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A TECHNIQUE TO GENERATE m-ARY FREE 
LATTICES FROM FINITARY ONES 

GEORGE GRÂTZER AND DAVID KELLY 

Introduction. Let m be an infinite regular cardinal. A poset L is called 
an m-lattice if and only if for all X Q L satisfying 0 < \X\ < m, A X and 
V X exist. 

This paper is a part of a sequence of papers, [5], [6], [7], [8], developing 
the theory of m-lattices. For a survey of some of these results, see [9]. 

The m-lattice D(m) is described in [6]; y denotes the zero and y' the unit 
of D(m). In particular, formulas for m-joins and meets are given. (We 
repeat the essentials of this description in Section 4.) 

In [6] we proved the theorem stated below. Our proof was based on 
characterization of Fm(P) (the free m-lattice on P) due to [1]; as a result, 
our proof was very computational. 

In this paper, we shall present a non-computational proof. This proof 
relies on the description of D(m) borrowed from [6], and on the finitary 
case: the description of the free lattice on H from [10]. (The proof in [6] 
does not rely on the finitary case.) 

THEOREM. The m-lattice D(m) — (y, y'} is the free m-lattice on H. 

The universal algebraic background of the present proof is given in 
Section 1. Next, in Section 2, we generalize the concept of partial lattices 
to m-lattices. Some immediate applications of these results are presented 
in Section 3; these are applied in Section 5. D(m) is described in Section 4. 
The proof of the theorem is given in Section 5. 

1. Some universal algebraic lemmas. We recall some concepts from [3]. 
Let K be a variety (equational class) of algebras of some finitary or 
infinitary type. For St = (A; F) e K and H Q A, we define a relative 
algebra $ = (H; F) of 31 as follows: iff e F, a0, av . . . e H and f(a0, 
ax, . . . ) = a e H in Sf, then (and only then)/"(<20, ax, . . . ) is defined on H 
and equals a. A partial K-algebra is defined as a relative algebra of some 
W G K. Let K(T) be the class of all algebras of type r. Then a partial 
algebra of type T is a partial K(T)-algebra, and vice versa. 

If 23 = (B; F) is a partial algebra with the same type as that of K, then 
F(%$) denotes the free K-algebra generated by 23. The canonical map of 23 
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into F(93) is not necessarily one-to-one; if it is one-to-one, then it is an 
embedding of 93 into F(93). It is an isomorphism if and only if 93 is a 
partial K-algebra; in this case, 99 is isomorphic to the relative algebra of 
F(93) on the image of B. The following lemma is obvious. 

LEMMA 1. Let 93 be a relative K-algebra, B ç F(93), and B Q C c F(£). 
Let (£ be the relative algebra of F(93) on C. If £ is generated by B, then 
F(%5) = F(&) in the natural way. 

Let 93 = (B; F) be a partial algebra, / <E F, a0, . . . e 5 such that 
/(ûf0, . . . ) is not defined in 93. We define a one-point extension & of 93 as 
follows: ^ = 5 U {/?}; all partial operations are the same on 93 and 93̂  
except that we add (a0, . . . ) to the domain off and/(a 0 , . . . ) = p. 

The next lemma is again trivial. 

LEMMA 2. Let 93 be a partial K-algebra and let & be a one-point 
extension of^B. Then F0&) = 77(93/7) in the natural way. 

Note that, as a rule, 93̂  is not a partial K-algebra. 
Generalizing this construction, we can define 93p for a set of points P 

and for each p e P,f9 and a^, . . . e B. 
An immediate consequence of Lemma 2 is the following: 

LEMMA 3. Assume that there is an% e K and a homomorphism <jp of ̂ 8 
into 3t such that for all a e B, px, p2 <= P, p\ ^ p2, we have 

a<p T̂  />zqp, / = 1,2 and pxq> ^ p2<p. 

Then F(%$) = F(93 ) in the natural way. 

Now let 5I0 and 91 x be partial K-algebras, A0 D Ax = A2 such that s2t2 as 
a relative algebra of 2T0 is the same as %2 as a relative algebra of %v We 
shall say that 3I0 and 2îj ozfl Z>e strongly amalgamated over 2t2> if there is 
an algebra 2t3 e K of which both 9t0 and %x are relative algebras and 
A0 C\ Ax = A2in 5t3. 

LEMMA 4. Le/ % be a partial K-algebra, let A' Q A, and let W be the 
corresponding relative algebra of %. If % and F(W) can be strongly 
amalgamated over 31', then the subalgebra [Af] of F(%) generated by A' is 
naturally isomorphic to F(W). 

Proof Let %" <E K strongly amalgamate % and F(W). Let <JP be the 
extension of the identity map on A to a homomorphism of F($l) into 31". 
Obviously, <p maps [Af] onto F(W). We get an inverse map by the freeness 
of F(W), and hence the isomorphism. 

2. Partial m-lattices. It is clear that we can define a type of algebras 
such that m-lattices can be regarded as algebras of this type. 
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Let L be an m-lattice, Q Q L, Q ¥= 0, and we restrict the V and A of L 
to Q as follows: if X Q Q, 0 < \X\ < m, and x = A X (formed in L) is in 
Q, then A X is defined in Q and A X = x in g; otherwise, A l i s not 
defined; V Xis defined similarly. Then Q with A and V is called a. partial 
m-lattice; Q is a relative m-sublattice of L. (For m = K0, see [4] for a 
detailed discussion of partial lattices.) 

The partial m-lattice Q is an example of an m-structure defined as 
follows. Given a partially ordered set P, we can make P into an (infinitary) 
partial algebra of the type of partial m-lattices as follows: we designate 
two families of subsets of P:TO and 3 ; if X e TO, then 0 < |* | < m and 
inf X exists in P\ if X e $, then 0 < |A"| < m and sup X exists in P. We 
define V and A on P as follows: 

A X = x if and only if X <= TO and JC = inf X 

V X = x ii and only if I G 5 and x = sup X. 

We denote this partial algebra by (P, TO, S ) a n d call it an m-structure. 
Note that for the same poset P, there are many m-structures on P. 

Given an m-structure (P, TO, $$) and / Q P, we call / an We<z/ if and 
only if x, y <E P, X ^ j>, and y Œ I imply that x ^ I\ and X G £>, X c / 
imply that sup X ^ I. For X Q P, let (X]c- denote the ideal generated by 
X; if X = {x} we write (x]o^ for ( {x} ]^. 

Observe that every partial m-lattice P is an m-structure, (P, TO, ^ ) , in 
the natural way. The corresponding ideal concept is called m-ideal. The 
m-ideal generated by X will be denoted by (X]m; if X = {x}, we write 
(x]m for ( { * } ] m . If \X\ < m, then the m-ideal (X]m is called 
m-generated. 

LEMMA 5. An m-structure (P, TO, $ ) is a partial m-lattice if and only if 
the following conditions are satisfied: 

(i) For every u, v e P, if u ^ v, then {w, v} G TO tf/2^ {w, v} <E ^ ; 
(ii) Pbr X Q i>, 0 < |X| < m, if(X]% = (x] s , /tew I e S ; ^ rfwa//y 

/or TO. 

The proof of this lemma is analogous to the proof in the finitary case 
due to N. Funayama [2], see also Theorem 1.5.20 in [4]. The present 
formulation seems to be new even in the finitary case. 

LEMMA 6. For any m-structure (P, TO, ^ ) , there exists a smallest partial 
m-lattice (P; A, V) containing (P, TO, $ ) in the obvious sense. 

Proof. This is clear from Lemma 5; first, we add to TO and ^ the 
singletons and doubletons needed in (i) containing TO0 and So- Then we 
add to TO0 and ^ 0 all subsets of P required by (ii), obtaining TOl5 %}. Now 
(ii) will have to be applied again to augment TOl5 Si- After at most |P|m 

steps we obtain TO, S satisfying (i) and (ii), hence (P, TO, $ ) is the smallest 
partial m-lattice containing (P, TO, $ ) . 
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The next lemma follows from Lemmas 5 and 6. 

LEMMA 7. The free m-lattice generated by the m-structure (P, sJJf, '^) 
is isomorphic to the free m-lattice generated by the smallest partial m-lattice 
containing (P, Wl, ^s). 

Finally, we observe that when generating the free m-lattice, we can first 
generate the free lattice. Let 31 be a partial lattice and F(3t) the free lattice 
generated by 31. We make F(3l) into an m-structure (P(3l), Wl, 3 ) as 
follows: Wl and % both consist of the nonempty finite subsets of F(3l). 

LEMMA 8. The free m-lattice generated by 31 and by (P(3l), Wl, £s) are 
naturally isomorphic. 

In other words, we can form first finitary meets and joins freely, before 
we have to worry about infinitary meets and joins. The proof is obvious. 

For a partial m-lattice 31 or an m-structure 31 = (P, Wl, $0, the free 
m-lattice on 31 will be denoted by Fm(3t). For a poset P, there is a smallest 
partial m-lattice $ = (P, 5DÎ, ^ ) ; let Fm($) denote the free m-lattice 
generated by it. Obviously, FmQ#) is the same as Fm(P). 

3. Chains and linear sums. Let Q be a chain. As the simplest application 
of the results of Sections 1 and 2, we determine the free m-lattice on Q. 
Observe that the finitary case is trivial. 

Let Q = Q U 7 U 7), where 7 is the set of nonprincipal m-gener-
ated ideals of Q ordered by Q D, is the set of nonprincipal m-generated 
dual ideals of Q ordered by 2 . We define the partial order on Q in the 
obvious way: 

let a G Q and b e 7, a ^ b means that a <E b, and b = a means that b 

let A G Q and Z> e Z>; we use the dual definition; 
let a e / and b ^ D\ a < b il and only if JC < y in Q for all x e 7 and 

V e D; 
6 < <z if and only if a n fe =̂  0. 

LEMMA 9. <2 ^ an m-chain. 

Proof. Let A" ç g , 0 < |JVT| < m. We show that V Xexists in (5. We can 
assume that X Q Q9 or X Q 7, or X Q D. If X Q Q, then let a = (X]. We 
show that a = V X in Q. Indeed, if b is an upper bound of X in Q, and 
b e g U 7, then A ^ è is obvious; if 6 e 7), b = [7), 0 < | Y| < m, in 
Q, then x < j for all x e X and j e Y, hence, Û < >> for all y e 7, 
implying that a < b. 

If I ç /, then a = U (JC | x e 7) is an m-generated ideal by the 
regularity of m. If a is nonprincipal, then a e 7 and « is obviously the least 
upper bound of X. If a is principal, a = (a0], tf0 G <2, and a0 *s t n e 

least upper bound of X. 
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If X ç D, we can assume that X has no largest element and X is 
well-ordered, X = {d} \ i < n}, where n < m and d{ < dj (i.e., dx D d-) for 
/ < j . For each /' < n, choose a} G di — di+]. The ideal a of Q generated 
by the ah i < n, is m-generated, hence a G Q. It is easily seen that a is the 
least upper bound of X in (). 

By duality, A X also exists, hence Q is an m-chain. 

LEMMA 10. Q is the free m-lattice on Q. 

Proof. Let us define an m-structure on Q : let both Sg and Tt consist of 
all subsets X of Q with 0 < \X\ < m. This makes Q into an m-structure 
generated by Q as discussed in Lemma 2. The free m-lattice on Q is the 
same as the free m-lattice on this partial m-lattice on Q. However, the 
computations of Lemma 9 show that the smallest partial m-lattice on this 
m-structure is the m-chain Q. So we can apply Lemmas 7 and 8 to 
conclude that the m-chain Q is the free m-lattice on Q. 

A similar application is to linear sums. Let Q be a chain and let Ph i G 
Q, be posets. Let Q denote the free m-lattice (chain) on Q. We now 
describe the free m-lattice on the linear sum P of the Ph i G Q. 

LEMMA 11. For i e Q, let us define the poset Qt\ 
Qi = Fm(Pt)for i e Q; __ 
Qi is a singleton for i G Q — Q. 

Then Fm(P) is the linear sum of the Qh i G Q. 

Proof Let P stand for the linear sum of the Qt, i e Q. Then P Q P. 
Let P+ be the linear sum of the Pt for /' e Q and the singleton Qt for 
i G Q — Q. We can argue as in Lemmas 9 and 10 (the special case that all 
\Pj\ = 1), that the free m-lattice on P and P+ are the same. 

For each / G /, we can use Lemma 4 to show that, in P+
y we can replace 

Pj with Fm(Pt). The resulting m-structure % has P as the underlying poset; 
^ and Wl consist of all subsets X Q P satisfying 0 < \X\ < m, and X Q Q 
or X Q Fm(Pt) for some /'. However, the smallest partial m-lattice 
containing ^s is the m-lattice P. We apply again Lemmas 7 and 8 to 
conclude that P = Fm(P). 

4. The m-lattice D(m). Let m be a regular cardinal, m > S0. In this 
section, we sketch the definition of the complete lattice Z)(m). For a more 
detailed description, see [6]. 

First, let C(m) be the lattice of Figure 1. 
For every successor ordinal j < m, there is a lower 7-th level of 6 

elements L- = {dj, bp c, d: e-, f], and for every limit ordinal / < m 
(including / = 0), there is a lower /-th level of 7 elements Lt = {at, bh cz, di9 
evfv Si }• These elements are ordered as shown in Figure 1. There is also an 
upper i-th level JJi for each / < m, defined dually and denoted by the same 
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I/o 

V' 

U\ + \ ai + \ 

C(«0) 

/ limit 

A + i Û/+1 

/ limit 

ûi 

L0
 a = a0 

â 
6go=y 

The m-lattice C(m) 
Figure 1 
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<o, i> 

The lattice A 
Figure 2 
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letters with primes. For convenience, we also label 6 elements of C(m) 
with Greek letters: a = a0, a! = a'0, ft = b0, ft = eg, y = g0, y' = go-

C(m) — (y, y'} is m-generated by a, a\ ft ft. 

The second building block of D(m) is the lattice A of Figure 2, first 
described in [10]. Let / be the set of dyadic rationals r that satisfy 0 = r 
^ 1. Every r e / , r ¥= 0, has a unique representation, the normal form, 
r = a - 2~r\ where a is an odd integer; n is the order or r: in notation, 
/7 = ord(r). By convention, ord(0) = 0. 

We define A as a subposet of / with the product order: 

A = { (r, 5> | r < s and 5 — r = 2f\ n ^ max (ord(r), ord(s) }. 

For / <E / , let us call the set of a e A of the form (t, s) the x = t line in 
A, and define the y = t line similarly, (r, r + 2 o rd ( r )) is the largest 
element on the x = r line, and (s — 2or , s) is the smallest element on 
the v = s line. 

Each a e A has a right upper cover a*: 

<r, s)* = ( ( r + s)/2, s). 

Similarly, the left upper cover *(/\ 5) exists and equals (r, 5 + 2 " o r ( s )) 
when ord(r) < ord(s). 

Let a and b be incomparable elements of A, with (3 to the left of b. The 
join of a and 6 is the least element on the j-line through a that is greater 
than b. 

Finally, we define 

B = {(r,s) I (s,r) e ^ } , 

a subposet of / . Clearly, 5 is a lattice and its diagram is obtained by 
reflecting Figure 2 about a vertical line. 

Let / be the real interval [0, 1], and recall that J denotes the subset of / 
consisting of dyadic rationals. For each t e / , we take a copy Ct of C(m), 
with bounds yt and yj, and generators a,, a'p fit, ftt. For each t e / which is 
not a dyadic rational, C, = {yr, y J} is the two-element chain with yt < y J. 
We define C as the linear sum of the Cp t e /. Since / is complete and 
each Ct is complete, C is a complete lattice. 

We define D(m) = A U B U C, partially ordered as follows (see 
Figures 3 and 4): Let 

<r, s) e A, </, M> e £, v e /, /? e Cv; 

(r, 5) < (f, w) if and only if s < u\ 

(r, s) > (/, M) if and only if r > t\ 

<7, s) < p if and onlv if s < v holds, or s = v and av = /? hold; 
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<o, i> 

<0, l/2> 

< i . o > 

i dyadic 

The m-lattice D(m) 

Figure 3 

(r, s) > p if and only if r > v holds, or r = v and a(, = /? hold; 

(f, u) < p if and only if t < v holds, or / = v and fîv = p hold; 

(/, u) > p if and only if w > v holds, or w = v and fi'v = p hold. 

It is easily seen that D(m) is a poset. 
It is not difficult to show that D(m) is a lattice, and that each of A, B, 

and C is a sublattice of Z>(m). For <V, s) G ^4, <7, u) e 5, v e /, and 
p e Cr. we give the formulas for joining pairs: 
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<*>r) B 

r < f < s 
A\ s dyadic 
f real nondyadic 

Details of D(m) 
Figure 4 

(a) (r, s) V p is 
(i) CLSV p ^ C, where the join is formed in C, if 5 = v; 

; o£ in Cv; 
v, if r = v < s and /? ^ a'. 
v, if r ^ v < 51 and p = a„ 

in Cv; 
in Cv; 

(ii) (/•, 5), if r > v, or r = v and/? 
(iii) the least (w\ s) such that w > 
(iv) the least (w, 5) such that w 
(b) (r, s> V (t, u) is 
(i) (/, w), if s < w; 
(ii) (r, J>, if f < r; 
(iii) the least (w, s) on the y = s line in 4̂ such that w > /, if s > f ; 
(iv) the least (/, w) on the x = t line in B such that w > s, if s > /; 
(v) as V jŜ , if s = t, where the join is formed in Cs. 
To show that D(m) is a complete lattice, it suffices to find V I for a 

nonempty subset X of A. (The formula is similar for B and we already 
know that C is complete.) Let Xx and X2 

projections of X, and form M = V I , and v 
be the first and the second 
= V X, in /. 
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If u < v, then v e / , and V X is the least element of A on the y = v line 
whose first coordinate is ^ u. 

If u =v, then 

v x = i7u if w = v and u * ^2' 
\ aM if w = v and w G X2. 

£(m) - {Yo, y\} is m-generated by a0, /?0, (0, 1), (1 , 0), a',, ^ . 

5. Z>(m) as an m-structure. Let P = D(m) — {y0, y^} be the partially 
ordered set underlying D(m) — {y0, yî}. 

For a dyadic rational /', 0 ^ / ^ 1, let C/n be the 16 element sublat-
tice C(S0) of C(m). Let 

P() = A U B U C fm , 

where Cfin is the union of all C/n where /' is a dyadic rational, 0 ^ / ^ 1. 
We know that P() is a sublattice of Z)(m). By [10], P0 is the free lattice 
generated by 

H = {a0,j80,a'„j8î, <1,0>, <0, 1>}. 

By Lemma 7, FLm(H) is isomorphic to the free m-lattice generated by 
(P(), Fin, Fin), where Fin is the family of finite nonempty subsets of P0. 

Let P] be an extension of P0 in the style of Lemma 3: We add to P{) all 
ah /},-, a-, /?•, / e. / ; we define a, as the m-join of the y = /' line in A; a-, (3h 

/?• are defined analogously. To apply Lemma 3 we have to find an m-lattice 
where all these elements are distinct; of course, D(m) does the trick. 

Now we apply Lemma 4 to P} and C. By Lemma 4, P = P, U C as an 
m-structure (P, Wl, $J) generates the same free m-lattice as H. (P, s)Jl, Cs) is 
defined as follows: 

1. All finite nonempty subsets of P0 are in Tl and $$. 
2. The y = / line in A is in $$ (and analogously for Wl). 
3. All subsets X of C are in S and 2)? provided that 0 < |X| < m. 

Now the crucial statement is: 

LEMMA 12. The smallest partial m-lattice containing (P, Tt, S) /5 the 
m-lattice: D(m) — {y0, y\}. 

It is clear, by Lemma 8, that Lemma 12 implies the theorem since the 
free m-lattice generated by an m-lattice is an m-lattice. 

Proof of Lemma 12. By duality and Lemma 5, it is sufficient to prove the 
following statement: 

For every subset X of P with 0 < \X\ < m and a = sup X, we have 
{X\j = (a\. 
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A, B,A U i?, and C are sublattices of P since all finite sets are in SJJ{ and 
§. Thus, it is sufficient to verify the above statement in the following 
cases: 

1. X = [xh x2), and x}, x2 are incomparable: 
(a) X] G ^4, x2 G C; 
(b) A'! G 5, 4 G C. 
2. X is an infinite chain: 
(a) X Q A: 
(b) I Ç 5 ; 
(c) X Q C 

By the symmetry of D(m), it is enough to consider (la), (2a), and (2c). Of 
these, (2c) is trivial, since all such X are in Wl and ^s. 

Case (la). Let x} = (r, s) and x2 = p be given as in Section 4 in the 
description of the join in Z)(m). We proceed by subcases (i)-(iv) 
corresponding to part (a) of the join definition. 

(i) In this case, s = v. Let 

(r,s) = (r^s) < (r2,5> < . . . 

be the y = s line in A. We prove by induction that 

(r,s) G ({<r, *>,/>} ]y = / . 

This holds for / = 1 by definition. For / = 2, observe that r} < r2 < s, 
hence ar < p, and all (x, r2) < ar ; thus all (x, r2) G /. Choose x so that 
rx < x < r2 and (JC, r2) G ^4. Then 

( r b s) V (x, r2) = <V2, s) and 

{ <rl9 j>, <x, r2> } G S, 

hence, (r2, 5) G /. The induction step is similar. By the definition of ^ 
(clause 2), and since { (rz, s) \ i = 1, 2, . . . } is cofinite with the y = s 
line, 

V( </•,,*> | / = 1 ,2 , . . . ) = a„ 

hence 

/ = K V / ? j s , 

as required. 
(ii) does not define incomparable pairs of elements. 
(iii) and (iv) are similar to (i) except we prove <7Z, s) G / only up to the 

first / such that rt > v, while in (iv) up to the first / with rt = v. 
Case (2a). Since A is a countable sublattice, we can assume that X is an 

cc chain: 

<rn. sn> < (ru sy) < . . . < (r„, s„) < . . . 
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If there is an n, such that s = sn = sf1 ± j = . . . , then obviously, 

(*] = («J3. 
If there is no such n, then set s = V ^. For every u < s, u dyadic, there is 
an / such that u < rz, hence yu <E (X]. By the definition of ^ (clause 3), 

V (yu \u<s) G (XI 

hence ys e (X]. This proves that (X] = (y j . 
This completes the proof of Lemma 12. 
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