A TECHNIQUE TO GENERATE \mathfrak{m}-ARY FREE LATTICES FROM FINITARY ONES

GEORGE GRÄTZER AND DAVID KELLY

Introduction. Let m be an infinite regular cardinal. A poset L is called an m-lattice if and only if for all $X \subseteq L$ satisfying $0<|X|<m, \wedge X$ and $\vee X$ exist.

This paper is a part of a sequence of papers, [5], [6], [7], [8], developing the theory of m-lattices. For a survey of some of these results, see [9].

The \mathfrak{m}-lattice $D(\mathfrak{m})$ is described in $[6] ; \gamma$ denotes the zero and γ^{\prime} the unit of $D(\mathrm{~m})$. In particular, formulas for m-joins and meets are given. (We repeat the essentials of this description in Section 4.)

In [6] we proved the theorem stated below. Our proof was based on characterization of $F_{\mathrm{m}}(P)$ (the free m-lattice on P) due to [1]; as a result, our proof was very computational.

In this paper, we shall present a non-computational proof. This proof relies on the description of $D(\mathrm{~m})$ borrowed from [6], and on the finitary case: the description of the free lattice on H from [10]. (The proof in [6] does not rely on the finitary case.)

Theorem. The \mathfrak{m}-lattice $D(\mathfrak{m})-\left\{\gamma, \gamma^{\prime}\right\}$ is the free m-lattice on H.
The universal algebraic background of the present proof is given in Section 1. Next, in Section 2, we generalize the concept of partial lattices to m-lattices. Some immediate applications of these results are presented in Section 3; these are applied in Section 5. $D(\mathfrak{m})$ is described in Section 4. The proof of the theorem is given in Section 5.

1. Some universal algebraic lemmas. We recall some concepts from [3]. Let \mathbf{K} be a variety (equational class) of algebras of some finitary or infinitary type. For $\mathfrak{U}=\langle A ; F\rangle \in \mathbf{K}$ and $H \subseteq A$, we define a relative algebra $\mathfrak{\mathscr { E }}=\langle H ; F\rangle$ of \mathfrak{U} as follows: if $f \in F, a_{0}, a_{1}, \ldots \in H$ and $f\left(a_{0}\right.$, $\left.a_{1}, \ldots\right)=a \in H$ in \mathfrak{H}, then (and only then) $f\left(a_{0}, a_{1}, \ldots\right)$ is defined on H and equals a. A partial \mathbf{K}-algebra is defined as a relative algebra of some $\mathfrak{U} \in \mathbf{K}$. Let $\mathbf{K}(\tau)$ be the class of all algebras of type τ. Then a partial algebra of type τ is a partial $\mathbf{K}(\tau)$-algebra, and vice versa.

If $\mathfrak{B}=\langle B ; F)$ is a partial algebra with the same type as that of \mathbf{K}, then $F(\mathfrak{B})$ denotes the free \mathbf{K}-algebra generated by \mathfrak{B}. The canonical map of \mathfrak{B}

[^0]into $F(\mathfrak{B})$ is not necessarily one-to-one; if it is one-to-one, then it is an embedding of \mathfrak{B} into $F(\mathfrak{B})$. It is an isomorphism if and only if \mathfrak{B} is a partial \mathbf{K}-algebra; in this case, \mathfrak{B} is isomorphic to the relative algebra of $F(\mathfrak{B})$ on the image of B. The following lemma is obvious.

Lemma 1. Let \mathfrak{B} be a relative \mathbf{K}-algebra, $B \subseteq F(\mathfrak{B})$, and $B \subseteq C \subseteq F(\mathfrak{B})$. Let \mathfrak{C} be the relative algebra of $F(\mathfrak{B})$ on C. If \mathfrak{C} is generated by B, then $F(\mathfrak{B}) \cong F(\mathfrak{C})$ in the natural way.

Let $\mathfrak{B}=\langle B ; F\rangle$ be a partial algebra, $f \in F, a_{0}, \ldots \in B$ such that $f\left(a_{0}, \ldots\right)$ is not defined in \mathfrak{B}. We define a one-point extension \mathfrak{B}^{p} of \mathfrak{B} as follows: $B^{p}=B \cup\{p\}$; all partial operations are the same on \mathfrak{B} and \mathfrak{B}^{p} except that we add $\left\langle a_{0}, \ldots\right\rangle$ to the domain of f, and $f\left(a_{0}, \ldots\right)=p$.

The next lemma is again trivial.
Lemma 2. Let \mathfrak{B} be a partial \mathbf{K}-algebra and let \mathfrak{B}^{p} be a one-point extension of \mathfrak{B}. Then $F(\mathfrak{B}) \cong F\left(\mathfrak{B}^{p}\right)$ in the natural way.

Note that, as a rule, \mathfrak{B}^{p} is not a partial K-algebra.
Generalizing this construction, we can define \mathfrak{B}^{P} for a set of points P and for each $p \in P, f_{p}$, and $a_{0}^{p}, \ldots \in B$.

An immediate consequence of Lemma 2 is the following:
Lemma 3. Assume that there is an $\mathfrak{A} \in K$ and a homomorphism φ of \mathfrak{B}^{P} into \mathfrak{U} such that for all $a \in B, p_{1}, p_{2} \in P, p_{1} \neq p_{2}$, we have

$$
a_{\varphi} \neq p_{i} \varphi, i=1,2 \quad \text { and } \quad p_{1} \varphi \neq p_{2} \varphi .
$$

Then $F(\mathfrak{B}) \cong F\left(\mathfrak{B}^{P}\right)$ in the natural way.
Now let \mathscr{A}_{0} and \mathfrak{A}_{1} be partial K-algebras, $A_{0} \cap A_{1}=A_{2}$ such that \mathscr{A}_{2} as a relative algebra of \mathfrak{A}_{0} is the same as \mathfrak{A}_{2} as a relative algebra of \mathfrak{A}_{1}. We shall say that \mathfrak{A}_{0} and \mathfrak{A}_{1} can be strongly amalgamated over \mathfrak{H}_{2}, if there is an algebra $\mathfrak{A}_{3} \in \mathbf{K}$ of which both \mathfrak{A}_{0} and \mathfrak{A}_{1} are relative algebras and $A_{0} \cap A_{1}=A_{2}$ in \mathfrak{U}_{3}.

Lemma 4. Let \mathfrak{H} be a partial \mathbf{K}-algebra, let $A^{\prime} \subseteq A$, and let \mathfrak{U}^{\prime} be the corresponding relative algebra of \mathfrak{A}. If \mathfrak{A} and $F\left(\mathfrak{A}^{\prime}\right)$ can be strongly amalgamated over \mathfrak{U}^{\prime}, then the subalgebra $\left[A^{\prime}\right]$ of $F(\mathfrak{H})$ generated by A^{\prime} is naturally isomorphic to $F\left(\mathfrak{U}^{\prime}\right)$.

Proof. Let $\mathfrak{H}^{\prime \prime} \in \mathbf{K}$ strongly amalgamate \mathfrak{A} and $F\left(\mathfrak{H}^{\prime}\right)$. Let φ be the extension of the identity map on A to a homomorphism of $F(\mathfrak{H})$ into $\mathfrak{U}^{\prime \prime}$. Obviously, φ maps $\left[A^{\prime}\right]$ onto $F\left(\mathfrak{H}^{\prime}\right)$. We get an inverse map by the freeness of $F\left(\mathfrak{U}^{\prime}\right)$, and hence the isomorphism.
2. Partial m-lattices. It is clear that we can define a type of algebras such that \mathfrak{m}-lattices can be regarded as algebras of this type.

Let L be an m-lattice, $Q \subseteq L, Q \neq \emptyset$, and we restrict the \vee and \wedge of L to Q as follows: if $X \subseteq Q, 0<|X|<\mathfrak{m}$, and $x=\wedge X($ formed in L) is in Q, then $\wedge X$ is defined in Q and $\wedge X=x$ in Q; otherwise, $\wedge X$ is not defined; $\vee X$ is defined similarly. Then Q with \wedge and \vee is called a partial m -lattice; Q is a relative m -sublattice of L. (For $\mathfrak{m}=\boldsymbol{\aleph}_{0}$, see [4] for a detailed discussion of partial lattices.)

The partial m-lattice Q is an example of an m-structure defined as follows. Given a partially ordered set P, we can make P into an (infinitary) partial algebra of the type of partial m-lattices as follows: we designate two families of subsets of $P: \mathfrak{M}$ and \mathfrak{s}; if $X \in \mathfrak{M}$, then $0<|X|<\mathfrak{m}$ and $\inf X$ exists in P; if $X \in \mathfrak{J}$, then $0<|X|<\mathrm{m}$ and sup X exists in P. We define \vee and \wedge on P as follows:
$\wedge X=x$ if and only if $X \in \mathfrak{M}$ and $x=\inf X$
$\vee X=x$ if and only if $X \in \Im$ and $x=\sup X$.
We denote this partial algebra by $\langle P, \mathfrak{M}, \mathfrak{J}\rangle$ and call it an m-structure. Note that for the same poset P, there are many m-structures on P.

Given an \mathfrak{m}-structure $\langle P, \mathfrak{M}, \mathfrak{s}\rangle$ and $I \subseteq P$, we call I an ideal if and only if $x, y \in P, x \leqq y$, and $y \in I$ imply that $x \in I$; and $X \in \mathfrak{J}, X \subseteq I$ imply that $\sup X \in I$. For $X \subseteq P$, let $(X]_{\mathbb{T}}$ denote the ideal generated by X; if $X=\{x\}$ we write $(x]_{\mathfrak{y}}$ for $(\{x\}]_{\mathfrak{Y}}$.
Observe that every partial m-lattice P is an m-structure, $\langle P, \mathfrak{M}, \mathfrak{s}\rangle$, in the natural way. The corresponding ideal concept is called m-ideal. The m -ideal generated by X will be denoted by $(X]_{\mathrm{m}}$; if $X=\{x\}$, we write $(x]_{\mathfrak{m}}$ for $(\{x\}]_{\mathfrak{m}}$. If $|X|<\mathfrak{m}$, then the \mathfrak{m}-ideal $(X]_{\mathfrak{m}}$ is called m -generated.

Lemma 5. An \mathfrak{m}-structure $\langle P, \mathfrak{M}, \mathfrak{s}\rangle$ is a partial \mathfrak{m}-lattice if and only if the following conditions are satisfied:
(i) For every $u, v \in P$, if $u \leqq v$, then $\{u, v\} \in \mathfrak{M}$ and $\{u, v\} \in \mathfrak{J}$;
(ii) For $X \subseteq P, 0<|X|<\mathfrak{m}$, if $(X]_{\mathfrak{\Im}}=(x]_{\mathfrak{Y}}$, then $X \in \mathfrak{\Im}$; and dually for \mathfrak{M}.

The proof of this lemma is analogous to the proof in the finitary case due to N. Funayama [2], see also Theorem 1.5.20 in [4]. The present formulation seems to be new even in the finitary case.

Lemma 6. For any m-structure $\langle P, \mathfrak{M}, \mathfrak{\Im}\rangle$, there exists a smallest partial \mathfrak{m}-lattice $\langle P ; \wedge, \vee\rangle$ containing $\langle P, \mathfrak{M}, \mathfrak{J}\rangle$ in the obvious sense.

Proof. This is clear from Lemma 5; first, we add to \mathfrak{M} and \mathfrak{J} the singletons and doubletons needed in (i) containing \mathfrak{M}_{0} and \Im_{0}. Then we add to \mathfrak{M}_{0} and $\mathfrak{\Im}_{0}$ all subsets of P required by (ii), obtaining $\mathfrak{M}_{1}, \widetilde{\mho}_{1}$. Now (ii) will have to be applied again to augment $\mathfrak{M}_{1}, \mathfrak{s}_{1}$. After at most $|P|^{m}$ steps we obtain $\overline{\mathfrak{M}}, \stackrel{\bar{\Im}}{ }$ satisfying (i) and (ii), hence $\langle P, \overline{\mathfrak{M}}, \bar{\Im}\rangle$ is the smallest partial m-lattice containing $\langle P, \mathfrak{M}, \mathfrak{\Im}\rangle$.

The next lemma follows from Lemmas 5 and 6.
Lemma 7. The free m-lattice generated by the m-structure $\langle P, \mathfrak{M}$, $\mathfrak{i}\rangle$ is isomorphic to the free m -lattice generated by the smallest partial m-lattice containing $\langle P, \mathfrak{M}, \mathfrak{\Im}\rangle$.

Finally, we observe that when generating the free m-lattice, we can first generate the free lattice. Let \mathfrak{H} be a partial lattice and $F(\mathscr{A})$ the free lattice generated by \mathfrak{H}. We make $F(\mathfrak{H})$ into an m-structure $\langle F(\mathfrak{H}), \mathfrak{M}$, $\mathfrak{s}\rangle$ as follows: \mathfrak{M} and \mathfrak{S} both consist of the nonempty finite subsets of $F(\mathfrak{H})$.

Lemma 8. The free m-lattice generated by \mathfrak{H} and by $\langle F(\mathfrak{H}), \mathfrak{M}, \mathfrak{i}\rangle$ are naturally isomorphic.

In other words, we can form first finitary meets and joins freely, before we have to worry about infinitary meets and joins. The proof is obvious.

For a partial m-lattice \mathfrak{H} or an m-structure $\mathfrak{H}=\langle P, \mathfrak{M}, \mathfrak{\Im}\rangle$, the free m -lattice on \mathfrak{H} will be denoted by $F_{\mathrm{m}}(\mathfrak{H})$. For a poset P, there is a smallest partial m-lattice $\mathfrak{B}=\langle P, \mathfrak{M}, \mathfrak{J}\rangle$; let $F_{\mathfrak{m}}(\mathfrak{B})$ denote the free m-lattice generated by it. Obviously, $F_{\mathrm{m}}(\mathfrak{B})$ is the same as $F_{\mathrm{m}}(P)$.
3. Chains and linear sums. Let Q be a chain. As the simplest application of the results of Sections 1 and 2, we determine the free m-lattice on Q. Observe that the finitary case is trivial.

Let $\widetilde{Q}=Q \cup I \cup D$, where I is the set of nonprincipal m-generated ideals of Q ordered by $\subseteq D$, is the set of nonprincipal m-generated dual ideals of Q ordered by \supseteq. We define the partial order on \widetilde{Q} in the obvious way:

```
    let }a\inQ\mathrm{ and }b\inI,a\leqqb\mathrm{ means that }a\inb\mathrm{ , and }b\leqqa\mathrm{ means that }
\subseteq (a];
    let }a\inQ\mathrm{ and }b\inD\mathrm{ ; we use the dual definition;
    let }a\inI\mathrm{ and }b\inD;a<b\mathrm{ if and only if }x<y\mathrm{ in Q for all }x\inI\mathrm{ and
y \inD;
    b<a if and only if }a\capb\not=\emptyset
    Lemma 9. }\widetilde{Q}\mathrm{ is an m-chain.
    Proof. Let }X\subseteq\widetilde{Q},0<|X|<m.We show that \vee X exists in \widetilde{Q}\mathrm{ . We can
assume that }X\subseteqQ\mathrm{ , or }X\subseteqI\mathrm{ , or }X\subseteqD\mathrm{ . If }X\subseteqQ\mathrm{ , then let }a=(X]\mathrm{ . We
show that }a=\veeX\mathrm{ in }\widetilde{Q}\mathrm{ . Indeed, if b is an upper bound of X in }\widetilde{Q}\mathrm{ , and
b\inQ\cupI, then }a\leqqb\mathrm{ is obvious; if b}\inD,b=[Y),0<|Y|<m, in
Q, then x<y for all }x\inX\mathrm{ and }y\inY\mathrm{ , hence, }a<y\mathrm{ for all }y\inY\mathrm{ ,
implying that }a<b\mathrm{ .
If \(X \subseteq I\), then \(a=U(x \mid x \in I)\) is an m-generated ideal by the regularity of m . If \(a\) is nonprincipal, then \(a \in I\) and \(a\) is obviously the least upper bound of \(X\). If \(a\) is principal, \(a=\left(a_{0}\right], a_{0} \in Q\), and \(a_{0}\) is the least upper bound of \(X\).
```

If $X \subseteq D$, we can assume that X has no largest element and X is well-ordered, $X=\left\{d_{i} \mid i<\mathfrak{n}\right\}$, where $\mathfrak{n}<\mathfrak{m}$ and $d_{i}<d_{j}$ (i.e., $d_{1} \supset d_{j}$) for $i<j$. For each $i<\mathfrak{n}$, choose $a_{i} \in d_{i}-d_{i+1}$. The ideal a of Q generated by the $a_{i}, i<\mathfrak{n}$, is m-generated, hence $a \in \widetilde{Q}$. It is easily seen that a is the least upper bound of X in \widetilde{Q}.

By duality, $\wedge X$ also exists, hence \widetilde{Q} is an m-chain.
Lemma 10. \widetilde{Q} is the free m-lattice on Q.
Proof. Let us define an \mathfrak{m}-structure on \widetilde{Q} : let both $\mathfrak{\Im}$ and \mathfrak{M} consist of all subsets X of \widetilde{Q} with $0<|X|<m$. This makes \widetilde{Q} into an m-structure generated by Q as discussed in Lemma 2. The free m-lattice on Q is the same as the free m-lattice on this partial m-lattice on \widetilde{Q}. However, the computations of Lemma 9 show that the smallest partial m-lattice on this m-structure is the m-chain \widetilde{Q}. So we can apply Lemmas 7 and 8 to conclude that the m-chain \widetilde{Q} is the free m-lattice on Q.

A similar application is to linear sums. Let Q be a chain and let $P_{i}, i \in$ Q, be posets. Let \widetilde{Q} denote the free m-lattice (chain) on Q. We now describe the free m-lattice on the linear sum P of the $P_{i}, i \in Q$.

Lemma 11. For $i \in \widetilde{Q}$, let us define the poset Q_{i} :
$Q_{i}=F_{\mathrm{m}}\left(P_{i}\right)$ for $i \in Q$;
Q_{i} is a singleton for $i \in \widetilde{Q}-Q$.
Then $F_{\mathrm{m}}(P)$ is the linear sum of the $Q_{i}, i \in \widetilde{Q}$.
Proof. Let \widetilde{P} stand for the linear sum of the $Q_{i}, i \in \widetilde{Q}$. Then $P \subseteq \widetilde{P}$. Let P^{+}be the linear sum of the P_{i} for $i \in Q$ and the singleton Q_{i} for $i \in \widetilde{Q}-Q$. We can argue as in Lemmas 9 and 10 (the special case that all $\left|P_{i}\right|=1$), that the free m-lattice on P and P^{+}are the same.

For each $i \in I$, we can use Lemma 4 to show that, in P^{+}, we can replace P_{i} with $F_{\mathrm{m}}\left(P_{i}\right)$. The resulting m -structure \mathfrak{B} has \widetilde{P} as the underlying poset; \Im and \mathfrak{M} consist of all subsets $X \subseteq \widetilde{P}$ satisfying $0<|X|<\mathrm{m}$, and $X \subseteq \widetilde{Q}$ or $X \subseteq F_{\mathrm{m}}\left(P_{i}\right)$ for some i. However, the smallest partial m -lattice containing \mathfrak{R} is the m-lattice \widetilde{P}. We apply again Lemmas 7 and 8 to conclude that $\widetilde{P}=F_{\mathrm{m}}(P)$.
4. The \mathfrak{m}-lattice $D(\mathfrak{m})$. Let m be a regular cardinal, $\mathfrak{m}>\boldsymbol{\aleph}_{0}$. In this section, we sketch the definition of the complete lattice $D(m)$. For a more detailed description, see [6].

First, let $C(\mathfrak{m})$ be the lattice of Figure 1.
For every successor ordinal $j<\mathrm{m}$, there is a lower j-th level of 6 elements $L_{j}=\left\{a_{j}, b_{j}, c_{j}, d_{j} e_{j}, f_{j}\right\}$, and for every limit ordinal $i<m$ (including $i=0$), there is a lower i-th level of 7 elements $L_{i}=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right.$, $\left.e_{i}, f_{i}, g_{i}\right\}$. These elements are ordered as shown in Figure 1. There is also an upper i-th level U_{i} for each $i<\mathrm{m}$, defined dually and denoted by the same

The lattice A
Figure 2
letters with primes. For convenience, we also label 6 elements of $C(m)$ with Greek letters: $\alpha=a_{0}, \alpha^{\prime}=a_{0}^{\prime}, \beta=b_{0}, \beta^{\prime}=b_{0}^{\prime}, \gamma=g_{0}, \gamma^{\prime}=g_{0}^{\prime}$.
$C(\mathrm{mt})-\left\{\gamma, \gamma^{\prime}\right\}$ is m-generated by $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$.
The second building block of $D(\mathrm{~m})$ is the lattice A of Figure 2, first described in [10]. Let J be the set of dyadic rationals r that satisfy $0 \leqq r$ $\leqq 1$. Every $r \in J, r \neq 0$, has a unique representation, the normal form, $r=a \cdot 2^{-n}$, where a is an odd integer; n is the order or r : in notation, $n=\operatorname{ord}(r)$. By convention, $\operatorname{ord}(0)=0$.

We define A as a subposet of J^{2} with the product order:

$$
A=\left\{\langle r, s\rangle \mid r<s \text { and } s-r=2^{n}, n \geqq \max \{\operatorname{ord}(r), \operatorname{ord}(s)\} .\right.
$$

For $t \in J$, let us call the set of $a \in A$ of the form $\langle t, s\rangle$ the $x=t$ line in A, and define the $y=t$ line similarly. $\left\langle r, r+2^{-\operatorname{ord}(r)}\right\rangle$ is the largest element on the $x=r$ line, and $\left\langle s-2^{-\operatorname{ord}(s)}, s\right\rangle$ is the smallest element on the $y=s$ line.

Each $a \in A$ has a right upper cover a^{*} :

$$
\langle r, s\rangle^{*}=\langle(r+s) / 2, s\rangle .
$$

Similarly, the left upper cover ${ }^{*}\langle r, s\rangle$ exists and equals $\left\langle r, s+2^{-\operatorname{ord}(s)}\right\rangle$ when $\operatorname{ord}(r)<\operatorname{ord}(s)$.

Let a and b be incomparable elements of A, with a to the left of b. The join of a and b is the least element on the y-line through a that is greater than b.

Finally, we define

$$
B=\{\langle r, s\rangle \mid\langle s, r\rangle \in A\}
$$

a subposet of J^{2}. Clearly, B is a lattice and its diagram is obtained by reflecting Figure 2 about a vertical line.

Let I be the real interval $[0,1]$, and recall that J denotes the subset of I consisting of dyadic rationals. For each $t \in J$, we take a copy C_{t} of $C(\mathrm{~m})$, with bounds γ_{t} and γ_{t}^{\prime}, and generators $\alpha_{t}, \alpha_{t}^{\prime}, \beta_{t}, \beta_{t}^{\prime}$. For each $t \in I$ which is not a dyadic rational, $C_{t}=\left\{\gamma_{t}, \gamma_{t}^{\prime}\right\}$ is the two-element chain with $\gamma_{t}<\gamma_{t}^{\prime}$. We define C as the linear sum of the $C_{t}, t \in I$. Since I is complete and each C_{t} is complete, C is a complete lattice.

We define $D(\mathfrak{m})=A \cup B \cup C$, partially ordered as follows (see Figures 3 and 4): Let

$$
\begin{aligned}
& \langle r, s\rangle \in A,\langle t, u\rangle \in B, v \in I, p \in C_{v} \\
& \langle r, s\rangle<\langle t, u\rangle \text { if and only if } s<u \\
& \langle r, s\rangle>\langle t, u\rangle \text { if and only if } r>t \\
& \langle r, s\rangle<p \text { if and only if } s<v \text { holds, or } s=v \text { and } \alpha_{v} \leqq p \text { hold; }
\end{aligned}
$$

$\langle r, s\rangle>p$ if and only if $r>v$ holds, or $r=v$ and $\alpha_{v}^{\prime} \geqq p$ hold;
$\langle t, u\rangle<p$ if and only if $t<v$ holds, or $t=v$ and $\beta_{v} \leqq p$ hold;
$\langle t, u\rangle>p$ if and only if $u>v$ holds, or $u=v$ and $\beta_{v}^{\prime} \geqq p$ hold.
It is easily seen that $D(\mathrm{~m})$ is a poset.
It is not difficult to show that $D(\mathfrak{m})$ is a lattice, and that each of A, B, and C is a sublattice of $D(\mathrm{~m})$. For $\langle r, s\rangle \in A,\langle t, u\rangle \in B, v \in I$, and $p \in C_{r}$. we give the formulas for joining pairs:

(a) $\langle r, s\rangle \vee p$ is
(i) $\alpha_{s} \vee p \in C$, where the join is formed in C, if $s \leqq v$;
(ii) $\langle r, s\rangle$, if $r>v$, or $r=v$ and $p \leqq \alpha_{r}^{\prime}$ in C_{v};
(iii) the least $\langle w, s\rangle$ such that $w>v$, if $r \leqq v<s$ and $p \neq \alpha_{v}^{\prime}$ in C_{r};
(iv) the least $\langle w, s\rangle$ such that $w \geqq v$, if $r \leqq v<s$ and $p \leqq \alpha_{v}^{\prime}$ in C_{v};
(b) $\langle r, s\rangle \vee\langle t, u\rangle$ is
(i) $\langle t, u\rangle$, if $s<u$;
(ii) $\langle r, s\rangle$, if $t<r$;
(iii) the least $\langle w, s\rangle$ on the $y=s$ line in A such that $w>t$, if $s>t$;
(iv) the least $\langle t, w\rangle$ on the $x=t$ line in B such that $w>s$, if $s>t$;
(v) $\alpha_{s} \vee \beta_{s}$, if $s=t$, where the join is formed in C_{s}.

To show that $D(\mathfrak{m})$ is a complete lattice, it suffices to find $\vee X$ for a nonempty subset X of A. (The formula is similar for B and we already know that C is complete.) Let X_{1} and X_{2} be the first and the second projections of X, and form $u=\vee X_{1}$ and $v=\vee X_{\text {}}$ in I.

If $u<v$, then $v \in J$, and $\vee X$ is the least element of A on the $y=v$ line whose first coordinate is $\geqq u$.

If $u=v$, then

$$
\begin{aligned}
& \quad \vee X=\left\{\begin{array}{l}
\gamma_{u} \text { if } u=v \text { and } u \notin X_{2} ; \\
\alpha_{u} \text { if } u=v \text { and } u \in X_{2} .
\end{array}\right. \\
& D(\mathrm{~m})-\left\{\gamma_{0}, \gamma_{1}^{\prime}\right\} \text { is m-generated by } \alpha_{0}, \beta_{0},\langle 0,1\rangle,\langle 1,0\rangle, \alpha_{1}^{\prime}, \beta_{1}^{\prime} .
\end{aligned}
$$

5. $D(\mathfrak{m})$ as an \mathfrak{m}-structure. Let $P=D(\mathfrak{m})-\left\{\gamma_{0}, \gamma_{1}^{\prime}\right\}$ be the partially ordered set underlying $D(m)-\left\{\gamma_{0}, \gamma_{1}^{\prime}\right\}$.

For a dyadic rational $i, 0 \leqq i \leqq 1$, let $C_{i}^{\text {fin }}$ be the 16 element sublattice $C\left(\boldsymbol{\aleph}_{0}\right)$ of $C(\mathfrak{m})$. Let

$$
P_{0}=A \cup B \cup C^{\mathrm{fin}},
$$

where $C^{\text {fin }}$ is the union of all $C_{i}^{\text {fin }}$ where i is a dyadic rational, $0 \leqq i \leqq 1$. We know that P_{0} is a sublattice of $D(\mathrm{~m})$. By [10], P_{0} is the free lattice generated by

$$
H=\left\{\alpha_{0}, \beta_{0}, \alpha_{1}^{\prime}, \beta_{1}^{\prime},\langle 1,0\rangle,\langle 0,1\rangle\right\}
$$

By Lemma 7, $F L_{\mathrm{m}}(H)$ is isomorphic to the free m-lattice generated by $\left\langle P_{0}\right.$. Fin, Fin \rangle, where Fin is the family of finite nonempty subsets of P_{0}.

Let P_{1} be an extension of P_{0} in the style of Lemma 3: We add to P_{0} all $\alpha_{i}, \beta_{i}, \alpha_{i}^{\prime}, \beta_{i}^{\prime}, i \in J$; we define α_{i} as the m-join of the $y=i$ line in $A ; \alpha_{i}^{\prime}, \beta_{i}$, β_{i}^{\prime} are defined analogously. To apply Lemma 3 we have to find an m-lattice where all these elements are distinct; of course, $D(\mathrm{~m})$ does the trick.

Now we apply Lemma 4 to P_{1} and C. By Lemma $4, P=P_{1} \cup C$ as an m -structure $\langle P, \mathfrak{M}, \mathfrak{s}\rangle$ generates the same free m -lattice as $H .\langle P, \mathfrak{M}, \mathfrak{s}\rangle$ is defined as follows:

1. All finite nonempty subsets of P_{0} are in \mathfrak{M} and \mathfrak{J}.
2. The $y=i$ line in A is in \mathfrak{y} (and analogously for \mathfrak{M}).
3. All subsets X of C are in \mathfrak{J} and \mathfrak{M} provided that $0<|X|<\mathrm{m}$.

Now the crucial statement is:
Lemma 12. The smallest partial m-lattice containing $\langle P, \mathfrak{M}$, $\mathfrak{s}\rangle$ is the m-lattice: $D(\mathfrak{m})-\left\{\gamma_{0}, \gamma_{1}^{\prime}\right\}$.

It is clear, by Lemma 8, that Lemma 12 implies the theorem since the free m -lattice generated by an m -lattice is an m -lattice.

Proof of Lemma 12. By duality and Lemma 5, it is sufficient to prove the following statement:

For every subset X of P with $0<|X|<\mathfrak{m}$ and $a=\sup X$, we have $(X]_{I}=(a)$.
$A, B, A \cup B$, and C are sublattices of P since all finite sets are in $M P$ and S. Thus, it is sufficient to verify the above statement in the following cases:

1. $X=\left\{x_{1}, x_{2}\right\}$, and x_{1}, x_{2} are incomparable:
(a) $x_{1} \in A, x_{2} \in C$;
(b) $x_{1} \in B, x_{2} \in C$.
2. X is an infinite chain:
(a) $X \subseteq A$;
(b) $X \subseteq B$;
(c) $X \subseteq C$.

By the symmetry of $D(\mathfrak{m})$, it is enough to consider (1a), (2a), and (2c). Of these, (2c) is trivial, since all such X are in \mathfrak{M} and \mathfrak{S}.

Case (la). Let $x_{1}=\langle r, s\rangle$ and $x_{2}=p$ be given as in Section 4 in the description of the join in $D(\mathrm{~m})$. We proceed by subcases (i)-(iv) corresponding to part (a) of the join definition.
(i) In this case, $s \leqq v$. Let

$$
\langle r, s\rangle=\left\langle r_{1}, s\right\rangle<\left\langle r_{2}, s\right\rangle<\ldots
$$

be the $y=s$ line in A. We prove by induction that

$$
\left\langle r_{i}, s\right\rangle \in(\{\langle r, s\rangle, p\}]_{J}=I .
$$

This holds for $i=1$ by definition. For $i=2$, observe that $r_{1}<r_{2}<s$, hence $\alpha_{r_{2}}<p$, and all $\left\langle x, r_{2}\right\rangle<\alpha_{r_{2}}$; thus all $\left\langle x, r_{2}\right\rangle \in I$. Choose x so that $r_{1}<x<r_{2}$ and $\left\langle x, r_{2}\right\rangle \in A$. Then

$$
\begin{aligned}
& \left\langle r_{1}, s\right\rangle \vee\left\langle x, r_{2}\right\rangle=\left\langle r_{2}, s\right\rangle \quad \text { and } \\
& \left\{\left\langle r_{1}, s\right\rangle,\left\langle x, r_{2}\right\rangle\right\} \in \widetilde{J}
\end{aligned}
$$

hence, $\left\langle r_{2}, s\right\rangle \in I$. The induction step is similar. By the definition of \mathfrak{I} (clause 2), and since $\left\{\left\langle r_{i}, s\right\rangle \mid i=1,2, \ldots\right\}$ is cofinite with the $y=s$ line.

$$
\mathrm{V}\left(\left\langle r_{i}, s\right\rangle \mid i=1,2, \ldots\right)=\alpha_{s},
$$

hence

$$
I=\left(\alpha_{s} \vee p \mathfrak{\varsigma}_{\mathfrak{v}}\right.
$$

as required.
(ii) does not define incomparable pairs of elements.
(iii) and (iv) are similar to (i) except we prove $\left\langle r_{i}, s\right\rangle \in I$ only up to the first i such that $r_{i}>v$, while in (iv) up to the first i with $r_{i} \geqq v$.

Case (2a). Since A is a countable sublattice, we can assume that X is an ω chain:

$$
\left\langle r_{n}, s_{n}\right\rangle<\left\langle r_{1}, s_{1}\right\rangle<\ldots<\left\langle r_{n}, s_{n}\right\rangle<\ldots
$$

If there is an n, such that $s=s_{n}=s_{n+1}=\ldots$, then obviously,

$$
(X]=\left(\alpha_{s}\right]_{\mathrm{w}} .
$$

If there is no such n, then set $s=\bigvee s_{i}$. For every $u<s, u$ dyadic, there is an i such that $u<r_{i}$, hence $\gamma_{u} \in(X]$. By the definition of $\stackrel{\Im}{ }$ (clause 3),

$$
\vee\left(\gamma_{u} \mid u<s\right) \in(X]
$$

hence $\gamma_{s} \in(X]$. This proves that $(X]=\left(\gamma_{s}\right)$.
This completes the proof of Lemma 12.

References

1. P. Crawley and R. A. Dean, Free lattices with infinite operations, Trans. Amer. Math. Soc. 92 (1959), 35-47.
2. N. Funayama, Notes on lattice theory IV. On partial (semi-) lattices, Bull. Yamagata Univ. (Nat. Sci.) 2 (1953), 171-184.
3. G. Grätzer, Universal algebra, Second Edition (Springer Verlag, New York, Heidelberg, Berlin, 1979).
4. -General lattice theory, Pure and Applied Mathematics Series, Academic Press, New York, N.Y.; Mathematische Reihe, Band 52, Birkhauser Verlag, Basel; Akademie Verlag, Berlin, 1978. (Russian translation: MIR Publishers, Moscow, 1982.)
5. G. Grätzer and D. Kelly, Free m-products of lattices. I and II, Colloq. Math., to appear.
6. ——The free m-lattice on the poset H, ORDER 1 (1984), 47-65.
7. An embedding theorem for free m-lattices on slender posets.
8. - A description of free m-lattices on slender posets.
9. The construction of some free m-lattices on posets, Orders: Descriptions and Roles (Proceedings of the 1982 conference on ordered sets and their applications), (North-Holland, Amsterdam, 1984), 103-118.
10. I. Rival and R. Willer, Lattices freely generated by partially ordered sets: which can be "drawn'", J. Reine. Angew. Math. 310 (1979), 56-80.

University of Manitoba, Winnipeg, Manitoba

[^0]: Received November 28, 1983. The research of both authors was supported by the NSERC of Canada.

