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Laminar forced convection
at low Peclet number

A.S. Jones

This work is concerned with the forced convection of heat in a

circular tube. The fluid flow is assumed to be laminar

Poiseuille flow, and the physical parameters; viscosity,

density, conductivity; are assumed to be independent of

temperature changes. Viscous dissipation terms are also ignored,

and there are no heat sources in the fluid. The problem is

treated for the case of a step change in the wall temperature,

and the eigenvalues have been obtained as an expansion in powers

of the Peclet number for the smaller values, and in an asymptotic

form for the larger values. The temperature distribution in the

fluid in the neighbourhood of the temperature jump has been

calculated for two values of the Peclet number, as have the

Nusselt numbers.

1. Introduction

This problem has received a great deal of attention in the case where

the Peclet number is large, but not when it is small. Singh [5] calculated

the negative eigenvalues for Pe = 1 , while Abramowitz, Cahi I I and Wade

[/] calculated the eigenvalues when Pe = ^ together with the coefficients

in the expansion of the solution. These coefficients, however, were

calculated on the dubious assumption that there is no preheating of the

fluid. Millsaps and Pohlhausen [3] calculated the eigenvalues and thermal

properties for Pe = 1 , but they too assumed no preheating of the fluid.

In the two-dimensional case, Agrawa I [2] included the effects of
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preheating and calculated eigenvalues, Kusselt numbers and temperature

profiles for Pe = 1 . One criticism is that the method adopted for

matching the temperature distribution upstream and downstream is

unnecessarily complicated when compared with the Laplace transform method

outlined below.

2. Governing equations and their solution

For the case of Poiseuille flow in a circular tube of radius a , the

axi-symmetric conduction convection equation is

where

T is the fluid temperature,

u is the mean fluid velocity,

p* is the fluid density,

a is the specific heat of the fluid, and

K is the thermal conductivity of the fluid.

The variables r, x are the usual radial and axial variables in

cylindrical polar coordinates, and the angular variable disappears because

of the symmetry of the problem.

The boundary conditions imposed on equation 2.1 are

(2.2) T = To ; r = a , a: < 0

T = Ti ; v = a , x > 0

T •* TQ ; x -•-<», r < a

T -*• Ti ; x •+ -KO , r < a .

The equation and boundary conditions are made non-dimensional by putting

p = r/a , £ = x/a , 6 = (T-T0)/(T1-T0) ,

giving

(2.3)

with the boundary conditions

3p2 P
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(2.U) 6 = 0 ; p = l , C < 0

6 = 1 ; p = 1 , £ > 0

8 -*• 0 ; £-*•-<*>, P<1

8 -»• 1 ; £-•+«>, P < 1 ,

where Pe is the non-dimensional Peclet number u P*c a/K .
m v

The formal solution of equation (2.3) is obtained by using the

double-sided Laplace transform.

Writing

8"(p, P) = f e"PC6(C, p)dC ,
J —oo

we obtain

8p2

with boundary conditions

(2.6) ?(p, 1) = 1/p .

Equation (2.5) is a second order linear ordinary differential equation

for 6 with variable p and parameters p, Pe . The equation has a

regular singular point at p = 0 with indices 0 , 0 . Consequently there

is one independent solution as a power series in p , all other solutions

having a logarithmic singularity at p = 0 . Since the temperature will

remain finite at p = 0 , we can determine a unique solution /(P; p, Pe)

of equation (2.5) from the condition /(0; p, Pe) = 1 . The required

solution for 8 , satisfying the boundary conditions is then

/„ -^ a - 1 .f(P;P.Pe)

The function 6 is recovered by using the inverse Laplace transform

rc+i<*> r
6(5, P) = ̂ 7 e^e(p, P)dp ,

where

v Some authors define the Peclet number to be twice this value.
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0 < a < the first positive pole of 9 .

This gives

- / n 5 /(PiB ,Pe)
(2.8) 9(C, P) = 1 + I 2-p— . -rs - , 5 > 0

where 0 < aj < a2 ... are the positive zeros of /(l; p, Pe) and

0 > 3i > &2 • • • a*"6 the negative zeros.

3. Expansion of the solution function /(p; p, Pe)

Assuming that the Peclet nvimber is small, we solve equation (2.5) 'by-

expanding / in powers of Pe .

oo

Putting f (p; p , Pe) = I (Pe)nf (p, p) , we obtain
n=0

(3.D

a n d

Equation (3.1) has the obvious solution /o(P> p) = Jo(Pp) > a n d

substituting

(3.3) /M(p, p)= Z^-WRP)

in equation (3.2) gives (after a tedious but otherwise straightforward

calculation)

nm jn n u
rs3 p s=0

where
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(3.5) 4>t(p) = (p-P
3/3)*/t!

and the Y satisfy the recurrence relation
ms

(3-6) \s = (VilS-i
t ( 2 s + 1 )Vi/l6 + 1 ) 2Vi,s+i)/

(2 r + 3 s )

wi th Y o o = 1 » Y = 0 i f s > m , s < 0 or m < 0 .

I t can be shown t h a t

Y = - 1 -rr
5 2* ^

^

5 rl

and in general

r r 7 2
5 r! l ' ^

= -±- [2 •> i U 6

Y = —:^— kz r + . . . + u i ,

'r+t,r 5 r r , [ t t toj

where a.. = (|) .77 . Hence

(3.7) /(P; p; Pe) =

Rearranging the order of summation and using Lommel's expansion

(3.8)

m=0

we obtain finally

<» m

(3.9) / ( p ; p , Pi) = I 2m ^ ( - l ) s

m=0 s=0

where

(3.10) y2 = p2p2 - 2pPe(p2-pV3) .
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Since has a maximum of ( | ) /n\ and i s 0(y 2) as y •*•
n

it is apparent that this series solution converges rapidly.

4. Zeros of /(I; p, Pe)

When p = 1 , t he expression (3 .9) gives

_i
C+-1) fil; p, Pe) ̂  Jo((p - \ pPe)2 .

Writing a for the n-th positive zero of JQ{X) we obtain immediately

the asymptotic expression

I
( U . 2 ) a , 6 ^ ± a (l+(2Pe/3c )2)z + 2Pe/3 .

Alternately, substituting

in (3.7) and equating powers of Pe , we obtain

a = a
nO n

^ I as n * °° ,

with similar but more complicated expressions for the following terms.

The equivalent expansion for 3 is obviously

( U . 5 ) en = -anQ %1 \ 2

These formulae have been used to calculate the values of a . , a , a

for n = 1, 8 . I t will be seen from these results that for small values

of Pe , these f irs t four terms in the expansion appear to be adequate.

Putting p = 1 , y2 = P2 - \ pPe i n (3-9) and differentiating with

respect to p , we obtain

<UT> If

g a r a a
3 J [ p
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from which the terms up to m = 5 were used to calculate the coefficients

in (2.8) for the first eight positive and negative eigenvalues

corresponding to Pe = j and Pe = 1 .

Differentiating (3.9) with respect to p we obtain

p=l

a> m

P L LM

m=0 s=0

from which TT-
dp

m,s
pPe k(m+s) 2m+s a

L P - (p - | Pe)
2m+s+l

can be calculated in a similar fashion. Since the
P=l

dominant term in the expansion is given by m = 0 , s = 0 , w e see that

for large p ,

If
3p

P=l P=l

The eigenfunctions were calculated by rewriting equation (2.5) in the

form

/(p) = i - [ s log(p/s)(p2-2pPe(l-s2))/(s)ds
'0

(U.9)

and integrating numerically.

fl
The integral I p(l-p2)/(p)dp was calculated simultaneously. This

0

integral is required for evaluating the mean mixed temperature

e. = i* f P(I-P 2)6(C,

from which the Kusselt number

Nu = fJL
is calculated, By being the appropriate wall temperature.

The results of these computations are given in the tables and graphs
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below. The limiting Nusselt numbers as

Pahor and Strnad [4].

00 agree with those given by

In conclusion, it will be noted that the incoming fluid is

significantly pre-heated and hence that the assumption that the temperature

is constant for x < 0 is not valid for low Peclet numbers.

Table 1. Coefficients in the expansion a = a + Pea +
r n nO ril

n

1

2

3

1*

5

6

7
8

anl

.78191*

.68855

•67557

.6711*6

.66966

.66871

.66815

.66779

avz

.12112

.01*697

.03039

.0221*1*

•01777

.011*71

.01251*

.01093

%3

-.001*05

.00172

.00072

.00038

.0002U

.00016

.00011

.00009
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Table 2. Eigenvalues and coefficients for Pe = 1

p

3.29957

6.27551*

9.3601*0

12.U858

15.6186

18.751*6

21.8921*

25.0313

-1.7lt386

-U.8769U

-8.00782

-11.11*21

-lU.2788

-17.1*169

-20.5559

-23.6955

3£
9p

-. 1*1890

.32531

-.26256

.22592

-.20229

.181*1*8

-.17068

.15958

.56511

-.3601*1

.28227

-.21*051*

. 21131*

-.19132

.17608

-.16398

-.581*06

.1*9126

-.1*0689

.351*51

-.31651

.28903

-.26762

.25031*

-1.0ll*7l*

.56895

-.1*1*21*0

.37312

-.33138

.30011

-.27629

.25736

AC
3p

-1.5136

1.9986

-2.1*1*25

2.7886

-3.1539

3.1*559

-3.7337

3.9923

-1.1299

1.7732

-2.2618

2.6758

-3.0163

3.3307

-3.6182

3.881*5

[1
P(1-P2)/(P)<2P

J 0

.16056

. 00091*

.00072

-.00032

.00016

-.00009

.00005

-.00003

.11*1*03

-.011*33

.00289

-.00090

.00036

-.00018

.00010

-.00006
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Table 3. Eigenvalues and coefficients for Pe = .5

p

2.82530

5.87631

8.99920

12.1329

15.2702

18.1*091

21.5W9

2U.6891

-2.01+1*37

-5.18733

-8.3231*5

-ll.l*6ll*

-ll*.6OO5

-17.71*01*

-20.8807

-21*.0213

3£
3p

-.51371*

.33201

-.26675

.2291*2

-.201*35

.18606

- .17195

.16062

.56319

-.31*979

.27661*

-.231*96

.20888

-.189U8

.171*61*

- .16282

'*£
- . 68895

.51256

-.1*1658

•35926

-.3201*7

•29195

-.26989

.25217

-.91227

•55113

-.1*31*30

.37131*

-.32790

.2971*9

-.271*22

.25568

if
3p

-1.3550

1.9368

-2.3951

2.7806

-3.1186

3.1*21*0

-3.701*3

3.961*9

-1.1773

1.8236

-2.301*6

2.6535

-3.01+98

3.36ll»

-3.61*65

3-9110

rl
P(l-P2)f(p)dp

J0

.15392

-.00398

.00115

-.0001*3

.00020

-.00011

.00006

-.00001*

.1U616

- .01151

.00227

-.00072

.00030

-.00015

.00008

-.00005
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Table 4. Mean mixed temperatures and Kusselt numbers

Pe = 1

-10.0

-1.0

-.5

-.1

0

.1

.5

1.0

10.0

QM

.0000

.0138

.0720

.2691*

• 375U

.1*860

.7526

.8995

1.0000

38
9p

-.0000

-.031*6

-.221(1*

-2.3903
OO

+2.9958

+.5905

.2085

.0000

Nu

lt.7135

1+.9995

6.2358

17-71*81*

CO

11.6569

l».779l

1+.0697

3.9221*

-10.0

-1.0

-.5

-.1

0

.1

.5

1.0

10.0

Pi

.0000

.0252

.1037

.3251*

.1*355

.51*80

.8061

.9308

1.0000

\ = .5

36
3P

-.0000

-.0583

-.2939

-2.531*2

CO

2.8386

.1*812

.ll*l*9

.0000

1*. 1*016

it.6291

5.6662

15.5779
OO

12.5595

l*.96l*3

It.l888

l*.OO27

xo

to
Pea.5"

9
" 1 0

Figure 1. Thermal profiles near the origin. The profiles for 5 = 0 are

the means of the limits £ •* 0 + and C ->• 0 - .
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