A TECHNIQUE TO GENERATE m-ARY FREE LATTICES FROM FINITARY ONES

GEORGE GRÄTZER AND DAVID KELLY

Introduction. Let m be an infinite regular cardinal. A poset L is called an m-lattice if and only if for all $X \subseteq L$ satisfying $0 < |X| < m, \land X$ and $\lor X$ exist.

This paper is a part of a sequence of papers, [5], [6], [7], [8], developing the theory of m-lattices. For a survey of some of these results, see [9].

The m-lattice D(m) is described in [6]; γ denotes the zero and γ' the unit of D(m). In particular, formulas for m-joins and meets are given. (We repeat the essentials of this description in Section 4.)

In [6] we proved the theorem stated below. Our proof was based on characterization of $F_{\rm m}(P)$ (the free m-lattice on P) due to [1]; as a result, our proof was very computational.

In this paper, we shall present a non-computational proof. This proof relies on the description of $D(\mathfrak{m})$ borrowed from [6], and on the finitary case: the description of the free lattice on H from [10]. (The proof in [6] does not rely on the finitary case.)

THEOREM. The m-lattice $D(\mathfrak{m}) = \{\gamma, \gamma'\}$ is the free m-lattice on H.

The universal algebraic background of the present proof is given in Section 1. Next, in Section 2, we generalize the concept of partial lattices to m-lattices. Some immediate applications of these results are presented in Section 3; these are applied in Section 5. D(m) is described in Section 4. The proof of the theorem is given in Section 5.

1. Some universal algebraic lemmas. We recall some concepts from [3]. Let **K** be a variety (equational class) of algebras of some finitary or infinitary type. For $\mathfrak{A} = \langle A; F \rangle \in \mathbf{K}$ and $H \subseteq A$, we define a *relative algebra* $\mathfrak{F} = \langle H; F \rangle$ of \mathfrak{A} as follows: if $f \in F$, $a_0, a_1, \ldots \in H$ and $f(a_0, a_1, \ldots) = a \in H$ in \mathfrak{A} , then (and only then) $f(a_0, a_1, \ldots)$ is defined on H and equals a. A *partial* **K**-algebra is defined as a relative algebra of some $\mathfrak{A} \in \mathbf{K}$. Let $\mathbf{K}(\tau)$ be the class of all algebras of type τ . Then a partial algebra of type τ is a partial $\mathbf{K}(\tau)$ -algebra, and vice versa.

If $\mathfrak{B} = \langle B; F \rangle$ is a partial algebra with the same type as that of **K**, then $F(\mathfrak{B})$ denotes the free **K**-algebra generated by \mathfrak{B} . The canonical map of \mathfrak{B}

Received November 28, 1983. The research of both authors was supported by the NSERC of Canada.

into $F(\mathfrak{B})$ is not necessarily one-to-one; if it is one-to-one, then it is an embedding of \mathfrak{B} into $F(\mathfrak{B})$. It is an isomorphism if and only if \mathfrak{B} is a partial **K**-algebra; in this case, \mathfrak{B} is isomorphic to the relative algebra of $F(\mathfrak{B})$ on the image of B. The following lemma is obvious.

LEMMA 1. Let \mathfrak{B} be a relative **K**-algebra, $B \subseteq F(\mathfrak{B})$, and $B \subseteq C \subseteq F(\mathfrak{B})$. Let \mathfrak{C} be the relative algebra of $F(\mathfrak{B})$ on C. If \mathfrak{C} is generated by B, then $F(\mathfrak{B}) \cong F(\mathfrak{C})$ in the natural way.

Let $\mathfrak{B} = \langle B; F \rangle$ be a partial algebra, $f \in F$, $a_0, \ldots \in B$ such that $f(a_0, \ldots)$ is not defined in \mathfrak{B} . We define a *one-point extension* \mathfrak{B}^p of \mathfrak{B} as follows: $B^p = B \cup \{p\}$; all partial operations are the same on \mathfrak{B} and \mathfrak{B}^p except that we add $\langle a_0, \ldots \rangle$ to the domain of f, and $f(a_0, \ldots) = p$.

The next lemma is again trivial.

LEMMA 2. Let \mathfrak{B} be a partial **K**-algebra and let \mathfrak{B}^p be a one-point extension of \mathfrak{B} . Then $F(\mathfrak{B}) \cong F(\mathfrak{B}^p)$ in the natural way.

Note that, as a rule, \mathfrak{B}^p is not a partial **K**-algebra.

Generalizing this construction, we can define \mathfrak{B}^P for a set of points P and for each $p \in P, f_p$, and $a_0^p, \ldots \in B$.

An immediate consequence of Lemma 2 is the following:

LEMMA 3. Assume that there is an $\mathfrak{A} \in K$ and a homomorphism φ of \mathfrak{B}^{P} into \mathfrak{A} such that for all $a \in B$, $p_1, p_2 \in P$, $p_1 \neq p_2$, we have

 $a\varphi \neq p_i\varphi, i = 1, 2 \text{ and } p_1\varphi \neq p_2\varphi.$

Then $F(\mathfrak{B}) \cong F(\mathfrak{B}^P)$ in the natural way.

Now let \mathfrak{A}_0 and \mathfrak{A}_1 be partial **K**-algebras, $A_0 \cap A_1 = A_2$ such that \mathfrak{A}_2 as a relative algebra of \mathfrak{A}_0 is the same as \mathfrak{A}_2 as a relative algebra of \mathfrak{A}_1 . We shall say that \mathfrak{A}_0 and \mathfrak{A}_1 can be strongly amalgamated over \mathfrak{A}_2 , if there is an algebra $\mathfrak{A}_3 \in \mathbf{K}$ of which both \mathfrak{A}_0 and \mathfrak{A}_1 are relative algebras and $A_0 \cap A_1 = A_2$ in \mathfrak{A}_3 .

LEMMA 4. Let \mathfrak{A} be a partial **K**-algebra, let $A' \subseteq A$, and let \mathfrak{A}' be the corresponding relative algebra of \mathfrak{A} . If \mathfrak{A} and $F(\mathfrak{A}')$ can be strongly amalgamated over \mathfrak{A}' , then the subalgebra [A'] of $F(\mathfrak{A})$ generated by A' is naturally isomorphic to $F(\mathfrak{A}')$.

Proof. Let $\mathfrak{A}'' \in \mathbf{K}$ strongly amalgamate \mathfrak{A} and $F(\mathfrak{A}')$. Let φ be the extension of the identity map on A to a homomorphism of $F(\mathfrak{A})$ into \mathfrak{A}'' . Obviously, φ maps [A'] onto $F(\mathfrak{A}')$. We get an inverse map by the freeness of $F(\mathfrak{A}')$, and hence the isomorphism.

2. Partial m-lattices. It is clear that we can define a type of algebras such that m-lattices can be regarded as algebras of this type.

Let *L* be an m-lattice, $Q \subseteq L$, $Q \neq \emptyset$, and we restrict the \lor and \land of *L* to *Q* as follows: if $X \subseteq Q$, $0 < |X| < \mathfrak{m}$, and $x = \land X$ (formed in *L*) is in *Q*, then $\land X$ is defined in *Q* and $\land X = x$ in *Q*; otherwise, $\land X$ is not defined; $\lor X$ is defined similarly. Then *Q* with \land and \lor is called a *partial* m-*lattice*; *Q* is a *relative* m-*sublattice* of *L*. (For $\mathfrak{m} = \aleph_0$, see [4] for a detailed discussion of partial lattices.)

The partial m-lattice Q is an example of an m-structure defined as follows. Given a partially ordered set P, we can make P into an (infinitary) partial algebra of the type of partial m-lattices as follows: we designate two families of subsets of $P:\mathfrak{M}$ and \mathfrak{F} ; if $X \in \mathfrak{M}$, then $0 < |X| < \mathfrak{m}$ and inf X exists in P; if $X \in \mathfrak{F}$, then $0 < |X| < \mathfrak{m}$ and sup X exists in P. We define \vee and \wedge on P as follows:

 $\wedge X = x$ if and only if $X \in \mathfrak{M}$ and $x = \inf X$

 $\forall X = x \text{ if and only if } X \in \mathfrak{J} \text{ and } x = \sup X.$

We denote this partial algebra by $\langle P, \mathfrak{M}, \mathfrak{I} \rangle$ and call it an m-structure. Note that for the same poset P, there are many m-structures on P.

Given an m-structure $\langle P, \mathfrak{M}, \mathfrak{J} \rangle$ and $I \subseteq P$, we call I an *ideal* if and only if $x, y \in P, x \leq y$, and $y \in I$ imply that $x \in I$; and $X \in \mathfrak{J}, X \subseteq I$ imply that sup $X \in I$. For $X \subseteq P$, let $(X]_{\mathfrak{J}}$ denote the ideal generated by X; if $X = \{x\}$ we write $(x]_{\mathfrak{J}}$ for $(\{x\})_{\mathfrak{J}}$.

Observe that every partial m-lattice P is an m-structure, $\langle P, \mathfrak{M}, \mathfrak{J} \rangle$, in the natural way. The corresponding ideal concept is called m-*ideal*. The m-ideal generated by X will be denoted by $(X]_{\mathfrak{m}}$; if $X = \{x\}$, we write $(x]_{\mathfrak{m}}$ for $(\{x\}]_{\mathfrak{m}}$. If $|X| < \mathfrak{m}$, then the m-ideal $(X]_{\mathfrak{m}}$ is called m-generated.

LEMMA 5. An m-structure $\langle P, \mathfrak{M}, \mathfrak{I} \rangle$ is a partial m-lattice if and only if the following conditions are satisfied:

(i) For every $u, v \in P$, if $u \leq v$, then $\{u, v\} \in \mathfrak{M}$ and $\{u, v\} \in \mathfrak{J}$;

(ii) For $X \subseteq P$, $0 < |X| < \mathfrak{m}$, if $(X]_{\mathfrak{F}} = (x]_{\mathfrak{F}}$, then $X \in \mathfrak{F}$; and dually for \mathfrak{M} .

The proof of this lemma is analogous to the proof in the finitary case due to N. Funayama [2], see also Theorem 1.5.20 in [4]. The present formulation seems to be new even in the finitary case.

LEMMA 6. For any m-structure $\langle P, \mathfrak{M}, \mathfrak{F} \rangle$, there exists a smallest partial m-lattice $\langle P; \land, \vee \rangle$ containing $\langle P, \mathfrak{M}, \mathfrak{F} \rangle$ in the obvious sense.

Proof. This is clear from Lemma 5; first, we add to \mathfrak{M} and \mathfrak{F} the singletons and doubletons needed in (i) containing \mathfrak{M}_0 and \mathfrak{F}_0 . Then we add to \mathfrak{M}_0 and \mathfrak{F}_0 all subsets of P required by (ii), obtaining $\mathfrak{M}_1, \mathfrak{F}_1$. Now (ii) will have to be applied again to augment $\mathfrak{M}_1, \mathfrak{F}_1$. After at most $|P|^{\mathfrak{M}}$ steps we obtain $\mathfrak{M}, \mathfrak{F}$ satisfying (i) and (ii), hence $\langle P, \mathfrak{M}, \mathfrak{F} \rangle$ is the smallest partial m-lattice containing $\langle P, \mathfrak{M}, \mathfrak{F} \rangle$.

The next lemma follows from Lemmas 5 and 6.

LEMMA 7. The free m-lattice generated by the m-structure $\langle P, \mathfrak{M}, \mathfrak{F} \rangle$ is isomorphic to the free m-lattice generated by the smallest partial m-lattice containing $\langle P, \mathfrak{M}, \mathfrak{F} \rangle$.

Finally, we observe that when generating the free m-lattice, we can first generate the free lattice. Let \mathfrak{A} be a partial lattice and $F(\mathfrak{A})$ the free lattice generated by \mathfrak{A} . We make $F(\mathfrak{A})$ into an m-structure $\langle F(\mathfrak{A}), \mathfrak{M}, \mathfrak{T} \rangle$ as follows: \mathfrak{M} and \mathfrak{T} both consist of the nonempty finite subsets of $F(\mathfrak{A})$.

LEMMA 8. The free m-lattice generated by \mathfrak{A} and by $\langle F(\mathfrak{A}), \mathfrak{M}, \mathfrak{F} \rangle$ are naturally isomorphic.

In other words, we can form first finitary meets and joins freely, before we have to worry about infinitary meets and joins. The proof is obvious.

For a partial m-lattice \mathfrak{A} or an m-structure $\mathfrak{A} = \langle P, \mathfrak{M}, \mathfrak{J} \rangle$, the free m-lattice on \mathfrak{A} will be denoted by $F_{\mathfrak{m}}(\mathfrak{A})$. For a poset P, there is a smallest partial m-lattice $\mathfrak{B} = \langle P, \mathfrak{M}, \mathfrak{J} \rangle$; let $F_{\mathfrak{m}}(\mathfrak{A})$ denote the free m-lattice generated by it. Obviously, $F_{\mathfrak{m}}(\mathfrak{A})$ is the same as $F_{\mathfrak{m}}(P)$.

3. Chains and linear sums. Let Q be a chain. As the simplest application of the results of Sections 1 and 2, we determine the free m-lattice on Q. Observe that the finitary case is trivial.

Let $\tilde{Q} = Q \cup I \cup D$, where I is the set of nonprincipal m-generated ideals of Q ordered by $\subseteq D$, is the set of nonprincipal m-generated dual ideals of Q ordered by \supseteq . We define the partial order on \tilde{Q} in the obvious way:

let $a \in Q$ and $b \in I$, $a \leq b$ means that $a \in b$, and $b \leq a$ means that $b \subseteq (a]$;

let $a \in Q$ and $b \in D$; we use the dual definition;

let $a \in I$ and $b \in D$; a < b if and only if x < y in Q for all $x \in I$ and $y \in D$;

b < a if and only if $a \cap b \neq \emptyset$.

LEMMA 9. \tilde{Q} is an m-chain.

Proof. Let $X \subseteq \tilde{Q}$, 0 < |X| < m. We show that $\forall X$ exists in \tilde{Q} . We can assume that $X \subseteq Q$, or $X \subseteq I$, or $X \subseteq D$. If $X \subseteq Q$, then let a = (X]. We show that $a = \forall X$ in \tilde{Q} . Indeed, if b is an upper bound of X in \tilde{Q} , and $b \in Q \cup I$, then $a \leq b$ is obvious; if $b \in D$, b = [Y], 0 < |Y| < m, in Q, then x < y for all $x \in X$ and $y \in Y$, hence, a < y for all $y \in Y$, implying that a < b.

If $X \subseteq I$, then $a = \bigcup (x \mid x \in I)$ is an m-generated ideal by the regularity of m. If a is nonprincipal, then $a \in I$ and a is obviously the least upper bound of X. If a is principal, $a = (a_0], a_0 \in Q$, and a_0 is the least upper bound of X.

If $X \subseteq D$, we can assume that X has no largest element and X is well-ordered, $X = \{d_i \mid i < n\}$, where n < m and $d_i < d_j$ (i.e., $d_1 \supset d_j$) for i < j. For each i < n, choose $a_i \in d_i - d_{i+1}$. The ideal a of Q generated by the $a_i, i < n$, is m-generated, hence $a \in \tilde{Q}$. It is easily seen that a is the least upper bound of X in \tilde{Q} .

By duality, $\wedge X$ also exists, hence \tilde{Q} is an m-chain.

LEMMA 10. \tilde{Q} is the free m-lattice on Q.

Proof. Let us define an m-structure on \tilde{Q} : let both \mathfrak{J} and \mathfrak{M} consist of all subsets X of \tilde{Q} with $0 < |X| < \mathfrak{m}$. This makes \tilde{Q} into an m-structure generated by Q as discussed in Lemma 2. The free m-lattice on Q is the same as the free m-lattice on this partial m-lattice on \tilde{Q} . However, the computations of Lemma 9 show that the smallest partial m-lattice on this m-structure is the m-chain \tilde{Q} . So we can apply Lemmas 7 and 8 to conclude that the m-chain \tilde{Q} is the free m-lattice on Q.

A similar application is to linear sums. Let Q be a chain and let P_i , $i \in Q$, be posets. Let \tilde{Q} denote the free m-lattice (chain) on Q. We now describe the free m-lattice on the linear sum P of the P_i , $i \in Q$.

LEMMA 11. For $i \in \tilde{Q}$, let us define the poset Q_i : $Q_i = F_{\mathfrak{m}}(P_i)$ for $i \in Q$; Q_i is a singleton for $i \in \tilde{Q} - Q$. Then $F_{\mathfrak{m}}(P)$ is the linear sum of the Q_i , $i \in \tilde{Q}$.

Proof. Let \tilde{P} stand for the linear sum of the Q_i , $i \in \tilde{Q}$. Then $P \subseteq \tilde{P}$. Let P^+ be the linear sum of the P_i for $i \in Q$ and the singleton Q_i for $i \in \tilde{Q} - Q$. We can argue as in Lemmas 9 and 10 (the special case that all $|P_i| = 1$), that the free m-lattice on P and P^+ are the same.

For each $i \in I$, we can use Lemma 4 to show that, in P^+ , we can replace P_i with $F_{\mathfrak{m}}(P_i)$. The resulting m-structure \mathfrak{P} has \tilde{P} as the underlying poset; \mathfrak{F} and \mathfrak{M} consist of all subsets $X \subseteq \tilde{P}$ satisfying $0 < |X| < \mathfrak{m}$, and $X \subseteq \tilde{Q}$ or $X \subseteq F_{\mathfrak{m}}(P_i)$ for some *i*. However, the smallest partial m-lattice containing \mathfrak{P} is the m-lattice \tilde{P} . We apply again Lemmas 7 and 8 to conclude that $\tilde{P} = F_{\mathfrak{m}}(P)$.

4. The m-lattice D(m). Let m be a regular cardinal, $m > \aleph_0$. In this section, we sketch the definition of the complete lattice D(m). For a more detailed description, see [6].

First, let $C(\mathfrak{m})$ be the lattice of Figure 1.

For every successor ordinal j < m, there is a lower *j*-th level of 6 elements $L_j = \{a_j, b_j, c_j, d_j e_j, f_j\}$, and for every limit ordinal i < m (including i = 0), there is a lower *i*-th level of 7 elements $L_i = \{a_i, b_i, c_i, d_i, e_i, f_i, g_i\}$. These elements are ordered as shown in Figure 1. There is also an upper *i*-th level U_i for each i < m, defined dually and denoted by the same

letters with primes. For convenience, we also label 6 elements of $C(\mathfrak{m})$ with Greek letters: $\alpha = a_0, \alpha' = a'_0, \beta = b_0, \beta' = b'_0, \gamma = g_0, \gamma' = g'_0$.

$$C(\mathfrak{m}) = \{\gamma, \gamma'\}$$
 is \mathfrak{m} -generated by $\alpha, \alpha', \beta, \beta'$.

The second building block of D(m) is the lattice A of Figure 2, first described in [10]. Let J be the set of dyadic rationals r that satisfy $0 \le r \le 1$. Every $r \in J$, $r \ne 0$, has a unique representation, the normal form, $r = a \cdot 2^{-n}$, where a is an odd integer; n is the order or r; in notation, $n = \operatorname{ord}(r)$. By convention, $\operatorname{ord}(0) = 0$.

We define A as a subposet of J^2 with the product order:

$$A = \{ \langle r, s \rangle \mid r < s \text{ and } s - r = 2^n, n \ge \max \{ \operatorname{ord}(r), \operatorname{ord}(s) \}.$$

For $t \in J$, let us call the set of $a \in A$ of the form $\langle t, s \rangle$ the x = t line in A, and define the y = t line similarly. $\langle r, r + 2^{-\operatorname{ord}(r)} \rangle$ is the largest element on the x = r line, and $\langle s - 2^{-\operatorname{ord}(s)}, s \rangle$ is the smallest element on the v = s line.

Each $a \in A$ has a right upper cover a^* :

 $\langle r, s \rangle^* = \langle (r + s)/2, s \rangle.$

Similarly, the left upper cover $\langle r, s \rangle$ exists and equals $\langle r, s + 2^{-\operatorname{ord}(s)} \rangle$ when $\operatorname{ord}(r) < \operatorname{ord}(s)$.

Let a and b be incomparable elements of A, with a to the left of b. The join of a and b is the least element on the y-line through a that is greater than b.

Finally, we define

$$B = \{ \langle r, s \rangle \mid \langle s, r \rangle \in A \},\$$

a subposet of J^2 . Clearly, B is a lattice and its diagram is obtained by reflecting Figure 2 about a vertical line.

Let *I* be the real interval [0, 1], and recall that *J* denotes the subset of *I* consisting of dyadic rationals. For each $t \in J$, we take a copy C_t of $C(\mathfrak{m})$, with bounds γ_t and γ'_t , and generators α_t , α'_t , β_t , β'_t . For each $t \in I$ which is not a dyadic rational, $C_t = {\gamma_t, \gamma'_t}$ is the two-element chain with $\gamma_t < \gamma'_t$. We define *C* as the linear sum of the C_t , $t \in I$. Since *I* is complete and each C_t is complete, *C* is a complete lattice.

We define $D(\mathfrak{m}) = A \cup B \cup C$, partially ordered as follows (see Figures 3 and 4): Let

$$\langle r, s \rangle \in A, \langle t, u \rangle \in B, v \in I, p \in C_{v};$$

 $\langle r, s \rangle < \langle t, u \rangle$ if and only if s < u;

$$\langle r, s \rangle > \langle t, u \rangle$$
 if and only if $r > t$;

 $\langle r, s \rangle < p$ if and only if s < v holds, or s = v and $\alpha_v \leq p$ hold;

 $\langle r, s \rangle > p$ if and only if r > v holds, or r = v and $\alpha'_v \ge p$ hold;

 $\langle t, u \rangle < p$ if and only if t < v holds, or t = v and $\beta_v \leq p$ hold;

 $\langle t, u \rangle > p$ if and only if u > v holds, or u = v and $\beta'_v \ge p$ hold.

It is easily seen that D(m) is a poset.

It is not difficult to show that D(m) is a lattice, and that each of A, B, and C is a sublattice of D(m). For $\langle r, s \rangle \in A$, $\langle t, u \rangle \in B$, $v \in I$, and $p \in C_v$, we give the formulas for joining pairs:

- (a) $\langle r, s \rangle \vee p$ is
- (i) $\alpha_s \lor p \in C$, where the join is formed in C, if $s \leq v$;
- (ii) $\langle r, s \rangle$, if r > v, or r = v and $p \leq \alpha'_r$ in C_v ;
- (iii) the least $\langle w, s \rangle$ such that w > v, if $r \leq v < s$ and $p \leq \alpha'_v$ in C_v ;
- (iv) the least $\langle w, s \rangle$ such that $w \ge v$, if $r \le v < s$ and $p \le \alpha'_v$ in C_v ;
- (b) $\langle r, s \rangle \vee \langle t, u \rangle$ is
- (i) $\langle t, u \rangle$, if s < u;
- (ii) $\langle r, s \rangle$, if t < r;
- (iii) the least $\langle w, s \rangle$ on the y = s line in A such that w > t, if s > t;
- (iv) the least $\langle t, w \rangle$ on the x = t line in B such that w > s, if s > t; (v) $\alpha_s \lor \beta_s$, if s = t, where the join is formed in C_s .

To show that $D(\mathfrak{m})$ is a complete lattice, it suffices to find $\vee X$ for a nonempty subset X of A. (The formula is similar for B and we already know that C is complete.) Let X_1 and X_2 be the first and the second projections of X, and form $u = \vee X_1$ and $v = \vee X_2$ in I.

If u < v, then $v \in J$, and $\forall X$ is the least element of A on the y = v line whose first coordinate is $\geq u$.

If u = v, then

$$\forall X = \begin{cases} \gamma_u \text{ if } u = v \text{ and } u \notin X_2\\ \alpha_u \text{ if } u = v \text{ and } u \in X_2 \end{cases}$$

 $D(\mathfrak{m}) = \{\gamma_0, \gamma_1'\}$ is m-generated by $\alpha_0, \beta_0, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \alpha_1', \beta_1'$.

5. $D(\mathfrak{m})$ as an \mathfrak{m} -structure. Let $P = D(\mathfrak{m}) - \{\gamma_0, \gamma_1'\}$ be the partially ordered set underlying $D(\mathfrak{m}) - \{\gamma_0, \gamma_1'\}$.

For a dyadic rational $i, 0 \leq i \leq 1$, let C_i^{fin} be the 16 element sublattice $C(\aleph_0)$ of $C(\mathfrak{m})$. Let

$$P_0 = A \cup B \cup C^{\text{fin}},$$

where C^{fin} is the union of all C_i^{fin} where *i* is a dyadic rational, $0 \le i \le 1$. We know that P_0 is a sublattice of $D(\mathfrak{m})$. By [10], P_0 is the free lattice generated by

 $H = \{\alpha_0, \beta_0, \alpha'_1, \beta'_1, \langle 1, 0 \rangle, \langle 0, 1 \rangle \}.$

By Lemma 7, $FL_{m}(H)$ is isomorphic to the free m-lattice generated by $\langle P_0, \underline{\text{Fin}}, \underline{\text{Fin}} \rangle$, where $\underline{\text{Fin}}$ is the family of finite nonempty subsets of P_0 .

Let P_1 be an extension of P_0 in the style of Lemma 3: We add to P_0 all $\alpha_i, \beta_i, \alpha'_i, \beta'_i, i \in J$; we define α_i as the m-join of the y = i line in A; $\alpha'_i, \beta_i, \beta'_i$ are defined analogously. To apply Lemma 3 we have to find an m-lattice where all these elements are distinct; of course, D(m) does the trick.

Now we apply Lemma 4 to P_1 and C. By Lemma 4, $P = P_1 \cup C$ as an m-structure $\langle P, \mathfrak{M}, \mathfrak{J} \rangle$ generates the same free m-lattice as $H. \langle P, \mathfrak{M}, \mathfrak{J} \rangle$ is defined as follows:

1. All finite nonempty subsets of P_0 are in \mathfrak{M} and \mathfrak{F} .

2. The y = i line in A is in \Im (and analogously for \mathfrak{M}).

3. All subsets X of C are in \Im and \mathfrak{M} provided that $0 < |X| < \mathfrak{m}$. Now the crucial statement is:

LEMMA 12. The smallest partial m-lattice containing $\langle P, \mathfrak{M}, \mathfrak{I} \rangle$ is the m-lattice: $D(\mathfrak{m}) = \{\gamma_0, \gamma'_1\}$.

It is clear, by Lemma 8, that Lemma 12 implies the theorem since the free m-lattice generated by an m-lattice is an m-lattice.

Proof of Lemma 12. By duality and Lemma 5, it is sufficient to prove the following statement:

For every subset X of P with 0 < |X| < m and $a = \sup X$, we have $(X)_I = (a]$.

A, B, $A \cup B$, and C are sublattices of P since all finite sets are in \mathfrak{M} and \mathfrak{F} . Thus, it is sufficient to verify the above statement in the following cases:

1. $X = \{x_1, x_2\}$, and x_1, x_2 are incomparable:

(a) $x_1 \in A, x_2 \in C$;

(b) $x_1 \in B, x_2 \in C$.

- 2. X is an infinite chain:
- (a) $X \subseteq A$;
- (b) $X \subseteq B$;
- (c) $X \subseteq C$.

By the symmetry of $D(\mathfrak{m})$, it is enough to consider (1a), (2a), and (2c). Of these, (2c) is trivial, since all such X are in \mathfrak{M} and \mathfrak{T} .

Case (1a). Let $x_1 = \langle r, s \rangle$ and $x_2 = p$ be given as in Section 4 in the description of the join in $D(\mathfrak{m})$. We proceed by subcases (i)-(iv) corresponding to part (a) of the join definition.

(i) In this case, $s \leq v$. Let

$$\langle r, s \rangle = \langle r_1, s \rangle < \langle r_2, s \rangle < \dots$$

be the y = s line in A. We prove by induction that

 $\langle r_i, s \rangle \in (\{\langle r, s \rangle, p\}]_J = I.$

This holds for i = 1 by definition. For i = 2, observe that $r_1 < r_2 < s$, hence $\alpha_{r_2} < p$, and all $\langle x, r_2 \rangle < \alpha_{r_2}$; thus all $\langle x, r_2 \rangle \in I$. Choose x so that $r_1 < x < r_2$ and $\langle x, r_2 \rangle \in A$. Then

$$\langle r_1, s \rangle \lor \langle x, r_2 \rangle = \langle r_2, s \rangle$$
 and
 $\{ \langle r_1, s \rangle, \langle x, r_2 \rangle \} \in \mathfrak{F},$

hence, $\langle r_2, s \rangle \in I$. The induction step is similar. By the definition of \Im (clause 2), and since { $\langle r_i, s \rangle \mid i = 1, 2, ...$ } is cofinite with the y = s line,

$$\forall (\langle r_i, s \rangle \mid i = 1, 2, \dots) = \alpha_s,$$

hence

$$I = (\alpha_s \vee p)_{\mathfrak{F}},$$

as required.

(ii) does not define incomparable pairs of elements.

(iii) and (iv) are similar to (i) except we prove $\langle r_i, s \rangle \in I$ only up to the first *i* such that $r_i > v$, while in (iv) up to the first *i* with $r_i \ge v$.

Case (2a). Since A is a countable sublattice, we can assume that X is an ω chain:

 $\langle r_0, s_0 \rangle < \langle r_1, s_1 \rangle < \ldots < \langle r_n, s_n \rangle < \ldots$

If there is an *n*, such that $s = s_n = s_{n+1} = \dots$, then obviously,

 $(X] = (\alpha_{\mathfrak{s}}]_{\mathfrak{k}}.$

If there is no such *n*, then set $s = \bigvee s_i$. For every u < s, *u* dyadic, there is an *i* such that $u < r_i$, hence $\gamma_u \in (X]$. By the definition of \Im (clause 3),

 $\forall (\gamma_u \mid u < s) \in (X],$

hence $\gamma_s \in (X]$. This proves that $(X] = (\gamma_s]$.

This completes the proof of Lemma 12.

REFERENCES

- 1. P. Crawley and R. A. Dean, Free lattices with infinite operations, Trans. Amer. Math. Soc. 92 (1959), 35-47.
- 2. N. Funayama, Notes on lattice theory IV. On partial (semi-) lattices, Bull. Yamagata Univ. (Nat. Sci.) 2 (1953), 171-184.
- 3. G. Grätzer, Universal algebra, Second Edition (Springer Verlag, New York, Heidelberg, Berlin, 1979).
- 4. ----- General lattice theory, Pure and Applied Mathematics Series, Academic Press, New York, N.Y.; Mathematische Reihe, Band 52, Birkhauser Verlag, Basel; Akademie Verlag, Berlin, 1978. (Russian translation: MIR Publishers, Moscow, 1982.)
- 5. G. Grätzer and D. Kelly, Free m-products of lattices. I and II, Colloq. Math., to appear.
- 6. The free m-lattice on the poset H, ORDER 1 (1984), 47-65.
 7. An embedding theorem for free m-lattices on slender posets.
- 8. A description of free m-lattices on slender posets.
- 9. The construction of some free m-lattices on posets, Orders: Descriptions and Roles (Proceedings of the 1982 conference on ordered sets and their applications), (North-Holland, Amsterdam, 1984), 103-118.
- 10. I. Rival and R. Willer, Lattices freely generated by partially ordered sets: which can be "drawn"?, J. Reine. Angew. Math. 310 (1979), 56-80.

University of Manitoba, Winnipeg, Manitoba