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ON RINGS OF INVARIANTS OF NON-MODULAR ABELIAN GROUPS
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In memory of Paul Erdos

We study the ring of invariant Laurent polynomials associated to the action of a finite
diagonal group G on the symmetric algebra of a vector space over a field F. Here
the characteristic p of the field F necessarily does not divide the order q = \G\ of the
group, so G is said to be non-modular. For certain representations of such groups,
we can characterise generators of the ring of invariant polynomials in the original
symmetric algebra, extending results of Campbell, Hughes, Pappalardi and Selick.
In particular we obtain a recursive formula for the number of minimal generators for
these rings of invariants.

1. INTRODUCTION

We study the invariant theory of finite Abelian groups G in characteristics not divid-
ing the order q of G. Such a group is said to be non-modular. We are able to characterise
a generating set of monomials for the ring of invariants for certain representations of cer-
tain cyclic groups, which are general versions of the groups studied in [3]. We have been
unable to characterise generating monomials for SG for more general G. The reduced
regular representation is of interest. In particular, in [7], Dixmier, Erdos, and Nicolas,
and in [10], Kac, determine lower bounds for the number of algebra generators needed
for the ring of invariants of the reduced regular representation of Z/nZ. The motivation
in both papers is an application to the study of the classical invariant theory of binary
forms. Our representations of these groups are better behaved so our results are stronger.
In particular the analogue of our Proposition 5.3 is known to be false in general for the
reduced regular representation of a cyclic group. Elashvili and Jibladze have considered
this question in detail in [8, 9].

We suppose V is a vector space of dimension I + 1 over a field F of characteristic p
possibly 0 with p not dividing q. By extending the field, if necessary, we may assume G
acts diagonally on V and hence maps monomials to monomials in the symmetric algebr?
R — Sym(V) of V. It follows that G also acts on the ring K of Laurent polynomials
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and that KG is again a ring of Laurent polynomials. We examine various extensions of
these ideas to the case of relative invariants associated to a character of the group (weight
submodules) and also to a case of particular interest to topologists, the invariants of the
group acting on a polynomial algebra tensored with an exterior algebra. Our techniques
are elementary.

This paper is a sequel to the paper [3] which was in turn a sequel of [4]. This paper
is related also to our paper [2]. In that paper, we study the minimal free resolutions o.
the 3-dimensional representations of the some of the groups studied here in Section 5.
We show that these resolutions display a kind of internal duality by giving an explicit
construction of the resolutions.

We note that many of the methods here apply also to diagonalisable infinite groups
(see [12, 13], for example).

2. DlAGONALISATION.

Let V be a vector space of dimension £ + 1 over the field F with basis {ut,... , «o}
and let G C GL(V) = GLt+i(F) be any non-modular Abelian subgroup of order q.
Then G can be diagonalised. That is, there is a finite field extension F D F and a basis
{ye, • • • , 2/o} for F <g> V — W with respect to which all elements of G, considered as ?
subgroup of GL>e+i(F), are diagonal. In more detail, there exists a primitive q-th root of
unity ( 6 F with the property that for each g € G we have g — diag(£Q',.. . , £a°) with
respect to the basis {ye,...,y0}. We shall write 6{g) = (at,... ,aQ).

T H E SYMMETRIC ALGEBRAS OF V AND W. There are two sorts of algebras associated
with V and W which we wish to consider. The first are the symmetric algebras of V and
W over their respective fields

S = Sym(W) S F[u«,... , u0] = F[ y < 1 . . . ,y0]

and their respective rings of invariants, denoted RG and SG. Note that diagonal groups
map monomials in ye, •. • , t/o to scalar multiples of themselves, so that SG has a basis given
by invariant monomials. We also study T = F[y*,... ,y0] and we define TG = SG D T
although the notation is misleading: the group G does not act on T.

ISOTYPIC MODULES FOR CYCLIC GROUPS. For the moment we suppose G is a cyclic
group with generator g of order q. We write 6 — 0(g). We take a monomial y1 in SG.
Then g(y') = (eiy' where • denotes the usual dot product of vectors in the lattice Zn.
We write 0 1 = m(I)q + w(I) for 0 < w(I) < q. We call m(I) the multiplicity of /
and w(I) the weight of I. For 0 ^ w < q, we define W(w) to be the F-vector space
spanned by the monomials yl having weight w. We have SG — W(0). We observe that
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multiplication in 5 maps W(w) <g> W(w') to W(w + w'), where w + w' is taken mod q. In
particular W(w) is a module over SG. We call the isotypic component W(w) the weight

9-1

w s u b m o d u l e a n d we observe t h a t 5 = 0 W(w).
w=0

We are particularly interested in the invariant monomials, those which are mapped
to themselves by all elements of G. We note that a monomial y1 is invariant if and only
if we have 9-1 = 0 (mod q). We shall call such an exponent sequence / invariant.

Now G has exactly q irreducible representations over F. It is natural to think of S
as a graded representation of G and ask for its decomposition into isotypic components.

?-i
This is exactly the decomposition 5 = © W(w). In the literature, the elements of the
weight submodules are sometimes referred to as semi-invariants or as relative invariants.

ISOTYPIC MODULES FOR ARBITRARY NON-MODULAR ABELIAN GROUPS. We write G =
G\ x • • -xGr for some collection of cyclic groups {Gs} with generators {g3} of orders {q,}.
We shall assume some such decomposition to be fixed throughout the paper. We note in
passing that the torsion decomposition of G results in a minimal number of generators for
G, [1, Theorem 6.4, page 472]. This is a useful observation for those readers interested
in computations.

We define 9S = 9(gs) = (aSii,... ,aSio)- It follows from the equation gq
3' = 1 that

each entry aSii of 6S is divisible by q/qs. We write 9S = qps/qs- We extend the notion.,
of multiplicity and weight to G = G\ x • • • x G> by setting m(I) = (mi(I),..., mr(/))
and w(I) — (wi(I),...,wr(I)) where we have ps • I — ms(I)qs + ws(I) with 0 ^ ws <
qs. We obtain weight submodules W(wi,... ,wT) for 0 ^ w, < qs. Now G is non-
modular and Abelian, and so G is isomorphic to its character group. Therefore, the
weight submodules W(u/i, . . . ,wr) again have the property that 5 = ©W(u>i,... ,wr)
corresponding to the decomposition of 5 into graded isotypic components over F. We
note that SG = W(0 , . . . , 0). Of course, W(u>i,..., wr) is a module over SG just as above.

We let W(wi,..., wT-i, *) denote the submodule of 5 with basis consisting of those
monomials y1 with w3(I) = w, for 0 ^ s ^ r — 1. We observe that W(w\,... ,wr-i,wr)
can be thought of as the submodule of W(wi,..., u>r-i, *) with basis consisting of those
monomials y1 of W(tui , . . . , wT-i, *) with wT(I) = wr. In particular, we have

Some degree of care is required when reading this equation. We are here assuming that
the group G has been diagonalised. In computations, one sometimes diagonalises first
Gi and then proceeds onto G\ x G2.

A BOUND ON THE DEGREES OF GENERATORS FOR SG. The following simple direct
argument (see [11, Lemma 2.1]) shows that the invariant rings of the groups we study
are generated in degrees less than or equal to the order of the group. Suppose we are given
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an invariant monomial yl, I — (ie,..., i0), of degree d bigger than q. We consider the
ordered list of exponent sequences JQ = I, Ji,..., Jd = (0 , . . . , 0) constructed as follows:
Jt+i is formed from Jt by subtracting a 1 from the rightmost non-zero entry in Jt. We
observe that yJt properly divides yJ' if t > s. We consider the weight vector associated
to each such sequence w(Jt) = (wi(Jt),..., wT(Jt)). Since there are only q possible
weight vectors, by the pigeon-hole principle there exists t > s ^ 1 with w(Js) = w(Jt]
Therefore, yJ'~Jt is an invariant monomial properly dividing y1.

A SLIGHT EXTENSION OF THE SYMMETRIC ALGEBRAS. The second sort of algebras we
wish to consider are the algebras described by declaring all elements of V and W to have
degree 2 and taking the free graded commutative algebras on V © s^V and W © s^W
over their respective fields. Here s"1 V denotes a copy of V with all elements taken to be
of degree 1 and basis { iy , . . . , VQ} where Vi = s~lUi. In other words we have the algebras

R<8>D*F[vLt,... ,uo]

5 <8> E * F[u*. . . . , u o ] ® A [ v / , . . . , v o ] = F[y*>... , y0] ® A[x, , . . . , x 0 ] ,

Here A[ze,... , ZQ\ denotes the exterior algebra on the stated generators over the appro-
priate ground field. Also, we assume that {xi,... ,x0} is constructed from {vt,... ,v0}
by mimicking the construction of the y's from the u's. Then G also acts on the e>
terior algebras above; and this action is diagonal when written in terms of the x's.
We write (R ® D)°, (S <8> E)G for the G-invariants. We also consider T ® F =
F[ye,... , yo] ® A[x/,. . . , x0] and even (T ® F)G, although G does not act on T ® F.
We shall call an exponent sequence (/, J) invariant if the corresponding monomial yrxJ

is invariant. These representations of G admit weight decompositions similar to those
discussed above, but we shall not pursue this further here.

We note that some of these rings of invariants can be realised as cohomology algebras.
If F = F p , the prime field, then we consider the group V xi G and its classifying space
denoted here by X. By a standard theorem, see [5, pp.257-258], when p is odd, we
have H*(X; Fp) = (R ® D) G . It is also possible to construct a classifying space Y with

3. INVARIANT LAURENT POLYNOMIALS.

We work with the rings of Laurent polynomials associated to 5 and T. That is, we
localise 5, respectively T, at the multiplicative subset generated by the product yt- • -yo,
to obtain algebras denoted K, respectively L. We observe that K = F[yf*•,... jV^1]
and L — F[yfx,... . y j 1 ] . so, for example the algebra K <B> D has basis given by the
monomials yrxJ but now I is allowed to have negative entries. Furthermore, the group G
still acts on K®D and we may ask for (K®D)G and KG. As above, G maps monomials
to scalar multiples of themselves so these rings of invariant Laurent polynomials again
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have a basis consisting of invariant monomials. Consequently we may once again refer to
(L® D)G and LG even though the group G does not act on either L ® D or L.

We often find it convenient to recast our results in the language of lattices. We let
£ = Zt+l denote the lattice of integer sequences of length £ + 1 under component-wise
addition. Given a generator gs of Gs, we recall tha t / G £ has weight ws = ws(I) and
multiplicity ms = ms(I) if ps-I = msqs+ws for 0 ^ ws < qs. We let £(u>i , . . . ,wr) denott
the collection of integer sequences with weights ws with respect to a fixed generating set
{gs} for G. We shall refer to the sequences which have weight zero for all generators gs

as the invariant sequences and we shall denote the set of all such by £ G . It is clear that
£ G is a sublattice of £ .

We let M denote the set of monomials y1 in K. It is clear that M is a free Abelian
group with respect to multiplication. We extend the notions of weight and multiplicity
to this context in the obvious way.

PROPOSITION 3 . 1 . There is a weight preserving isomorphism of lattices log :
M —> £ . That is, I + J = log(y'yJ) = \og(y') + log(yJ). Furthermore, the following
diagram commutes

M(w) x M(w') —=-»• M(w

I log I log

£(w) x C(w') —^C(w + w').

INVARIANT LAURENT POLYNOMIALS OF CYCLIC GROUPS. For the moment we concen-
trate our attention on the case of a cyclic group G with generator g of order q, and we
write 6 for 6(g) = (at,..., ao).

PROPOSITION 3 . 2 . Wemay suppose that gcd(at,...,ao)— 1.

PROOF: Let a = gcd(at,..., a0). Then 6 = 6(g) — a(bt, ...,b0) with gcd(6*,..., b0)
- 1. Let d - gcd(a,g). Then gq/d acts trivially on W. But G C GL(W), so gq>d = 1.
Therefore d = 1 since the order of G is q. Choose 0 with a/3 = 1 mod q. Then 9(g^) =
(bt,..., b0). If a > 1, we may replace the generator g of G by the generator g&. D

By the proposition we may construct a sequence $ = (<j>t,..., <f>0) with the propertv
that 6 • $ = 1.

THEOREM 3 . 3 . The ring of G-invariant Laurent polynomials is again a ring of
Laurent polynomials. That is, there exist £ + 1 algebraically independent monomials
tt,...,t0 with the property that KG = F[tf \ . . . , t j 1 ] and LG = F[tf \ . . . , t^ 1 ] .

PROOF: £ is a free Abelian group of rank £ + 1 and so we conclude that £ G is also
a free Abelian group. Since {(q,0,...,0),..., (0, . . . ,0,q)} is a linearly independent set
of invariant sequences we conclude that £ G has rank £ + 1. That is, there must exist
£ + 1 invariant sequences / / , . . . , JQ such that an arbitrary invariant sequence / admits a
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unique expression I = ^asls for some set of as £ Z. We obtain the conclusions of the
theorem by setting ts = y1'.

Alternately, we may take Is = as(q + 1)<J> - As for £ > s ^ 0, where A, is the
exponent sequence of length £ + 1 which has zeros everywhere except for a 1 in the s-th
position from the right counting from 0. We observe that 9 • Is — asq so / s is invarian.
and has multiplicity as. Furthermore, if / = (ie,..., i0) is any invariant, then I = Y1 ash
for as = m(I)<f>s — is, as is easily checked. D

The best possible situation in invariant theory is that the ring of invariants of a
polynomial algebra is again a polynomial algebra. We view this theorem as an analogue
for rings of invariant Laurent polynomials, necessarily in the case of diagonal groups.

We denote by £G(0) C CF the subset of weight zero sequences which have multi-
plicity zero as well. We observe that £G(0) is a sublattice of CG of codimension 1.

THEOREM 3 . 4 . Let {It,...,Ii} be a basis for the multiplicity zero sublattice
£G(0) and let IQ be a sequence of weight zero and multiplicity 1. Then the set {It,..., IQ}
is a basis for the invariant sublattice CF. Consequently we obtain a generating set for
K° by defining ts = yu.

PROOF: Let / be any sequence in CG, that is, any sequence with 8 • I = mq. The.

/ - mlo is in £G(0) and hence / - mlo — £ as / s . D

REMARK 3.5. Given an invariant sequence I = ^2asls we observe from the proof just
given that m(I) = a^.

In certain cases we give explicit bases for the invariant sublattice as in the theorem

just given.

We may take /0 = g$ where $ is defined following Proposition 3.2. In the event

that \G\= q = Yl a« ' w e m a v t a ^e h = (1, • • •, 1)-
When ao = 1 the exponent sequences /,- = (0, . . . , 0,1,0, . . . , 0, — a;) for £ ^ j ' ^ 1

form a basis for the multiplicity zero sublattice and we may take IQ = (0 , . . . , 0, q).

LAURENT WEIGHT SUBMODULES FOR CYCLIC GROUPS. We denote by K(w) the set
of Laurent polynomials with basis the monomials of K of weight w for 0 $J w < q. I
follows immediately from Proposition 3.1 that K(w) is a module over the Laurent ring
KG = K(0).

PROPOSITION 3 . 6 . If I is any sequence of weight w and multiplicity 0, then

K(w) = KG • y'.

P R O O F : If yJ e K(w) then yJ~r G KG. D

Again, the best possible situation in invariant theory is that a weight module be
free over the ring of invariants. This corollary may be viewed as an analogue for weight
modules consisting of Laurent polynomials.
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INVARIANT LAURENT POLYNOMIALS FOR ARBITRARY NON-MODULAR GROUPS. We

observe that Theorem 3.3 applies to any group acting diagonally on any ring of Laurent
polynomials. In particular, if H is a group which acts on KG = F f t ^ 1 , . . . , t j 1 ] in such
a way as to map the generators ts to scalar multiples of themselves then (KG)H is again
a ring of Laurent polynomials. In our situation, we have G = Gi x • • • x GT as above.
It is easy to see that K° = (KGl)H, where H — G2 x • • • x Gr. It is also easy to see
that H acts diagonally on KGl since our generating set consists of monomials in the y's.
This observation reduces the problem of constructing generators for KG to the case G is
cyclic. We observe that the analogue of Proposition 3.6 also holds.

4. ALGEBRA GENERATORS FOR OUR RINGS O F INVARIANTS

In this section we reduce the detection of minimal sets of generators for our various
rings of invariants to the detection of a minimal set of generators for SG.

Suppose we are given a graded algebra A over one of the fields in question. We define
D(A) to be the ideal of A generated by all non-trivial products, that is, D(A) = A\ where
A+ denotes the elements of positive degree in A. We define the space of indecomposables
associated to A to be the quotient A+/D(A). We note that a minimal generating se*
for the algebra A is any subset of A+ whose images in A+/D(A) form a basis. We let
Q(A) denote such a minimal algebra generating set. Qi(A) will denote the subset of this
minimal algebra generating set consisting of those elements of degree i.

We say a non-negative invariant exponent sequence I is decomposable if there exist
non-negative non-zero invariant exponent sequences J and K such that / = J + K,
otherwise we say / is an indecomposable invariant sequence. In the cases of interest to
us, we note that Q(SG) and Q(TG) consist of indecomposable invariant monomials y1.
These notions admit the obvious extensions to y'xJ.

LEMMA 4 . 1 .

\CURC)\ = \Qi(S%
\Qi((R®D)G)\ = \Qi{(S®E)G)\,

Q(SG)=Q(TG),

Q((S®E)G)=Q{(T®F)G),

where \X\ denotes the cardinality of the set X.

PROOF: The first two statements follow from SG = RG ®F F and (S <g> E)G =
(R ® D)G <8»F F. The third and fourth statements are trivial. D

In light of this result we focus our attention on (5 <8> E)G and SG. When y'x] is
an invariant monomial we shall refer to the sequence (/, J) as invariant. We note that J
must consists of O's and l's.
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We define Z{ — y^lX{ with degree —1; note that z{ is invariant. We define the support
of y', denoted supp(/), to be {£ | it > 0}. Let S(I) denote a basis for the exterior algebra
over F on generators zt for £ € supp(/).

THEOREM 4 . 2 . (5 ® E)° is minimally generated as an algebra by the si
{y'-JxJ = y'zJ | y1 € Q(SG) and zJ € 6(1)}. Note that there are 2lsupp(;>l such genera-
tors of (S <3> E)G for each generator y1 ofS°.

P R O O F : We show for any / and J (where J consists of 0's and l's) that yl~JxJ is a
generator of (5® E)G if and only if y' is a generator of S°. Suppose yl~JxJ decomposes,
that is y'~JxJ — (yIl~JlxJl)(y'2~j2xj2) where (It - Jt,Jt) is a non-negative non-zero
invariant. We obtain y1 = y!lyl2 by dividing this equation by zJ = zJlzj2. Conversely,
if y' = yhy'2, choose J\ and J2 with supp(Jt) C supp(/t) and J\ + J2 = J- Then
multiplication by zJ = zJlzJi yields y'zJ = (yhzJl)(yhzj2). D

5. CERTAIN REPRESENTATIONS OF CERTAIN CYCLIC GROUPS

Our purpose in the present section is to characterise the generators of SG in terms
of a generating set of invariant Laurent monomials in some special cases.

Here we suppose that the generator g of the cyclic group G has 0 = (ae,.... ao) with
os = ns for s = 0 , . . . , £ for some fixed positive integer n. We further suppose that q, the
order of G, equals J2 n"- ^n particular fi0 = (1> • • •. 1) is invariant. In this situation we
find a generating set for the ring KG of invariant Laurent polynomials that is somewhat
more convenient than the ones constructed in Section 3.

We recall that an invariant sequence / has multiplicity m(I) exactly when 6 1 =
m(I)q. Of course, any non-negative sequence / of multiplicity 1 corresponds to an inde-
composable of SG'• We observe that 9 • Qo — 9 so that f20 has multiplicity 1. Next
we observe that the sequences fi< = ( - l , n , 0, . . . ,0), . . . , Cl2 = (0 , . . . , 0 , - l , n , 0),
f2i — ( 0 , . . . ,0, - l , n ) are all invariant and have multiplicity 0. Indeed {Cls \ i ^ s ^ 1}
is a basis for the multiplicity zero sublattice and {Cls \ I ^ s > 0} is a basis for the
invariant sublattice. We define ts = yn' for t ^ s ^ 0. It follows that {tfl,..., i*1} is a
generating set for the ring KG of invariant Laurent polynomials

We shall denote by fi the sequence (n, 0 , . . . , 0, - 1 ) . A routine computation shows
Q = {n- l)Sl0- (Qt + • •• + Sli).

For an arbitrary sequence / = (it,..., i0) of £ + 1 integers we define a(I) —

(it-u...,io,ie). We note O = a(Slt), Cls = ^ ( ^ - i ) for £ ^ s > 2, fii = a(Ci) and

fto = a(fio).

LEMMA 5 . 1 . I is an invariant sequence if and only if o(I) is an invariant se-
quence. I is an invariant non-negative indecomposable sequence if and only ifcr(I) is an
invariant non-negative indecomposable sequence.
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PROOF: We have 9 • I = ^2,nsis — mq. We calculate

6 • a(I) = n ' i /_! -I h ni0 + it = n(nl~lit-i -\ \- iQ) + it

= n(mq — nlii) + ie = nmq — (nl+1 - \)it

= (nm — (n — 1)11)4.

D
We say that invariant sequences / and J are friends if there is an s with as(I) = J.

LEMMA 5 . 2 . If I is a non-negative invariant indecomposable sequence and J =
I — Os is non-negative for some s, £ ^ s ^ 1 then J is an invariant indecomposable
sequence.

PROOF: Suppose not, then J = K+L for K and L non-negative invariant sequences.
So / - f i s = K + L. Now is + l = ks + ls ^ 1 so we have ks ^ 1, say. But then M = if-l-fis
is a non-negative invariant sequence and I — M + L, contradicting the indecomposability
of/. D

PROPOSITION 5 . 3 . If I is an invariant indecomposable non-negative sequence
then I has a friend of multiplicity 1.

PROOF: We shall assume that / is a non-negative invariant indecomposable of lowest
degree such that all friends of / have multiplicity larger than 1.

We observe that / must have at least one entry equal 0 or else I = (I — fl0) + ^o-
By choosing a friend of / , if necessary, we may assume that i( = 0.

We write / = J2 bs^s and we note that then

I = (bo — be,bQ + nbi — b(-i,...,b0 + nb2 — b\,b$ + nb\).

By Remark 3.5, we have m(I) = bo which is bigger than 1. Furthermore, bo = bi since
z/ = 0.

Our immediate goal is to show that / has an entry larger than n+1. Suppose bi > 0.
Then b0 + nbx > n + 1. If 61 ^ 0 and 62 > 0 then b0 + nb2 - h > n + 1. Similarly,
if 61, . . . 65_i ^ 0 and bs > 0 we have b0 + nbs — bs-i > n + 1. If 6 1 , . . . , 6<_i ^ 0 ther
60 + nbe - bt-i > n + 1 since be = b0 > 1.

Let us suppose that i, > n + 1 . Note that since it — 0 we have s / i. Put
J = I - Cls+i. By Lemma 5.2 we have that J is a non-negative invariant indecomposable
sequence with the degree of J strictly less than the degree of / . Hence J has a friend
of multiplicity 1, call it J'. Since the multiplicity of fiJ+i is 0, / and J have the same
multiplicity. Indeed, since m(fii) = 0 for 1 ^ i < I, ot(I) and <r'(J) have the same
multiplicities for t ^ £ — s. However, Q = a'"5(fiJ+i) has multiplicity n — 1. It follows
that J' = al-'{J) = <Jl~'(I) - fi- Let / ' = ae-'(I). Now m(J') = m(I') - (n - 1), so
m(I') = n. However, the £-th entry of / ' is ia which is at least n + 2. So m(I')q — 6 1'
> (n + 2)ne > n(ne + nl~x -\ hi) = nq contradicting our conclusion that m(I') — n. D

https://doi.org/10.1017/S0004972700036674 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036674


518 H.E.A. Campbell, J.C. Harris and D.L. Wehlau [10]

The generators of multiplicity one are the sequences / = {U,-..,io) which satisfy
the following conditions:

0 < i 1,
t-3

6=0
l-\

0

t
1-3

6=5

t-1

^ n +

t-s

1

. . . ,

0 ^ H ^
6=0 6=1 a = l

Here is a recursive way to compute the number of generators of multiplicity one. We

define J(n,t) = < / = (... , 0 , . . . ,0,i/t , . . . ,io) £ isn
s — t, is ^ 0 \. We observe that

*• » = o '

if ifc ^ 0 then A; ̂  logn(i) so that J(n,t) is finite. We define j(n,t) = \J(n,t)\. Since

q = 53 " a , J{n,q) is the set of generators of multiplicity one. It is easy to see that
s=0

j(n,nt + r) = j{n,nt)

for 0 ^ r ^ n — 1 since the set function sending (0 , . . . , 0 , i k , . . . ,i0) in J(n,nt) to
( 0 , . . . , 0, i t , . . . , io + r) in J(n, nt + r) is a bijection. We observe that J{n, t) embeds in
J(n, nt) via the set function taking (0 , . . . , 0, ik, • • •, io) to (0 , . . . , 0, ik,..., i0,0). Also,
J(n,n(t — 1)) embeds in J(n,nt) via the set function taking (0,...,0,ik,...,i0) to
( 0 , . . . , 0, ik, • • •, io + n). It follows that

j(n,nt) =j(n,n(t- 1)) + j(n,t).

REMARK 5.4. We observe that j(n, t) is the number of partitions of t into powers of n
and consequently

s=0 6=0

Topologists may want to note that for n prime, j{n,t) is the dimension of the dual
Brown-Gitler module (after modding out by the Bockstein, for n odd).

The calculation of j(n, t) is called Mahler's partition problem by N. G. de Bruijn,
[6]. He gives an asymptotic formula as follows: For t —>• oo

(\ 1 lnlnnV
\2 Inn Inn /
/ lnlnn\ , ,

- 1 + - In lnt
V Inn /
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Here 0 is
j{n,nl-\

a periodic function of period 1, hence bounded. We note that
• + n + 1) = jfanin1-1 + 1- n + 1)).

t
The following table gives values of j(n, q) where q — y i ns for some small values oi

n and £.
s=0

n\t
2

3

4

5

6

7

8

9

10

2

6

7

8

9

10

11

12

13

14

3

26

47

80

128

194

281

392

530

698

4

166

682

2368

6876

17242

38516

78512

148678

265086

5

1626

23132

220288

1446167

7155602

28591511

96846112

2.88 x 108

7.69 x 108

6

25510

1913821

66499072

1.23 x 109

1.44 x 1010

1.19 x 10u

7.67 x 1011

4.02 x 1012

1.79 x 1013

7

664666

3.98 x 108

6.71 x 1010

4.35 x 1012

1.44 x 1014

This table gives the number of generators of SG, f(n,£), for some small values of .,
and £.

n\£
2

3

4

5

6

7

8

9

10

2

13

16

19

22

25

28

31

34

37

3

79

159

287

475

735

1079

1591

2067

2735

4

681

3151

11411

33706

85210

191131

390551

740686

1321881

5

8595

134388

1306983

8634888

42828867

6

165677

13229014

4.64 x 108

7

5095775

Since every generator has a friend of multiplicity one, it is clear that f{njs

^ (£ + l)j(n,£). From the tables it appears that the ratio f(n,£)/j(n,£) approaches
£ + 1 as n tends to infinity.
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