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Abstract

We construct an idealised universe for didactic purposes. This universe is assumed to consist of absolute Euclidean
space and to be filled with a classical medium which allows for sound waves. A known solution to the wave equation
describing the dynamics of the medium is a standing spherical wave. Although this is a problem of classical mechanics,
we demonstrate that the Lorentz transformation is required to generate a moving solution from the stationary one. Both
solutions are here collectively referred to as “spherons”. These spherons exhibit properties which have analogues in the
physical description of matter with rest mass, among them de Broglie like phase waves and at the same time “relativistic”
effects such as contraction and a speed limit. This leads to a theory of special relativity by assuming the point of view of
an observer made of such spheronic “matter”. The argument made here may thus be useful as a visualisation or didactic
approach to the real universe, in which matter has wave-like properties and obeys the laws of special relativity.

Keywords: astronomy education – astronomy teaching – cosmology education – cosmology: miscellaneous – elementary
particles – waves

1 INTRODUCTION

Relativity and quantum mechanics are the two pillars of
modern physics. Historically, they were discovered sepa-
rately through the work of Einstein, de Broglie, Bohr and
later Heisenberg, Schrödinger and others. Both theories have
so far triumphantly passed all experimental challenges and
provide predictions with unprecedented precision in their
respective field. Both are difficult to reconcile with our ev-
ery day experience, that is, classical physics does not read-
ily allow conceptual access to these two aspects of our
reality.

Here we perform a gedanken experiment. We construct
an idealised universe consisting of a classical medium filling
Euclidean space. This medium will, by construction, allow
for the propagation of classical waves. These can be com-
bined to a particular solution of the wave equation, which we
refer to as a “spheron”. We show that spherons which prop-
agate show properties which can be described as being of
quantum mechanical nature, and that they also automatically
obey the laws of special relativity.

This gedanken experiment thus shows how special relativ-
ity can be seen as possibly being a direct consequence of the
wave nature of matter, but perhaps more importantly, it may

be a useful didactic argument for introducing the concepts of
quantum mechanics and special relativity.

The structure of this contribution is as follows: Section 2
introduces the idealised universe and the “matter” which
can exist in it. The properties of these “matter particles”,
which are propagating standing waves and are referred to
as spherons, are discussed in Section 3. Here it is shown
that these spherons have quantum-mechanical-like proper-
ties, and special relativistic behaviour emerges naturally. A
discussion of these issues is provided in Section 4, where
the insights gained are suggested to be potentially helpful in
understanding or visualizing the possibly deep and natural
connection between the wave nature of matter and the emer-
gence of special relativity in a universe where matter has
wave-like properties. Appendix A compares spherons in the
idealised universe with de Broglie waves in the real universe,
and Appendix B contains an in-depth treatment of operator
methods to be used on analyzing spherons in the idealised
universe. In Appendix C a relevant and well-motivated ques-
tion is asked, namely if the motion of spherons relative to the
ideal gas may be detectable from the inside by a “spheronic
observer”, therewith demonstrating the spheronic-universe
ansatz to not lead to special relativistic behaviour. This ques-
tion is analysed in depth and explicitly computed. The result
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is that in an idealised universe consisting only of spherons
such that all measurements can only be performed by internal
observers made of spherons with measuring devices made of
spherons, the existence of the ideal gas cannot be inferred by
a wind or from an anisotropic sound speed. Possible impli-
cations for the real universe are discussed.

2 THE IDEALISED UNIVERSE

Our idealised classical Euclidean universe we consider, for
the sake of the argument, to be filled with an idealised gas.
Such a gas can only harbor curl-free oscillations which may
be described by a scalar quantity (e.g. the time-varying den-
sity difference from the ambient medium, ρ(t)). The prop-
agation of small perturbations in the density of the medium
with sound speed cs are solutions of the wave equation:

1

c2
s

∂2

∂t2
ρ − ∇2ρ = 0. (1)

For a derivation of the wave equation from the properties of
the medium and a consideration of the limitations of the linear
approach, see e.g. the textbook by Skudrzyk (1971). Since
our considerations only rely on the wave equation describing
the dynamics of the medium sufficiently accurately, we do
not discuss this topic here. A class of solutions of the wave
equation are plane waves,

ρ (x, y, z, t) = A0sin (kx − ωt) . (2)

The frequency, ω, and wavenumber, k, are coupled by
ω = csk which holds for all solutions presented in this con-
tribution. Since the wave equation is linear, plane waves may
be superimposed. Superimposing the above wave with an
identical wave moving in the opposite direction results in a
standing wave,

ρ = A0sin (kx − ωt) + A0sin (kx + ωt)

= 2A0sin (kx) cos (ωt) . (3)

Formulated in the usual spherical coordinates with radial

distance r = (
x2 + y2 + z2

) 1
2 and Cartesian coordinates x,

y, z,

ρ = A0

r
sin (kr − ωt) (4)

is a solution of the wave equation (Equation (1)) and de-
scribes an outbound spherical wave. Here, the wave “starts”
from a point source at the origin of the coordinate system
and wave fronts subsequently propagate with speed cs in di-
rection of increasing r. Superposition with an inbound wave
leads to

ρ = 2A0

sin (kr)

r
cos (ωt) , (5)

which is a standing spherical wave. Its two parts are the am-
plitude A (r) = 2A0sin (kr) /r, which only depends on posi-
tion, and a harmonic oscillation B (t) = cos (ωt), which only

depends on time. Thus

ρ = A (r) B (t) . (6)

Choosing a plane (here the x-z plane), the value
ρ (x, y = 0, z, t = 0) is plotted on the vertical-axis in Fig-
ure 1.

Standing spherical waves do have a notion of localization.
The point o where the amplitude A (r) reaches its global
maximum is called the wave center, which is in the case of the
above example the origin. It is one of the key parameters for
a description of the standing spherical wave, complemented
by the frequency ω. Since there is only one single frequency
ω involved, this is a monochromatic phenomenon.

With the speed of sound, cs, being the limiting speed of
the medium, and setting

γs =
√

1 − v2

c2
s

, (7)

t ′ = 1

γs

(
t − v

c2
s

z

)
, (8)

z′ = 1

γs

(z − vt), (9)

r′ = (
x2 + y2 + z′2) 1

2 , (10)

then, provided v2 < c2
s ,

ρ = 2A0

sin(kr′)
r′ cos(ωt ′), (11)

= A(r′)B(t ′) (12)

also solves the wave equation. For the velocity v → 0, Equa-
tion (12) smoothly turns into Equation (6) so the former
may be seen as the latter in propagation along the z-axis.
From here on we will refer to both of them as a “spheron”,
which may, accordingly, stay put or propagate. Note that
ρ(x′, y′, z′, t ′) given by Equation (12) is a spheron in motion
as is signified by the primed coordinates.

Equations (7)– (9) are close to the formulas for the Lorentz
transformation used in relativity and the use of these formu-
las within classical mechanics is unusual. We note explicitly
here that this has nothing to do with the theory of Special
Relativity, but merely constitutes the mathematical descrip-
tion of propagating spherons, which are physical solutions of
the classical wave equation. An explicit calculation quickly
shows that Equation (12) solves the wave equation whereas
the use of quantities resulting from a Galilean transformation
in Equation (6) does not result in such a solution. Mathemati-
cally this will not come as a surprise, since the wave equation
is known as an invariant of the Lorentz transformation and it
is not an invariant of the Galilean transformation.

Equations (7)– (9) should therefore be thought of as a
“Lorentz composition of quantities” instead of a Lorentz
transformation in order to avoid confusion with relativistic
ideas and terminology. So while the use of such a Lorentz
composition is commanded by the wave-nature of spherons,
we have defined our factor γs not in the usual way used
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The spheronic universe 3

Figure 1. ρ from Equation (5) with A0 = 1
2 , ω = 1 and cs = 1 at t = 0 (units are arbitrary).

in Special Relativity (the usual notation applied there is γ =
1/γs) to remind us of the fact that we are not explicitly dealing
with Special Relativity here. Instead, the idealised universe
is based on classical mechanics in classical space and time.

We now populate this universe with matter. To represent
matter without rest mass (radiation) we choose moving plane
waves that follow Equation (2). Such waves transport en-
ergy at the speed of sound and cannot stand still. We choose
spherons to represent matter with rest mass. Our choice is jus-
tified by the similarities between the properties of spherons
in the idealised universe and the properties of matter with
rest mass in our real universe, which are laid out in the next
section. From these elementary particles we envision more
complex material entities being built, including intelligent
beings that are able to observe their environment and per-
form measurements with their material tools, all of which
are composed of elementary particles which are spherons in
the idealised universe. We call such an intelligent being a
“spheronic observer”.

For the sake of the present argument we ignore the fact that
the spherons cannot interact. This is due to the linearity which
is a consequence of the assumptions made and is addressed
later. We reiterate that the idealised universe is filled with
spherons which are its elementary particles with rest mass.
The gas is merely a (hypothetical) medium which aids our
discussion and which sustains the existence of the spherons.
Observers made of spheronic “matter” cannot detect this gas
as explained in the next section.

3 SPHERONS

The wave center of Equation (12) is moving with speed v in
the z-direction as can be seen by setting z′ = 0 and solving
for z. So compared to a standing spherical wave, a spheron
naturally needs the velocity vector v as an additional pa-
rameter for its description. Equation (12) also shows that a
spheron may be understood to be composed of two parts:
The amplitude A(r

′
) and an oscillating part B(t

′
).

From the transformation it is evident that the speed of
sound is the limiting speed for the spheron. Physically, this
will come as no surprise, since the speed of sound is the
limiting speed of energy transport in the medium and a prop-
agating spheron is “transporting” energy.

Note that an observer consisting of spherons does not ex-
perience a resistance from the medium while moving. There
is no “airflow” around a spheron because spherons propa-
gate as waves and are not solid bodies moving through the
medium.

3.1 Length contraction and time dilation

A spheronic observer has no ab-initio knowledge of space-
time and has to derive measurement rods and clocks from the
properties of spheronic matter.

To define the rods of a comoving spheronic observer, let
his or her defining standard ruler stretch from the wave center
to the first zero of the amplitude A(r

′
). While this delivers the
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Figure 2. As Figure 1. Amplitude of ρ from Equation (12) with A0 = 1
2 , ω = 1, cs = 1 and v = 0.75cs.

desired length scales derived from the properties of a spheron,
the standard ruler should not be thought of as a thing made of
“solid real” matter. It remains a wave-natured measurement
tool and for a spheronic observer a measurement is a process
determined by the properties of his or her tools

Every existing real clock relies on the counting of some
cyclic event provided by the matter the clock is made of. To
define a spheronic clock, let the observer count the oscilla-
tions in the wave center. This wrist watch then defines his/her
proper time.

The effect of the Lorentz-composition on the amplitude
A(r

′
) is shown in Figure 2. Compared to Figure 1, the waves

centered around the wave center in Figure 1 have acquired an
elliptic shape. This is a “relativistic” contraction in direction
of propagation. The quotes are meant to indicate once more
that this “relativistic” contraction is based on the speed of
sound as the limiting speed, and not on the speed of light in
our real universe. From here on, we assume that the reader
keeps this in mind and leave the quotes away for ease of
reading. Besides this difference in limiting speeds, the effect
follows the pattern of a contraction in Special Relativity in
the real universe, which is a consequence of the formulas
used.

Writing out B(t ′) = cos(ω t ′)

B(t) = cos

(
ω

γs

(
t − v

c2
s

z

))
, (13)

and for a virtual (spheronic) observer at rest, say at z = 0,
the frequency becomes

B(t
′
(z = 0)) = cos

(
ω

γs

(t)

)
, (14)

and thus ω′ = ω/γs > ω. The term

ω′ = ω√
1 − v2

c2
s

, (15)

resembles, in the real universe, the mass term,

m = m0√
1 − v2

c2

, (16)

of special relativity, where m0 is the rest mass.
In the idealised universe, for a virtual spheronic observer

comoving with the wave center, z = vt, and thus the oscilla-
tion is

B
(

t
′
(z = vt)

)
= cos

(
ω

γs

(
t − v

c2
vt

))
, (17)

= cos
(
γsωt

)
, (18)

where γsω < ω may be interpreted as a dilation of proper
time.

3.2 Phase waves and operator methods

The wave part of the spheron at rest is a harmonic oscillation.
The wave part of a propagating spheron (Equation (13)) is a
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Figure 3. As Figure 2. Spheron with A0 = 1
2 , ω = 1, cs = 1 and v = 0.75cs. The wavefronts of the phase wave

are marked in red.

moving plane wave with phase velocity

vP = cs

v
cs, (19)

as can be seen from setting t − vz/c2
s = 0 and solving for

z. The speed of the phase is larger by a factor cs/v than
the speed of sound. This supersonic phase speed resembles
the superluminal phase speed of a quantum mechanical de
Broglie wave. The phase speed does not interfere with the
speed of sound as the limiting speed of energy transport in the
medium, since this phase wave does not transport any energy.
The same applies to a de Broglie wave. Also Equations (14)
and (18) may be seen as a “theorem of phase harmony”
(“théorème de l’harmonie de phases”, de Broglie 1925) in
action.

The plane wave described by Equation (13) is in many
respects a “phase wave” as is the original “onde de phase” of
de Broglie and could therefore be termed a “real de Broglie
wave”. Figure 3 shows a moving spheron as the multiplica-
tion of a contracted amplitude with a plane phase wave.

It is common practice to employ complex quantities (see
e.g. Skudrzyk 1971) for the description of plane waves, since
that simplifies the calculations considerably. The phase wave
of a propagating spheron may be written in complex notation
as eiωt ′ . For velocities small compared to the speed of sound,

v � cs, an approximation may be used. Using the identities

∂

∂t
eiωt ′ ≡ i

ω

γs

eiωt ′ , (20)

∇2eiωt ′ ≡
(

i
ω

γs

v
c2

s

)2

eiωt ′ , (21)

and a Taylor expansion of ω/γs around v = 0 where the third
and higher powers of v are treated as too small to count, then

ω

γs

≈ ω

(
1 + 1

2

v2

c2
s

)
, (22)

and it follows that

∂

∂t
eiωt ′ ≈ iω

(
1 + 1

2

v2

c2
s

)
eiωt ′ , (23)

∇2eiωt ′ ≈ −ω2 v2

c4
s

eiωt ′ , (24)

from which

− i
∂

∂t
eiωt ′ = ωeiωt ′ − c2

s ∇2eiωt ′

2ω
(25)

can be concluded. Remarkably, this resembles a
“Schrödinger-Equation” for an unbound particle. Slowly
(v � cs) moving elementary particles of the idealised uni-
verse, slow spherons, thus obey a Schrödinger-like equation.
Also, for purely algebraical reasons, this phase wave is a so-
lution of a “Klein-Gordon-Equation”, where the frequency
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ω plays the role of the mass in the real Klein-Gordon equa-
tion, (

1

c2
s

∂2

∂t2
− ∇2

)
eiωt ′ = −ω2

c2
s

eiωt ′ . (26)

All this makes it tempting to explore the applicability of other
quantum mechanical mathematics to spherons.

Written in complex notation, Equation (11) becomes

ρ = 2A0

sin (kr′)
r′ eiωt ′ , (27)

and

ρ∗ = 2A0

sin (kr′)
r′ e−iωt ′ (28)

is its complex conjugate. Accordingly,

ρρ∗ =
(

2A0

sin (kr′)
r′

)2

, (29)

since eiωt ′e−iωt ′ = 1 always holds. The volume integral over
ρρ∗ is∫

ρρ∗dV = 4A2
02π2γs

[
1

2
r′ − 1

4k
sin

(
2kr′)]R′

0

(30)

(see Appendix B), where R′ is the radius associated with the
volume V . The integral is not a constant value. To enforce a
value of 1 for the volume integral, a factor

ϑ ′ = 1

2A0

1

πr′

√
1

2kγs

(31)

may be used (see Appendix B). Setting

χ = ϑ ′2A0

sin (kr′)
r′ , (32)

= 1

πr′

√
1

2kγs

sin (kr′)
r′ , (33)

and

ψ = χeiωt , (34)

leads to ∫
ψ∗ψdV =

∫
χ 2dV = 1. (35)

The quantity ψ may be seen as representing physical quan-
tities of Equation (12), since it allows for a recovery of ele-
mentary properties of the spheron with operator-methods in
the following way (for a detailed calculation, see Appendix
B): Define

x̂ = x ex + y ey + z ez, (36)

then the wave-center of the spheron can be recovered with

o =
∫

ψ∗ x̂ ψ dV, (37)

a quantity depending on the frequency is delivered by

ω

γs

=
∫

ψ∗
(

−i
∂

∂t

)
ψ dV (38)

and a quantity depending on the velocity is obtained with

ω

γs

1

c2
s

v =
∫

ψ∗ i ∇ ψ dV. (39)

These operators are close to the quantum-mechanical opera-
tors for location, energy and momentum respectively.

Other analogies can be found, but discussing them here
will not add any more insight concerning the subject of this
contribution. Nevertheless one last remark is in order: since
the wave equation results from applying classical mechanics
to the medium, it is perfectly possible to employ Hamil-
tonians or Lagrangians, as is common practice in quantum
mechanics.

3.3 A spheronic theory of relativity

The Lorentz composition results in relativistic effects for the
amplitude and quantum mechanical effects for the wave part
at the same time. The spheron can only be fully understood by
considering both aspects at the same time, it is a phase wave
and a “localised” amplitude represented by a point-like wave
center, one entity with a “dualistic” nature. This concludes
our reasoning for choosing spherons as representing matter
with rest mass in our toy universe.

Contraction and dilation provide a direct path to special
relativity, including the 4-dimensional space-time, and the
full apparatus of relativity. To get there, it is necessary to
give up the human perspective and adopt the perspective of
a spheronic observer.

First we note that a spheronic observer has no means to
measure his state of motion against the gas. If he would con-
struct a “spheronic interferometer” to measure his/her speed
against a hypothesised “ether”, he would end up with a null-
result, as did Michelson and Morley with their experiments
to measure an ether drift in the late 19th century. This can
be shown by an explicit calculation, but it is easier to remind
oneself that the only reason to introduce the contraction of
rods and the dilation of clocks were the need to explain these
unexpected null-results.

With the ideas of rigid bodies in mind, these indeed seem
to be awkward ad-hoc explanations with little physical plau-
sibility. In his 1908 paper, Minkowski acknowledges them to
work mathematically but calls them a “present from above”
(“Geschenk von oben”, Minkowski 1908). He then states that
Lorentz’ idea is completely equivalent (“völlig äquivalent”)
to his new conception of time and space.

From the perspective of a human physicist, an analogue
to a Lorentzian ether theory is the best choice to describe
the vibrations of the medium. Note, that the relativistic con-
traction and dilation in the idealised universe are no “present
from above”, but a direct consequence of the wave nature
(“Wellenartigkeit”) of matter.

From the perspective of an internal spheronic observer,
things are different. What is an obvious and measurable con-
traction of the spheronic observer’s standard ruler for an
external human (who is not an observer made of spheronic
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matter and who therefore can observe the idealised universe
from “outside” by not being part of it) is actually unmea-
surable and unnoticeable to the spheronic observer1. The
same applies to the dilation of proper time. The spheronic
observer’s standard ruler and clock define her/his units of
measurement. Putting oneself in the position of such an ob-
server with the task of developing a physical theory leads to
a spheronic theory of relativity.

A human observer in the real universe thinking up the ide-
alised universe can easily switch between these two perspec-
tives. This makes it possible to explore all the seemingly para-
doxical results of relativity within the classical framework of
our idealised universe. This includes, among other issues, the
relativity of simultaneity and the twin paradox. With a set of
comoving synchronised spheronical co-observers it is also
possible to setup a 4-dimensional spheronic space-time on
that basis.

Beyond that it might be interesting to note that the intimate
relation between time and space measured and experienced
by a spheronic observer is deeply rooted in the material (i.e.
spheronic) nature of her/his existence. It is for this reason,
that a spheronic observer always measures the speed of sound
to be a constant quantity.

But the properties of the matter the observer is made of de-
termine the reality of a spheronic observer to an even greater
extent. The material layer effectively shields a spheronic ob-
server from the underlying physical reality and cannot be
circumvented by him. As a result e.g. the existence of the
full fledged wave function is, for a spheronic observer, not
measurable and remains a non-physical (sub- trans- or meta-
physical) speculation for him. The reach of her/his material
tools define the reach of her/his physical theories.

4 DISCUSSION

The gedanken experiment presented here, in which an ide-
alised universe is created from simple classical principles,
indicates intriguing properties that resemble some important
aspects of our real world. These aspects may be relevant for
a quantum mechanical and special relativistic understanding
of our real universe.

In our real universe, we are in a position which is in many
respects similar to the situation of spheronic observers in the
idealised universe. Like them we are made of matter which

1 Considering Figure 2 it might be thought that an observer may be able to
determine her/his state of motion by measuring the distortion of her/his
spheronic waves, because a spheron appears contracted in the direction of
motion. Thus, taking the standard rod to be the distance between the centre
and the first wave maximum of a spheron, it follows that this unit length
appears longer perpendicularly to the direction of motion. This, however,
is only the case for an external observer who is not made of spherons and
is not part of the spheronic universe. When the spheronic observer rotates
the rod by 90 degrees into the direction of motion, the rod contracts just
the same as the spheronic observer does, since the rod is made equally of
spherons. Thus, an observer made of spheronic matter cannot measure the
length contraction with her/his tools which are made of spheronic matter
and therefore the motion relative to the medium cannot be determined (see
also Appendix C).

can be described as waves, and such are all our tools and
means to gather information about the universe we inhabit.

Turning back to our idealised world, we have thus dis-
covered that the very simple approach of analyzing a known
solution of the wave equation with tools usually not applied
there can reveal many elements of modern physics. Among
these are a natural speed limit for entities, relativistic contrac-
tion and time dilation as well as supersonic (superluminal)
phase waves and an example how a “ridiculous looking pro-
posal” (Penrose 2005, page 500) of an operator-logic can be
founded in geometrical properties of the object under study.

The reader will have noticed a major difference between a
“de Broglie wave” associated to a spheron and the de Broglie
wave associated with a particle in traditional quantum me-
chanics. Following a paradigm already present in de Broglie’s
nobel-prize winning thesis, traditional quantum mechanical
models treat a particle as a wave-packet to arrive at a localised
entity. This packet is made of a continuous spectrum of de
Broglie waves and although there cannot be any experimental
evidence for this it still seems to be the standard model (e.g.
Tipler & Llewellyn 2002). Within this scheme, quantum me-
chanics needs to postulate for every class of elementary par-
ticle a separate field. In contrast to this, a spheron is localised
by its amplitude, which is “associated” to the “de Broglie
wave” by multiplication. As a consequence of this, our ide-
alised quantum mechanics needs just one “field” with just one
governing “universal” equation and the various types of par-
ticles are modelled as different solutions to this. In the case
of the spheron, the amplitude complements the “de Broglie
wave” and both together solve the wave equation, while the
“de Broglie wave” only solves the “Klein-Gordon-equation”.

Naturally, we emphasised more the similarities than the
differences between spherons and matter, of which there are
plenty. To mention only one: Spherons do not interact with
any other vibrations, be it another spheron or a plane wave.
This is due to the linearity of the wave equation which leads to
the possibility of superimposing solutions to generate a new
one. Other properties of real matter are missing completely.
In the real universe, there is definitely more than one type of
elementary particle and there are properties like spin, which
have no counterpart in spherons.

Some of these differences might be studied within the
framework of the idealised universe by varying the prop-
erties of the medium, since this generally determines the
existence, the properties of and the interaction between the
wave solutions that can exist within it. Giving up on the
linearity of the wave equation means giving up the superpo-
sition principle and would thus enforce interacting entities.
Keeping the linearity but dropping the requirement of a curl-
free medium allows for it to harbor more diverse classes of
vibrations including phenomena with spin-like properties.

It is generally an interesting endeavor to hunt for analogies
and various more or less obvious possibilities to do so provide
a vast playground. Whatever the odds are to develop a model
that comes closer to observed reality: it seems remarkable
that even such a most simple medium as an idealised gas can
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reproduce so much of the fundamental elements of modern
physics.

Our gedanken experiment may thus shed an interesting
light on interpreting the quantum mechanical and special
relativistic properties of the real universe, in the sense that
these two properties may be two sides of the same coin. But,
perhaps more importantly, the present spheron-gedanken
experiment may be useful for teaching quantum mechanics
and special relativity, as a means of visualizing the possibly
intimate connection between the wave-like properties of mat-
ter and special relativity, in the sense that if real matter can
be described by waves then special relativity automatically
emerges.
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APPENDIX A - REAL DE-BROGLIE WAVES

To make the relationship between the wave part of a moving spheron
in our idealised universe and a quantum-mechanical de Broglie wave
in the real universe (in which the limiting speed is the speed of light,
c) explicit, note that a de Broglie wave in the real universe associated
with a particle of rest mass m0, moving in the direction of increasing
values of z, is usually written as

B (x, t) = ei(pz−Et)/�, (A1)

where E = �w is the relativistic energy and p = �k is the relativistic
momentum. The energy is

E = mc2 = �w, (A2)

= m0√
1 − v2

c2

c2 = �
w0√

1 − v2

c2

, (A3)

and the momentum is

p = mv = E

c2
v = �k, (A4)

= m0√
1 − v2

c2

v = �
w0√

1 − v2

c2

1

c2
v = �k. (A5)

Hence

Et − pz = �
w0√

1 − v2

c2

t − �
v

c2

w0√
1 − v2

c2

z, (A6)

= �
w0√

1 − v2

c2

(
t − v

c2
z
)

. (A7)

Thus, from (A1),

B (x, t) = e
−i

(
w0
γs

(
t− v

c2 z
))

, (A8)

= e−i
(

w0t’
)
, (A9)

= cos
(−w0t’

) + i sin
(−w0t’

)
, (A10)

for a de Broglie wave. Compare this to

B
(
t ′) = cos

(
ωt ′) , (A11)

(see eqs 11 and 12), which is the plane wave part of the moving
spheron. Since cos (−α) = cos (α) (A11) may thus be seen as the
real part of a de Broglie type plane wave.

APPENDIX B - VOLUME INTEGRALS AND
OPERATORS

Based on (eqs 7-10) and assuming there is a speed limit c (which is
cs in our idealised universe or the speed of light in the real universe)

r′ =
(

x2 + y2 + z
′2) 1

2
, (A12)

= r

(
1 + z

′2 − z2

r2

) 1
2

, (A13)

= r

⎛
⎜⎝1 +

(z−vt)2

1− v2

c2

− z2

r2

⎞
⎟⎠

1
2

, (A14)

can be concluded, and at t = 0

r′ = r

⎛
⎜⎝1 +

z2

1− v2

c2

− z2

r2

⎞
⎟⎠

1
2

, (A15)

= r

⎛
⎜⎜⎜⎜⎝1 +

1−
(

1− v2

c2

)

1− v2

c2

z2

r2

⎞
⎟⎟⎟⎟⎠

1
2

, (A16)

holds. In spherical coordinates with

cos (θ ) = z

r
, (A17)

this may be written as

r′ = r

(
1 +

(
1 − γ 2

s

γ 2
s

)
cos2 (θ )

) 1
2

. (A18)

Therefore

dr′ = dr

(
1 +

(
1 − γ 2

s

γ 2
s

)
cos2 (θ )

) 1
2

, (A19)
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or

r = r′(
1 +

(
1−γ 2

s
γ 2

s

)
cos2 (θ )

) 1
2

, (A20)

dr = dr′(
1 +

(
1−γ 2

s
γ 2

s

)
cos2 (θ )

) 1
2

, (A21)

holds. With ρ = 2A0
sin(kr′)

r′ eiωt ′ , the volume integral over ρρ∗ is∫
ρρ∗dV =

∫ ∫ ∫
A2

(
r′) r2sin (θ ) drdθdφ, (A22)

=
∫ ∫ ∫

A2
(
r′) r

′2

(
1 +

(
1−γ 2

s
γ 2

s

)
cos2 (θ )

) 3
2

× sin (θ ) dr′dθdφ. (A23)

Because∫ π

0

sin (θ )(
1 +

(
1−γ 2

s
γ 2

s

)
cos2 (θ )

) 3
2

dθ = 2(
1 + 1−γ 2

s
γ 2

s

) 1
2

= 2γs,

(A24)
and ∫ 2π

0
dφ = 2π, (A25)

the volume integral is∫
ρρ∗dV = 2γs2π

∫
A2

(
r′) r

′2
dr′, (A26)

= 2γs2π

∫ (
2A0

sin (kr′)
r′

)2

r
′2

dr′, (A27)

= 2γs2π4A2
0

∫
sin2

(
kr′) dr′, (A28)

= 2γs2π4A2
0

[
1

2
r′ − 1

4k
sin

(
2kr′)]R′

0

, (A29)

where the last step follows from integrating from zero to R′. Define

ϑ ′ = 1

2A0

1

πr′

√
1

2kγs

, (A30)

set

χ = ϑ ′2A0

sin (kr′)
r′ = ϑ ′ A(r′), (A31)

= 1

πr′

√
1

2kγs

sin (kr′)
r′ , (A32)

and

ψ = χeiωt ,

then ∫
ψ∗ψdV =

∫
χ 2dV. (A33)

The volume integral over ψ∗ψ is

∫
χ 2dV =

∫ ∫ ∫ (
1

πr′

√
1

2kγs

sin (kr′)
r′

)2

(A34)

× r2sin (θ ) drdθdφ, (A35)

= 1

π 22kγs

∫ ∫ ∫ (
1

r′
sin (kr′)

r′

)2

(A36)

× r2sin (θ ) drdθdφ, (A37)

= 2γs2π

π 22kγs

∫ (
1

r′
sin (kr′)

r′

)2

r
′2

dr′, (A38)

= 2

πk

∫ (
sin (kr′)

r′

)2

dr′, (A39)

= 2

kπ

⎛
⎝−

[
sin2 (kr′)

r′

]R′

0

(A40)

+ k
∫ R′

0

sin (2kr′)
r′ dr′

)
. (A41)

The integral ∫
r′

(
sin (kr′)

r′

)2

dr′, (A42)

thus approaches, for sufficiently large R′ and to arbitrary precision,
k π

2 and the integral of ψ∗ψ then comes out as∫
ψ∗ψ dV = 1. (A43)

At any other time t 
= 0, the calculations hold mutatis mutandis,
since the values of χ 2 are displaced by an amount of z = vt on the
z-axis, which is equivalent to a shift of origin, and which does not
alter the summation over all of space. With such a “normalised”
wave like ψ , the effect of the operator

x̂ = xex + yey + zez, (A44)

in

o =
∫

ψ∗ x̂ ψ dV, (A45)

=
∫

x̂ χ 2 dV, (A46)

is the same as the calculation of an average of a statistically dis-
tributed quantity and returns the wave center as an “average” of
position. With

e−iωt ′ i∇eiωt ′ = e−iωt ′ eiωt ′ i∇ (
iωt ′) , (A47)

= ω

γs

1

c2
v, (A48)

the volume integral of ψ∗i∇ψ becomes∫
ψ∗ i ∇ ψ dV =

∫
χe−iωt ′

× i
(
∇χeiωt ′ + χ∇eiωt ′

)
dV, (A49)

= i
∫

χ∇χdV

+ i
∫

χ 2e−iωt ′∇eiωt ′ dV, (A50)

= i

2

∫
∇χ 2dV
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+ ω

γs

1

c2
v

∫
χ 2dV, (A51)

= ω

γs

1

c2
v, (A52)

where ∫
∇χ 2dV = 0 (A53)

has been used. This follows here from the following considerations:
The integrand is the gradient of a scalar quantity. Using Gauss’
theorem, such a volume integral may be written as a surface integral,
in general ∫

∇ (x) dV =
∮

 (x) dA (A54)

holds, where  (x) is an arbitrary scalar field and dA is the surface
normal of the (closed) surface enclosing the volume.

Integrating in three dimensions over a spherical volume centered
at the origin, dA is parallel to the position vector x, hence

dA (−x) = −dA (x) . (A55)

For the scalar field χ 2 (x) at t = 0,

χ 2 (x) = χ 2 (−x) (A56)

holds, from which

− χ 2 (x) dA (x) = χ 2 (−x) dA (−x) (A57)

can be concluded. The surface integral of χ 2 is therefore∮
∂A

χ 2dA = 0, (A58)

from which ∫
∇χ 2dV = 0 (A59)

follows. For any time t 
= 0, this calculation holds mutatis mutandis.
With

e−iωt ′
(

−i
∂

∂t

)
eiωt ′ = e−iωt ′ eiωt ′

×
(

−i
∂

∂t

) (
iωt ′) , (A60)

= ω

γs

, (A61)

it follows that∫
ψ∗

(
−i

∂

∂t

)
ψdV = −

∫
χe−iωt ′ i

(
∂

∂t
χeiωt ′ + χ

∂

∂t
eiωt ′

)
dV, (A62)

= −i
∫

χ
∂

∂t
χdV

− i
∫

χ 2e−iωt ′ ∂

∂t
eiωt ′ dV, (A63)

= − i

2

∫
∂

∂t
χ 2dV

+ ω

γs

∫
χ 2dV, (A64)

= ω

γs

, (A65)

where ∫
∂

∂t
χ 2dV = 0 (A66)

has been used. Using Leibniz’ integral rule

∂

∂x

∫ y1

y0

f (x, y)dy =
∫ y1

y0

∂

∂x
f (x, y)dy, (A67)

it can be concluded, that∫
∂

∂t
χ 2dV = ∂

∂t

∫
χ 2dV. (A68)

Now

∂

∂t

∫
χ 2dV = ∂

∂t
1, (A69)

= 0 (A70)

which may be regarded as a conservation law for the spheron.

APPENDIX C - A THOUGHT EXPERIMENT

Here a gedanken experiment is discussed which may rightfully be
raised in an attempt to disprove that the classical spheronic universe
may have special relativistic properties.

Let us propose a thought experiment to show that, contrary to the
assertion made in Section 3.3, a spheronic observer can measure
his/her or her state of motion against the gas. As the calculations
below demonstrate, this is not possible.

Challenge: Assume that spheronic observers can perform radar-
ranging: they can emit a wave travelling at the speed of sound and
measure the time until its return (this is, so to speak, a “spheronic
photon”: the plane wave as discussed in Section 2). Now, in a
rest frame (not necessarily the gas rest frame), an external human
observer (i.e. we) places A and C a certain distance apart, and B is
put in the middle. We can construct this scenario by, for example,
telling B to stay still and having A and C move away until a radar
range of (for example) 1 unit of eigen-time is observed. A, B and C
are stationary with respect to each other. Again, the external human
observer can test this by seeing if repeated radar-rangings have a
constant return time.

Now, the external human observer gives A and C the following in-
structions: according to time on her/his wristwatch, “spheronic pho-
tons” (i.e. plane parallel waves in the idealised spheronic universe)
are emitted towards B at the rate of one per unit of eigen-time. If A,
B and C were in the gas rest frame, then B would observe that A and
Cs spheronic photons arrive at the same rate. But, if their rest frame
is moving with respect to the gas rest frame, then spheronic photons
travelling down wind are expected to arrive more frequently.

By symmetry, the distances AB and BC are the same: this holds
true of all radar ranging, even if the outward and inward journey are
at different speeds. By symmetry, the internal spheronic observers
know that A, B and Cs watches tick at the same rate: they are all in the
same rest frame i.e. they all have the same velocity with respect to the
gas. Thus, they must conclude that “spheronic photons” travel faster
in certain directions. They can measure their motion against the gas.

This is not the case in special relativity of our (human) real world.
In any frame, if A, B and C are set up by radar ranging with light,
and then have them send B light pulses at a rate of one per second,
then B will always see the same pulse frequency from A and C.
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Thus, the speed of sound appears to not be invariant for spheronic
observers. There appears to be no spheronic theory of relativity.
Another way of seeing this is in the swap from “Lorentz transfor-
mation” to “Lorentz composition of quantities” (eqs 7 to 10). If
quantities are only composed, then the final results don’t necessar-
ily have physical meaning. One would be putting together variables
in a mathematically interesting way. There is no rationale for inter-
preting the primed coordinates as anything, much less the observed
space and time of a moving spheronic observer.

Answer: Spheronic observers limited to and made of the “matter”
(i.e. spherons) of the idealised universe cannot detect a difference in
the speed of sound because the frequency shift in either direction is
always accompanied by a corresponding change in measured length,
given that the measurements need to be made with a standard ruler
made of spheronic matter.

In particular, the above statement that “ spheronic photons trav-
elling downwind will arrive more frequently. ” is not correct. Both
sets of spheronic photons will arrive at the same rate they are emit-
ted, namely at one per spheronic unit time. What is correct is the
following: spherons travelling downwind will arrive with a higher
relative velocity, but only as seen by the external (human) observer.
This is the point where the intuition is misleading since we are not
used to adopting the point of view of a spheronic observer. This
observer is restricted to his spheronic tools. And this raises the
question of how B will measure velocities. This obviously touches
on time dilation and length contraction.

This is clarified with an explicit calculation: Let us begin with
the case of an internal (spheronic) observer (B) at rest with respect
to the gas. Without loss of generality, let her/his spheron defining
the observer’s clock and rulers be described by sin(kr)

r cos (ωt), let
her/his wrist watch be based on the oscillations in the wave center,
i.e. cos (ωt), and let her/his rulers defining unity stretch from the
wavecenter to the first zero of the spheron. Let a minimal time unit
of the spheronic observer be the time elapsed between two extrema
of cos (ωt), measuring time then means for the internal spheronic
observer counting the ticks of the wrist watch. The time between
two subsequent ticks as measured by the external human scientist
is then π/ω, the length of his or her ruler as measured by the
external human scientist is π/k. These units of space and time may
be transformed into each other with the help of the speed of sound.
The relation

π

k
= cs

π

ω

always holds, since ω2/k2 = c2
s follows from the spheron having to

obey the wave-equation. So placing two internal fellow-spheronic-
observers (A and C) at the respective ends of two rulers stretching
in opposite directions is equivalent to placing them one “tick” away
as a result of a radar measurement. Now let these three spheronic
observers synchronise their clocks the Einstein way and provide
instructions to the two outer observers to send a sound wave in the
direction of the spheronic observer in the middle at a distinctive
reading τd of their wrist watches and repeat that process after one
tick on their respective wrist watches. Again without loss of gener-
ality, let τd = 0, the spheronic observer in the middle will register
at proper time τd = 1 incoming waves from both sides. For the ex-
ternal human scientist the waves will reach the middle observer at a
delay of �t = π/ω after they have been started. These calculations
hold true for all subsequently sent waves at each tick of proper time.

Now let’s make things moving and use a propagating spheron as
the basis of the clock and rulers of a spheronic observer. Using the

Lorentz-composition of quantities (Sec. 2)

γs =
√

1 − v2

c2
s

,

t
′ = 1

γs

(
t − v

c2
s

z

)
,

z
′ = 1

γs

(z − vt) ,

r
′ =

(
x2 + y2 + z

′2) 1
2
,

then

ρ = sin
(
kr

′)
r′ cos

(
ωt

′)
is a solution of the wave equation. As shown, the wave center moves
with speed v in the direction of increasing z, the oscillation in the
wave center is then

cos
(
ωt

′) = cos

(
ω

1

γs

(
t − v

c2
s

vt

))
,

= cos

(
ω

t

γs

(
1 − v2

c2
s

))
,

= cos
(
ωγst

)
The external human scientist will then measure the time between

two ticks of the spheronic observer’s wrist watch as π/
(
γsω

) =
π/

(√
1 − v2

c2
s
ω

)
which is longer than the time between two ticks

of the observer at rest and is equivalent to saying that the rate of
ticks has gone down which constitutes a dilation of proper time.
Constructing the rulers in the same way as the case of the spheronic
observer at rest leads to a contraction of the rulers which are parallel
to the direction of movement. This can be seen by setting kr

′ = π

and solving for z. With x = y = 0 this leads to z = γsπ/k. The
spheronic observer performing radar measurements of his/her rulers
will find that all her/his rulers have a length of one tick of her/his
proper time, as can be shown by an explicit calculation. Now let us
place two comoving spheronic observers at the end of the respective
rulers, have them synchronise their watches by the same procedure
and provide them with the same set of instructions. The Einstein
synchronization leads to the wrist watches showing the above t

′

as proper time τ , the instructions given are now sending a sound
wave in the direction of the middle observer at τ = 0 and then
subsequently at each tick of proper time. Without loss of generality,
let the middle spheronic observer be in the center of the external
human scientist’s coordinate system at t = 0 and let us assume that
her/his wrist watch then shows τ = 0. The position of the observer
with a lower z-value (the “lower” observer) in general is given by
x = −γs

π

k + vt , so his or her wrist watch will then show a proper
time of

t
′ = 1

γs

(
t − v

c2
s

(
−γs

π

k
+ vt

))
.

To find the time where the lower observer emits the sound wave,
the “lower” proper time has to be set to zero:

0 = 1

γs

(
t − v

c2
s

(
−γs

π

k
+ vt

))
,
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= 1

γs

(
v

c2
s

γs

π

k
+ t

(
1 − v2

c2
s

))
,

−γst = v

c2
s

π

k
,

t = − 1

γs

v

c2
s

π

k

at this time her/his position was

z = −γs

π

k
− v

1

γs

v

c2
s

π

k
,

= −γs

π

k

(
1 + v2

c2
s

1

γ 2
s

)
,

= −γs

π

k

⎛
⎝γ 2

s + v2

c2
s

γ 2
s

⎞
⎠ ,

= −γs

π

k

(
1

γ 2
s

)
,

= −π

k

1

γs

.

Calculating in the same way the parameter for the upper observer
leads to the emission of the sound wave at

t = 1

γs

v

c2
s

π

k
,

z = π

k

1

γs

.

To find the travelling time of the lower sound wave

−π

k

1

γs

+ cs�t = −π

k

1

γs

+ γs

π

k
+ v�t

has to be solved for �t which leads to

�t = γs
π

k

cs − v
.

The sound wave will then meet the middle observer at

z = −π

k

1

γs

+ cs

γs
π

k

cs − v
,

= γs

π

k

(
1

1 − v
cs

− 1

γ 2
s

)
,

= γs

π

k

⎛
⎝ 1

1 − v
cs

− 1(
1 − v

cs

) (
1 + v

cs

)
⎞
⎠ ,

= γs

π

k

( v
cs

γ 2
s

)
,

= π

k

( v
cs

γs

)
.

The travelling time for the upper sound wave is derived from

π

k

1

γs

− cs�t = π

k

1

γs

− γs

π

k
+ v�t

and leads to

�t = γs
π

k

cs + v
,

so the upper wave meets the middle observer at

z = π

k

1

γs

− cs

γs
π

k

cs + v
,

= γs

π

k

(
− 1

1 + v
cs

+ 1

γ 2
s

)
,

= γs

π

k

⎛
⎝− 1

1 + v
cs

+ 1(
1 − v

cs

) (
1 + v

cs

)
⎞
⎠ ,

= γs

π

k

( v
cs

γ 2
s

)
,

= π

k

( v
cs

γs

)
.

Thus both soundwaves are registered at the same place. The external

human scientist will record this happening at t = π

k

( 1
cs
γs

)
= π

ωγs
,

which is the time he/she measured before for one tick of the
spheronic observer’s proper time. Indeed, the middle observer’s
wrist watch then shows a proper time of

τ = 1

γs

⎛
⎝π

k

⎛
⎝ 1

cs

γs

⎞
⎠ − v

c2
s

π

k

( v
cs

γs

)⎞
⎠ ,

= 1

γs

π

k

⎛
⎝ 1

cs

γs

⎞
⎠ (

1 − v2

c2
s

)
,

= π

k

1

cs

,

= π

ω
,

which is exactly one tick of his or her proper time. The subsequent
sound waves sent at each tick of the respective wrist watches of the
lower and upper observers reach the middle observer then just in
time one tick later.

From the perspective of the spheronic observer the situation looks
much simpler. For her/him, the lower soundwave was emitted at

z
′ = 1

γs

(
−π

k

1

γs

− v

(
− 1

γs

v

c2
s

π

k

))
,

= π

k

1

γ 2
s

(
−1 + v2

c2
s

)
,

= −π

k
,

which is simply the end of her/his “lower” ruler. The upper sound
wave was emitted at

z
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= π

k
,

which is the end of the upper ruler. Both waves were emitted at
τ = 0 and are registered after one tick of proper time, the spheronic
observer calculates the speed of sound as �z

′
/�t

′ = cs which is
the same in both directions. There is no chance for the spheronic
observer to determine, with the spheronic tools of measurement
available in the spheronic universe, her/his speed against the gas.
For the spheronic observer, there is no preferred frame. Using her
or his spheronic tools and with the help of comoving, synchronised
fellow spheronic observers, he/she will be able to set up a spheronic
spacetime and he/she will eventually arrive at a spheronic theory of
relativity as an accurate reflection of the spheronic observer’s view
(perception respectively) of the world he or she inhabits.

This same situation appears differently for the external human
scientist. For such an observer, Newtonian (absolute) space and time
are the natural frame to work in, the gas is a physically measurable
entity and applying Newtonian mechanics to the gas results in the
wave equation. The perspective of the external human scientist look-
ing at the gas is the classical perspective of physics and as such also
the perspective of a 19th century physicist reasoning about an ether-
theory. Starting with Poincare and Minkowski, many renowned
physicist have claimed that an ether theory with contraction and di-
lation is mathematically equivalent to a theory of special relativity

The difference between the ether theory and spherons in a gas
lies in the idea of matter. Classical matter is “solid” and “rigid”,
which are ideas derived from our everyday experience with matter.
Spherons in contrast are waves but their properties are in many
respects close to the properties attributed to real matter by mod-
ern physics, even including the “spheronic wave-particle dualism”

(Section 3.2). It may thus be argued that contraction and time di-
lation are no presents from above but that they are rather simple
consequences of the wave-nature of matter. Whatever other use-
ful insights this may lead to, this can be exploited to establish the
existence of a spheronic theory of relativity.

This leads to the question of the didactic value of the present
approach. Explicit calculations such as above are instructive to get
a feeling for the “seemingly strange” properties of relativity. While
these calculations may as well be done within Special Relativity, the
spheronic idealised universe allows for the establishment of a flat 4-
dimensional pseudo-Riemannian manifold right in front of our eyes
within a completely classical framework. Looking at something
happening within this idealised universe, it is most interesting to
change the perspective from the external human scientist (who may
be studying the propagation of created spherons in a large volume
of ideal gas), to an internal spheronic observer and back and reason
about the resulting changes. Of course, in the real world, we are in
the role of the spheronic observer and the perspective of the human
scientist is not available to us.

Last but not least, the term “Lorentz-composition” has been cho-
sen here to avoid confusion with the notions accompanying the
coordinate transformations of Special Relativity. But it may be rea-
soned that this is definitely more than a mere mathematical “trick” or
a meaningless curiosity, it definitely does have a physical meaning.
The above ρ is a “propagating standing wave” and it is a fully valid
solution of the wave equation in its own right which is not com-
monly found in textbooks. It can be used as an Ansatz in numerous
fields of physics where ever the wave equation plays a role, ranging
from classical mechanics, as is the case here, to gravitational waves
in General Relativity in the linear limit for weak fields.

PASA, 31, e034 (2014)
doi:10.1017/pasa.2014.28

https://doi.org/10.1017/pasa.2014.28 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.28

