+e >ijonE\ U, for
j > ji. Hence for j > j; the last sum does not exceed the following

(”!)2/ o /
_ . ddC Y O ddc \n
57 S, & BT ) ( (i) +e)
( ')2 7l 7 )\ c, \n
< ;m /E\U1(5+u—uj)(dd vi) +o(/U(ddvj) +5)
~(n)?

= — i — u:)(ddv)"+ O ddv )" .
o] /E(u ij)(ddv;)" + (/U( V) +s)

By Proposition 4.2 in [B-T3] for each constant d > 0 and any integer k > 0 we have

/(a — i) (ddv)" = / (it — it}) (dd° max(vy, —d))"
E En{w>—d}

+ / (o — ﬁj)(ddcvk)n
En{n<—d}

_ /(a — ;) (dd" max(vi, —d))"
E

— / (@t — i1;)(dd max(vg, —d))"
En{n<—d}

" / (it — ))(ddve)".
En{w<—d}

Applying the uniformly absolute continuity of (dd“v)" on E and the proof of Theorem 1,
the last two integrals converge to zero uniformly for all j and k as d — oco. Hence

/(a — ;) (ddv)" = /(a — ;) (dd max(vi, —d))" + o(1)
E E

uniformly for all j and k as d — oo. Therefore, we get

Cu{z € Q; |u(z) — uj(z)| > 46}

2
< (n!Jr)l /(11 — 1) (dd* max(v;, *d))n + O(/ (ddv;)" + 5)
5 v
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(n1)?

= gntl

/(u ij) ddcmax(v], ))n—(ddcmax(vk, —d))"]

(6”'312 / (i — ))(ddv)" + O / (ddv;)" +¢)

A+ A+ o(/ (ddv,)" +¢)
U

uniformly for all j > j; and all k as d — co. Using an integration by parts we have

(n!)?
5n+1

Ay = / (max(v;, —d) — max(v, —d)) (dd‘a — dd‘i;)
E/
n—1
A Z(ddc max(v;, —d))n_l_l/\(dd‘ max(vy, —d))l,

=0

where for each fixed d the measure has a relatively compact support in E’ and is absolutely
continuous with respect to C,, and the integrand max(v;, —d) — max(v, —d) — 0in C,
on each relatively compact subset of E’ as j,k — co. Hence A; — 0 as j,k — co. On
the other hand, it follows from #; — @ in L(E’) that for any fixed k we have A, — 0 as
j — oo. Finally, letting e — 0 and applying the fact that (dd‘v;)" < C, uniformly on E we
conclude that #; — uin C,, on §2 and thus the proof of Lemma 3 is complete.

Theorem 2 If v € B and a positive measure p < (ddv)" on €, then there exists a function
u in B such that (dd“u)" = p in ). Furthermore, if lim,_,pq v(z) = 0 then there exists a
unique function u in B such that (dd°u)" = p and lim,_,9q u(z) = 0.

Proof By Lebesgue-Radon-Nikodym theorem we can write y = f(dd“v)", where 0 < f <
11in 2. Choose a sequence of non-negative, bounded functions f; with compact support in
Q which increase to f in {2. Then for each f; there exists a sequence of continuous functions
fr,jsuchthat 0 < fi ; < gxand

/ [fi.j — fil(ddv)" — 0 asj— oo,
0

where gi is a non-negative, bounded function with compact support in 2. Therefore, by
Lemma 3 there exist functions u ; in B with (dduy, ;)" = f; j(ddv)" and lim,_, 50 u j(z) =
0. Take a function v € B such that lim, ,p0 v (z) = 0 and g (ddvi)" = g (ddv)" >
(dd‘uy ;)". Then by Lemma 2 we have (sup, gk)l/”vk < u; < 0in Q forall j. Now apply-
ing Lemma 2 and repeating the proof of Theorem 4 in [X] we can find functions ux € B
such that (dd“uy)" = fi(dd“v)" and lim,_, 9q ux(z) = 0. Therefore, Lemma 2 yields that uy
decrease to a psh function u in Q2 which is clearly the desired function in B. If the v = 0 on
0%, by Lemma 2 we have that 0 > 1, > v in (Q for all k. Hence the u vanishes on 0f2. The
uniqueness of such a solution u follows directly from Lemma 2. So the proof of Theorem 2
is complete.
As a consequence of Theorem 2 and Lemma 2 we obtain the following result in [KO1].

Corollary 1 Assume that a positive measure p < (dd“v)" on ), where v is a bounded psh
function in Q. Then there exists a bounded psh function u in Q such that (dd“u)" = p.
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It is probably worth remarking that for a bounded psh function v in €2 the proof of
Lemma 3 can be simplicized. This gives a simple proof of Corollary 1. On the other hand,
the assumption p < (dd“v)” in Theorem 2 can not be weaken by p < (dd“v)", as shown
by the following example.

Example 1 Let {z;} be a sequence of distinguished points which converges to a point
¢ € 052 By Theorem 8 in [C-P], for each z; there exists a function f;, € PSH(2) N C(£2)
which vanishes on the boundary 02 and satisfies (dd" f; ,)" = d, ' r~>" j~*xp(z,.») d\, where
the constant d,, denotes the volume of the unit ball in C", X is the Lebesgue measure and
XB(z;,n 1s the characteristic function of the open ball B(zj,r) = {z € C"; |z —zj| < r}. It
then follows from the definition of C,-capacity that

].izz /Q (ddf;,)" = /B ) S (B B ) ma ()"

2€B(zj,k)

where the constant k > r > 0. Since for each fixed k > 0 we have that the relative capacity
Cn (B(zj, r), B(z;, k)) — 0asr — 0, then maxep(; k) (—ﬂ,(z)) — oo as r — 0. Take
two sequences {k;} and {r;} such that B(z;, k;) for j = 1,2, ... are pairwise disjoint balls
in  and max,ep(; k) (f fir; (z)) — o0 as j — oo. Hence the locally bounded function
f Do dy 'r " 72 XB(z,.r,) 1s integrable in € with respect to the Lebesgue measure
A. It is now easy to see that there exists no function u € PSH({2) which is bounded near
0N and satisfies (ddu)" = f dA. In fact, if there exists such a function u, by subtracting a
constant if necessary, we may assume u < —11in {2. So for every j we have thatu < f; ;, near
the boundary 0 and (dd‘u)" = f d\ > (ddf;,,)". Hence Lemma 2 yields u(z) < f; . (2)
for all z € Q. In particular, we get max,ep(;, k) (—u(z)) > MaXep(z; k;) (—fj,,j (z)) — 00 as
j — 00, which contradicts that u is bounded near 9€2. Therefore, we have proved that there
exists no function u € PSH({?), which is bounded near 052 and satisfies (dd‘u)" = f dA.

3 Bounded Plurisubharmonic Functions

In this section we discuss characterization of bounded psh functions in terms of Monge-
Ampére measures.

Theorem 3 Suppose that u is a psh function in §) and satisfies u(z) > B near the boundary
0N), where B is a constant. Then u is bounded below in the whole domain 0 if and only if there
exists a constant A,, > 0 such that for any constant k < Bwith C,(u < k) # 0 we can find an
increasing sequence k < ky < -+ < k1 < ks = Bwithk; < k+ 1and

: ddu)" || fucrn \
Z [l (dd‘u) H{ <k;} < A,
Cu(u <kj_1+0)

j=2

where C,(u < kj—1 +0) = limg—x;_,+0 Co(u < k).

Proof The necessity is trivial because for each bounded function u, with u > B near 012,
one can choose two constants k; < k, = B such that the condition C,,(u < k) # 0 implies
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ki < k+ 1. To see the sufficiency, we assume that C,(u < k) # 0 for all kK < B. Otherwise,
we have u > k for some constant k and the proof is finished. We notice that the assumption
of Theorem 3 gives

H(ddcu)nH{LKk} < H(ddcu)nH{LKkz} <
Chlu<k+1) = Cyhu<k +0) —

Al
So
|(dd“u)"||fycry — 0 ask — —oo,

and together with the inequality
[(dd°w)"||g < ||(dd“w)" || {u<iy + || (dd max(u, k))"||,

for each subset E CC ) we get that (dd“u)" is absolutely continuous with respect to C,,.
Hence u € B and it then follows from Lemma 2 that for all k < k; and each w € PSH(2)
with 0 < w < 1 we have

(kj — k)"/ (dd'w)" < / (kj — w)"(ddw)" < / (1 —w)(ddw)".
u<k u<k; u<k;

Let k — kj_; + 0 and we have
(kj — k)"l < kjy +0) < [|(ddu)" | ety -
Therefore

ddw)™ || fyern \
(| (ddu) H{ <k} ) <A,

Bl o k)<
0< k<ks—k ]Z_;(k] ki-1) < (Cn(u<kj_1+0)

j=2

This implies C,{u < B—1—A,} = 0 which contradicts the assumption that C,(u < k) # 0
for all k < B. The proof of Theorem 3 is complete.
As a consequence we have

Corollary 2 Let u € PSH(QY) be bounded near the boundary 0S). If there exist constants
0 > 1 and A > 0 such that the inequality

1(ddw)" | sy < A(Culu < K))°

holds for any constant k < 0, then u is bounded in Q.

Proof We assume without loss of generality that 4 > —1 near 0€). For each k < —1
with C,{u < k} # 0 it is clear that there exists at most a finite numbers of constants
k=k <k, <---<k;=—1suchthat

1 1
ki = inf{r; F(kj— +0) < 5F(r)} for j =2,3,...,5— 1, and 3F(k) < F(ke1 +0),
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where the function F(r) = ||(dd‘u)" |, is nondecreasing and left continuous for r < 1,
and F(r + 0) = lim;_, o F(¢). Hence we have

1 1
SFk)) < Flkio +0) < SF(kjn) for j=2,3,...,5— 1,

and

1

AW ey N~ 2Pk 1 0) N[ =1 "
- < i T—— < 2A3F(kj_y +0)7
;(Cn(u<k]‘_1+0)> ;(Cn(u<k]‘_1+0)> ]Zz< "F(kj + )°>

F(—1 i1
< 2i A Z( f} ])) <2%A$F(—1)°an Zz e

j=0

Therefore, an application of Theorem 3 completes the proof.

By the definition of C,,-capacity we know that the Monge-Ampeére measure of a bounded
psh function is dominated by a constant multiple of C,-capacity. However, we can not
expect that the Monge-Ampeére measure of a bounded psh function is always controlled by
C,-capacity with some power § > 1, as be shown in the following example.

Example 2 We construct a bounded subharmonic function
= 1
u(z) = Z ok max(—+/—In|z|, —2k)
k=2

in the ball B(0,1/2) of C. For any small r > 0 we take an integer j, such that 20072 <
V—=Inr < 200~ Since the inequality j>2/ < 100y/—In z[In*(—In |z|) holds for all z €

E; = {2171 < \/—1Inlz] < 2/}, we have
\|ddul| 5o > Z | dd ul|g, > Z 22] |dd° max(—/~In ], _zf)||Ej

J=jo i=jo
dzN\dz
dd°¢ In|z

Z 37Tl —4ooZH| I’ 21— In

1 dz N\Ndz
~ 400 |z|21n2 |z\ln2(fln|z\) {8<|z]<r}

1 dz N dz

= 4001n*(—81n7) || 22 In” [2] | {yoc o <y

> Aln~*(=81n7)C, (B(0,1)),

where the last inequality follows from C,{B(0,r)} = 27/(—In2 — In r) and the constant A
is independent of r. Hence for any 6 > 1 there is no constant A; > 0 such that ||dd°u||p <

A (Cl (E))(S for all subsets E of B(0, 1/2).
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Example 2 gives that the inequality assumption of Corollary 2 is not necessary condition.
On the other hand, we have a local estimation for the Monge-Ampére measure, see [B-T4,
Corollary 2.3] for the case n = 1.

Theorem 4 If the psh function u is bounded in Q) then for each zy € Q
[[(dd“u)"|| by = 0(Cu{B(20,1)}) asr— 0,

where B(zy, r) denotes the ball with center at zy and radius r > 0.

Proof Take a positive constant ry < 1 which satisfies B(z, r0) CC 2. By Lemma 2 we have

/ (Inrg — In|z — zo|)"(dd u)"
B(zo,10)

= (méiX [u])" lim (ln ro — max(In |z — z|, —k))n (dd”#)

k—o0 max(In |z—z|,—k)<Inr, maxgq |Ll|

< (n!)*(max |u|)" lim (ddc max(ln |z — 2z, fk))n
Q k—o0 max(In |z—z|,—k)<Inr,

= (n!)2(27rm51x|u|)" < 00.

So the function (ln ro—1Inljz — zo|)n is integrable in B(z, ro) with respect to the measure
(dd‘u)", and it then follows from ||(dd“u)" || gz, = O(CH{B(ZO, r)}) = o(1) asr — 0 that

(Inrg — Inr)"||(dd )" || pezy,r) < / (Inrg —In|z — zo|)"(ddu)" — 0 asr—0
B(zo,r)

which implies the conclusion of Theorem 4 because (— }n )" = O(Cu{B(z0,1)}).

It is now natural to ask whether or not the inequality assumption in Corollary 2 can
be replaced by the weaker condition ||(dd“w)"||{,<xy = o(Cu(u < k)) as k — —oc or
|| (ddu)"||pzo,r) = 0(Cu{B(z0,7)}) as r — 0 for all points zy € . The answer is negative,
as the following example shows.

Example 3 Let n = 1. Since ¢(x) = —In (ln(—x)) is increasing and convex for x < —1,
the unbounded function u(z) = ¢(In|z|) = —In (ln(— In |z|)) is subharmonic in the ball
B(0,1/3) and bounded near the sphere |z| = 1/3. We claim that the measure dd‘u puts
no mass at the origin. To see this we assume that v is a nonnegative C* function with
compact support in B(0, 1/3) and satisfies 1)(0) = 1. By Stokes’ theorem we have

Yddu= / uddp = lim uddy
) B0,1)

€20 Jeqpz|<d

zlim{/ wddcu+/ udcw—wdcu}
e—0 e<|z|<} |z|=¢

= / 1 ddu + lim ud® — 1 du,
0<|z|<}

e—0 |Z|:€

B(0

1
3
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where the last term vanishes because

/Zl_sudcw—wdcuzO(aln(ln(—lng))>+O( 1

_ 0.
lneln(ln5)> we
Hence [|dd‘ul| 1o} = 0. On the other hand, a direct calculation gives

1+In(—In|z|)

- 4|z In” |2] In*(— In |2])

[

dzNdz forz#0.

Then

1
/ dd'u < / 5 dz \Ndz
B(0,7) 0<lzl<r 2|2]*In’ 2] In(— In [2])

1 1
< dzNdz=o(C{B(0,r asr — 0,
~ 2In(—Inr) /B(o,r) 2|2 In? |2] ( H{B( )}>

which implies obviously that both ||(dd°w)"|| (u<iy = o(Ci(u < k)) as k — —oo and
(I(dd“w)"|| iz, = 0<C1{B(zo, r)}) as r — 0 for all points z in B(0,1/3).
Now we give a positive result on this direction.
Theorem 5 Suppose that u € B satisfies u(z) > k; for all z near the boundary 0X. If there
exist constants kg < k; < ky and Ay < (k; — ko)" such that
1(dd“w)" || u<r,y = AoCulu < ko),

then u > ko in Q.

Proof It follows from Lemma 2 that for each w € PSH(Q) with0 < w < 1

(ki — k)" / (ddw)" < / (ky — )" (ddw)" < / (ky — )" (dd“w)"
u<ko u<ko

u<k;
< / (ddu)" = AoCulu < ko)
u<k

which implies the inequality (k; — ko)"C,(u < ko) < AgCn(u < ko), and it then turns out
from Ay < (k; — ko)" that C,(u < ko) = 0. Thus u > ko in 2 and the proof of Theorem 5
is complete.

To end this section we prefer to show another application of Theorem 3, which uses a
simple integral to characterize bounded radial psh functions, see Corollary 3.4 in [P].

Corollary 3 Suppose that ¢(t) is increasing and convex on [—00, 0), and lim,_,o— ¢(t) = 0.
Then the psh function u(z) = ¢(In |z|) is bounded on the unit ball B(0, 1) if and only if there
exists a constant D, > 0 such that for any k < —1/2 with C,,(u < k) # 0 we can find a
constant ky with k; — 1 < k < ky and

1

il s
/ P (H(ddcu)nHB(o,r)) "dr < D,,

where ) denotes the radius of the ball {u < k, }.
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Proof We first show the “only if” part. Since the u is bounded, for any constant k < —1/2
with C,,(u < k) # 0 there exists a sequence k; — 1 < k < k; < -+ < k; = —1/2 such that
the inequality in Theorem 3 holds. Denote by B(0, r;) the ball {u < k;} for j =1,2,...,s.
It then follows from C,,(u < kj_; +0) = ( 211 that

—1Inrj_;

@) ey 1 Lol
Au v - ddcu)" oy " n ——
g Z(Cn(u <kj_i+ 0)) 27 Z(”( u) ”{ <k1}) n rio

j=2

Y

j=2

1 < (71 1
w2 [ o) dr
e

1 t1 ¢ \n
=5 | 0@ so)

=

dr,

which completes the proof of the “only if” part.

To prove the “if” part, for any constant k < —1/2 with C,,(u < k) # 0 and each
constant k; with k; — 1 < k < ky, we choose a sequence ky < k; < --- < k; < kyq such
thatk,_; < —1/2 = k;and rj = VTi—iforj=2,3,...,s— 1,5+ 1, where the constants
r; denote radii of balls B(0, ;) = {u < k;}. Hence we have

s+1

T5+11 1 Ty 1
[ i) =3 [ (1)
1 j= Tj—1
s+1

r
r]‘ 1
2 Z(H(ddcu)nHB(O,rj—l)) / r dr

= i-
o7 i [(ddu)" || gucryy \ "
) = Colu <kj_1+0)) °

It then follows from the assumption and Theorem 3 that the u is bounded in B(0, 1), and
the proof of Corollary 3 is complete.

=

dr

=

4 Monge-Ampere Measures of Bounded Plurisubharmonic Functions

The complex Monge-Ampere measure of a bounded psh function vanishes on any pluripo-
lar set. So vanishing on all pluripolar sets is a necessary condition for a positive measure
to be complex Monge-Ampére measure of some bounded psh function. However, this
condition is not sufficient, see Example 3. In the following we prove a characterization of
complex Monge-Ampere measures of bounded psh functions.

Theorem 6 Suppose that (i is a positive measure vanishing on each pluripolar set of Q. Then
@ = (ddv)" for some bounded psh function v in Q) if and only if there exists positive constants
A and D such that for any negative u € PSH(SY), which satisfies (dd‘u)" < pand u(z) > —1
near the boundary 0S), and for each constant k < —1 with C,(u < k) # 0 we can find a
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sequence k < ky < -+ < ky_y < kg = —1 satisfyingk; < k+ D and

o pu<k) )
Z(cn(u<kj1+0)> <A

=2

Proof To show the “only if” part, by Lemma 2 any function u in PSH(Q2) with (dd‘u)" <
p = (ddv)" and u(z) > —1 > v(z) — supg, |v| — 1 near the boundary 9 satisfies the
inequality u(z) > v(z) — supg, |v| — 1 > —D for all z € 2, where we take D = sup,, |v| —
infq |v| + 1. So for any constant k < —1 with C,(u < k) # 0 we have that k > —D. Take a
sequence k < k; < k; = —1 such that the inequality C,(u < k;) < 2C,(u < k; +0) holds.
Hence we obtain the inequality

pu<k) \
<Cn(u<k1+0)> <4

where the constant A = 1 + 25 supq, |v|. This completes the proof of the “only if” part.

For the proof of “if” part, we assume first that the measure p has a compact support in
Q. Since p vanishes on all pluripolar sets, by Theorem 6.3 in [C2] there exists a decreasing
sequence of psh functions u vanishing on 0 such that (dd“u;)” increase to p. It then
follows from the assumption on p and the proof of Theorem 3 that all functions u;, >
—A — D — 1, which gives that the psh function v = limy_, ux is bounded on 2 and
by the monotone convergence theorem in [B-T2] we get that (dduy)” — (ddv)". Thus
= (ddv)" and we have proved the “if” part for any measure p with compact support in
Q. In general case, we take a sequence of measures y; with compact support which increase
topasl /* oo. By the above proof there exist psh functions v; such that0 > v, > —A—D—1
and (dd‘v;)" = p for all I. Modifying v; near the 0f2, we can assume that v; = 1 on 02
and (dd‘v))" > . So it follows from Theorem 2 that y; = (dd“v})" for some bounded
psh function v; with v; = 0 on 0€2. Since u > p for all J, the functions v are uniformly
bounded in 2 and hence the monotone limit v* = lim;_, v} is bounded and satisfies
(ddv*)" = p. The proof of Theorem 6 is complete.

Theorem 6 implies that if 41 is a Monge-Ampére measure of some bounded psh function
in £ then any positive measure 1, < p is also a Monge-Ampere measure of bounded psh
function in §2. However, there exists a positive measure u < C, which is not a Monge-
Ampere measure of some bounded psh function, see [KO2]. In [KO3] and [KO4], by using
a stronger condition Kolodziej obtained a positive result for some classes of measures. Now
we have

Corollary 4 Suppose that p is a positive measure in §) and suppose that € > 0 and F(x) =
x(ln(l + l/x)) e If the inequality (E) < F(Cn(E)) holds for any set E C (Y, then there
exists a bounded psh function v in Q0 such that p = (ddv)".

Proof Repeating the proof of Corollary 2, we get that the measure 4 satisfies the inequality
assumption in Theorem 6. Hence, it is a Monge-Ampere measure of some bounded psh
function in 2 and the proof is complete.
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We also record another consequence of Theorem 6.

Corollary 5 Suppose that i is a positive measure in Q and that p > land 1/p+1/q9 = 1.

If there exists A, > 0 such that (E) < A, [Cn(E)]pfor all E CC QQ, then for any q1 > q
and any nonnegative function f in L]} () we can find a bounded psh function v in Q such that
(ddv)" = f du and the supremum norm sup, |v| are uniformly bounded for all functions f
with || fll 2 0) < 1.

Conversely, if for any nonnegative function f in L},(2) we can find a bounded psh func-
tion v in Q such that (ddv)" = f dp and supy, |v| are uniformly bounded for all functions f
with ”f”LZ(Q) < 1, then there exists A, > 0 such that u(E) < A, [C,,(E)] PforallE cc Q.

Proof Assume that f € L} () be a nonnegative function in . For all E CC £, by Holder
inequality, we have

[ @Ay /IC,(E) /bl

[rausis

oy M(B) e < || f

where the exponent 1 + p/q — p/q; > 1. By a similar proof of Corollary 2 we obtain
that the positive measure f du satisfies the condition in Theorem 6 and hence there exists
a bounded psh function v in Q such that (ddv)" = f du, where sup, |v| are uniformly
bounded for all functions f with ||f||LZ1(Q) <1

1
To prove the converse assertion, we set fr = xg/u(E)7 for each E CC Q, where xg
denotes the characteristic function of the set E. Then || f(|;1() = 1 and

H(E)F = / fodp = / (ddve)" < (sup |v])"Cu(E),
E E Q

where, by the assumption, the constants (supg, |vg|)" are uniformly bounded for all subsets
E CC €. Hence there exists A, > 0 such that u(E) < A, [Cn(E)] P forall E cC Q. The
proof of Corollary 5 is complete.

In [KO3] Kolodziej proved that any positive measure f d\, where f € L}(Q), p > 1 and
A denotes the Lebesgue measure, is the complex Monge-Ampeére measure of some bounded
psh function. Corollary 5 implies directly

Corollary 6 Let (i be a positive measure in Q). Then for any § > 1 there exists As > 0 such
that u(E) < As[Cu(E)] 5for all E CC Q if and only if for any p > 1 there exists B, > 0 such
that for all nonnegative functions f in L5 (Q) with 1 fllzz) < 1 we can find a bounded psh
function v in Q such that (ddv)" = f dp and supq, |v| < B,,.
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