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POLYNOMIALS AND FUNCTIONS WITH FINITE
SPECTRA ON LOCALLY COMPACT ABELIAN GROUPS

B. BASIT AND A.J. PRYDE

In this paper we define polynomials on a locally compact Abelian group G and
prove the equivalence of our definition with that of Domar. We explore the proper-
ties of polynomials and determine their spectra. We also characterise the primary
ideals of certain Beurling algebras Ll

w (Z) on the group of integers Z. This al-
lows us to classify those elements of L™(G) that have finite spectrum. If ip is a
uniformly continuous function with bounded differences then there is a Beurling
algebra naturally associated with f- We give a condition on the spectrum of ip
relative to this algebra which ensures that tp is bounded. Finally we give spectral
conditions on a bounded function on R that ensure that its indefinite integral is
bounded.

1. INTRODUCTION, NOTATION AND PRELIMINARIES

Throughout this paper G will denote a locally compact Abelian group equipped
with Haar measure. We consider certain unbounded functions (p : G —> C and discuss
the notion of Beurling spectrum for <p.

Firstly, the spaces LP(G) with corresponding norms ||.||p are defined as usual
using the Haar measure (see [6]). We shall always identify functions on G which agree
almost everywhere (see [3j p.36]). In particular, i1(G) is a Banach algebra under the
convolution product and carries an involution defined by

(1.1) / ' (*) = / ( - * ) for xeG, f£L\G).

By Lf£c(G) we mean the space of functions <p : G —> C such that XKf £ L°°(G)

for every compact set K C G, XK denoting the characteristic function of K.

The action of the dual group G on G will be denoted 7(2:) = (x, 7) where x G G,

7 G G and the Fourier transform of / G ̂ (G) is defined by f{-y) = JG f(x)(—x,j)dx

for 7 G G. Unless otherwise stated, the group operation on G will be addition and

on G multiplication. The unit character in G is denoted by e. The translate <py and

difference Ay<p by y G G of a function <p : G —* C are defined by

(1.2) <Py(x) = <p(x + y) and Ay<p(x) - tp(x + y) - <p(x) for x e G.
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34 B. Basit and A.J. Pryde [2]

Following Reiter [5, p.83] we call a function w G L^C(G) a weight function on G
if for all x, y £ G

(1-3) w(x)>l,

(1.4.) w(x+y)^. w(x)w(y).

Given a weight on G we define

(1.5) Ll(G) = {fe L\G) : ||/|| = / \f(x)\w(x)dx < oo}.
JG

Then L^G) is a subalgebraof Ll{G) which is a Banach algebra under the norm j | . | | ^ w.

The Banach space dual of L^,(G) is

(1.6) L~(G) = {<p G L£(G) : M ^ = e s s s u p M < oo}.

As noted by Reiter [5, p.84], we may assume that w is upper semicontinuous, and so
each continuous function ip £ L^(G) satisfies

(1.7) \V(x)\ ^ \\v\L,vy(x) for all x £ G

It is known that L\,(G) is a Wiener algebra if and only if w satisfies the following
condition of Beurling-Domar [5, p. 132], [1, Theorem 2.11]:

(1.8)
m?

These algebras were introduced by Beurhng for the case G = K and studied in the
general case by Domar (see [1]).

If <p E £ ~ ( G ) , /* *<f> is well-defined for all / G L\,(G) and Iw{<p) = {/ G L\,{G) :
f* * tp = 0} is an ideal of the algebra Ll

w{G). We define the Beurhng spectrum of ip
relative to L^G) to be the set

(1.9) spviv) = huU Iw{<p) = {7 € G : / ( 7 ) = 0 for all / € Iw{<p)}.

As each such function / is continuous on G, spw(tp) is a closed subset of G.

If in addition w is bounded, so that L^(G) — £1(G), we shall write I(<p) = I-w{<p)
and sp(<p) = spw(<p).
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PROPOSITION 1 . 1 . Let w be a weight function on G satisfying the condition
(1.8) and let <p£L~(G).

(a) spw(f* *<p)C s u p p / n spw(ip) for all f £ Ll(G).

(b) Given a neighbourhood V of a compact set W in G, there exists f £

iJ,(G) such that f= 1 on W and supp/C V.

(c) If f £ L^G) and / = 1 on a neighbourhood of spw(<p) then f* *<p = <p.

(d) spw((p) = 0 if and only if <p = 0 and spw(<p) = {e} if <p is a non-zero

constant.

(e) spw(j<p) = -yspw(tp) for all y e G.

(f) spw(Ay<p) C spw(<p) C {e} U z 6 G *P«(A,y>) for ai/ y £ G.

PROOF: Since L^iG) is a Wiener algebra the proof of (a)-(e) can be carried out

in the same manner as for ^(G). See [2, p.988] or [5, pp.140-141].

Let y £ G. Since L^(G) is translation invariant, Iw(<p) C Iw(Ay<p). Hence

apw(Ay(p) C spw(tp). Conversely, suppose j $ spw(Az<p) for all z 6 G, and 7 ^ e".

Then there exists z £ G such that 7(z) ^ 1 and / £ Iw(Az<p) such that 7(7) ^ 0.

If g = A _ z / then g(j) = (f{-z) - l)f(j) ^ 0 whereas g* * <p = /* * Azy> = 0. So

5 £ Iio(<p) which implies 7 ^ spw(tp). This proves (f). D

REMARK 1.2. Let ioi and w>2 be two weight functions on G satisfying the condition
(1.8). If v e L^X(G) n £ ~ (G) then ap^^v) = ap»,(v»). Indeed, io = WIID2 is also a
weight function on G satisfying (1.8). Since tui Sj w and W2 ̂  w it follows from [5,
p.138] that apUl(^) = spw{<fi) = SP«JJ(V)- If V £ £°°(G) and w is a weight function
satisfying (1.8), then <p £ L™(G) and so dpw(^) = sp(<p).

2. POLYNOMIALS AND THEIR SPECTRA

In this section we define polynomials on G and prove the equivalence of our defini-
tion with that of Domar [1, Definition 2.3.2]. We explore the properties of polynomials,
and prove in particular that spw(p) = {e} for each non-zero polynomial p £ X~(G).

A continuous function <p : G —* C will be called a polynomial of degree n if

(2.1) A n . . . A , B + l p = 0 for all yu ... , yn+1 £ G

(2.2) AB1 . . . AVn<p ^ 0 for some ylt ... , yn £ G.

Denote by Z+ the semigroup of non-negative integers with the discrete topology.
Set Z£ = (Z+) , k ^ 1. For arbitrary topological semigroups H denote by C(H) the
set of continuous complex valued functions on H. The following two propositions will
be found useful. The first is proved by induction and the second, a simple chain rule
for difference operators, is obvious.
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PROPOSITION 2 . 1 . If <p e C(G) then <p(x + my) = £ (™)Ai<p(x) for all

m £ Z+ and x,y £ G.

PROPOSITION 2 . 2 . Given $ £ C(Gn), define * G C(ZIJ: x Gn) by
* ( < i , ••• , in,yi, ••• , Vn) = * ( < i 3 / i , ••• , t n y n ) , where tj G Z + a n d yj £ G. If

AViJ- denotes difference by y in position j only, then ASj.)J-$(<jj/i, . . . , tnyn) =

AltjV(tu ... ,tn,yi, . . . ,2/n).

Recall that a function ip £ C(G) is a polynomial of degree n in the sense of Domar
if <p(x + ty) is a polynomial in t £ Z+ of degree at most n for each x,y £ G and of
degree n for some x,y £ G.

PROPOSITION 2 . 3 . For a function <p £ C(G) the following are equivalent:

(a) AV1 ...Ayn+lip = 0 forallyu...yn+1 £ G.

(b) A^+1<p = 0 for ally £G.

(c) (p(x + ty) is a polynomial in t £ Z+ of degree at most n for all x,y £ G.

(d) if(x + <i2/i + . . . + tkyk) is a polynomial in (*i, . . . , < * ) G Z + of degree

at most n for all x, y\, ... , yt £ G, and k > 0 .

PROOF: That (a) implies (b) is obvious. If (b) holds then by Proposition 2.1
n

we have ip(x + ty) = £) (*)AyV(x)> showing that (b) implies (c). Given (c) and

*,Vu • • • ! » * GG, define V(*) = <p{x +*ij/i + . . . +tkyk) for (tlt . . . , tk) £ Z* . Then
•0 is a polynomial in each tj of degree at most n. So ip is a polynomial in t of degree
at most kn. Hence

aat
a, where aa £ C, a = (ai , . . . , ak) £ Zk

+ and \a\ = cti + ... + ak.

Moreover, for X £ Z + , the function

aa^
alta ^ <p(x + XtlVl + ... + Xtkyk)

is again a polynomial in A of degree at most n. Hence aa = 0 for |a| > n,

showing that (c) implies (d). Finally, given (d) and x,yi, ... , yn+i G G, define

V>(<) = tp{x + tiyi +•••+ tn+1yn+1) for (t i , . . . , t n + 1) £ Z%+1. Then V is a poly-

nomial in t of degree at most n. So all (n+l)th differences of i/> are zero. Hence, by

Proposition 2.2, Ay i . . . Ayn+1<p(x) = Alfl... Aiin+iV>(0) = 0, showing that (d) implies

(a). D
THEOREM 2 . 4 . For a function ip £ G{G) the following are equivalent:

(a) ip is a polynomial of degree n.
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(b) A£+1<p = 0 for all y G G and A^ip ^ 0 for some y eG.
(c) tp is a polynomial of degree n in the sense of Domar.

(d) ip(x + <ij/i + . . . + tkyk) is a polynomial in ( t i , . . . , * * ) e Z+ of degree

at most n for all x,yi, ... , t/t G G, k > 0 and of degree n for some

z>2/i, ••• , yk G G, k > 0 .

PROOF: Given (d), we have Proposition 2.3(c). Moreover we can choose

31,2/1, . . . ,yk such that tp(x + <ij/i + . . . + tkyk) is a polynomial in {h, ... , tk) G TL\

of degree n. So tp(x + tiyi + ... + tkyk) = X) a « * a > where oQ € C, and £) aat
a is

not identically zero. Choose t so that ^2 aat
a ^ 0 and set y — <ij/i + . . . +

|a|=n

Then y>(« + Ay) = ^Z a a t a A'™' is a polynomial in A G Z+ of degree n, showing
|a|<n

that (d) implies (c). Given(c), we have Proposition 2.3(b). Moreover, there exist
n

x,y £ G such that y>(z + ty) is of degree n in t G .£+. So y>(z + it/) = Yl ajt* where
j=o

n
a,j G C,an ^ 0. By Proposition 2.2, A£y>(z) = XI ajA^t' = ann\ ^ 0, showing that

i=o
(c) implies (b). That (b) implies (a) is obvious. Finally, if (a) holds then Proposition

2.3(d) holds. Moreover, there exist z ,y i , . . . , j n G G such that ABl . . . Ayntp(x) ^ 0.

So <p(x + <ij/i + . . . + tnyn) = X) aata a n°l ^y Proposition 2.2, A y i . . . Ayn<p(x) = ap

where /3 = ( 1 ,1 , . . . , 1) G Z™ . So ap ^ 0 and <p(x + tiyi + . . . + tnyn) is a polynomial

in (ti, ... , tn) of degree n, showing that (a) implies (d). U

REMARKS 2.5. (a) On any Abelian group G the polynomials of degree 0 are precisely
the constant functions. Polynomials of degree larger than 0 are unbounded. So the
only polynomials on a compact group are the constant functions. Any polynomial ip

on G of degree 1 is of the form <p(x) — <fi(0) + <x(x), where a(x + y) = a(x) + a(y) for
x,y£ G.

(b) The definition of polynomials and the results proved so far in this section require
only that G be an Abelian topological semigroup.

We turn now to the investigation of spectra of polynomials.

PROPOSITION 2 . 6 . Let p be a non-zero polynomial on G. Suppose that w is

a weight function satisfying (1.8) and p G L™{G). Then epw(fp) — {7} for all 7 eG.

In particular apw(p) = {e}

PROOF: Let p have degree n. By Theorem 2.4, A"op ^ 0 for some y0 G G. Ap-

plying Proposition l . l(f) n times we obtain apu,(A™Qp) C apw(p) C {e} \J spw(Ayp) .

But by Proposition 1.1 (d), «pw(A£op) = {e} and spw{A^p) C {e} for each y eG.
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Hence spw(p) = {e} and by Proposition l.l(e), spw(jp) — {7}. D

3. PRIMARY IDEALS AND FUNCTIONS WITH FINITE SPECTRUM

In this section we study Beurling algebras L\,(G) when the weight function w

satisfies the following two conditions for some N € Z+:

(3.1) sup N+a(x) < °° f°r "Jl * 6 ^ a n ( i some a(x) < 1;

(3.2) inf w{m*' > 0 for some x E G.
mez \mf

It should be noted that condition (3.1) implies the Beurling-Domar condition (1.8).
Using conditions (3.1) and (3.2) we characterise those functions <p 6 L™(G) for which
spw((p) is finite.

We begin by studying the primary ideals of £i,(Z) when w satisfies (3.1) and

(3.2) with G = Z. Recall that a primary ideal is one that is contained in exactly one

maximal ideal, and the cospectrum of an ideal J of L^G) is the set {7 £ G : f(j) —

Ofor a l l / G J}.

When G = Z, conditions (3.1) and (3.2) are equivalent to the existence of C\ >

0,c2 > 0 and a S (0,1) such that

(3.3) ci ( l + |m|W) < w{m) ^c2(l + \m\N+a^ for all m E Z.

In this case, {/ : / 6 /^(Z)} is a subalgebra of CN(T), the algebra of continuous
functions on T — R/27rZ with derivatives up to order N also continuous on T. We
then define

(3.4) h = {f e £j,(Z): /W(e) = 0 for 0 s$ j ^ k}, where O^k^N.

So Ik is a closed primary ideal of i^(Z) with cospectrum {e}.

THEOREM 3 . 1 . Let w be a weight function on Z satisfying (3.3). Then

Io,Ii, • • • , IN are t i e only closed primary ideals of L^li) with cospectrum {e}.

PROOF: Let em(n) = 8m,n denote the Kronecker function, where m,n G Z . Then
ei and e_i generate the algebra L^Z), and e\(t) = eH and eZi(t) - e~H for t eT.
Moreover, e™ = em so a m = ||ej* jlj w = w(m) for each m € Z . It follows from (3.3)

that Urn (1 -r)N+2 £ amrm = Urn (1 - r)N+2 £ « - m r ~ m = 0 . By a theorem
r — 1 - m = 0 »--»l- m=0

of Gelfand [4, p.209], £^,(Z) has exactly N+l ideals with cospectrum {e}, namely
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PROPOSITION 3 . 2 . Let w be a weight function on Z satisfying (3.3). If 0 ^
Jfc < N then AJ+1/ € h for ai] m £ Z and ail / £ £i,(Z).

PROOF: K 5 = A£,+1/ then £(*) = (ei lm - l)*+1/(<). Hence g £ J* as claimed. D

COROLLARY 3 . 3 . Let w be a weight function on Z satisfying (3.3). If tp 6
and spu,(y>) = {e}, then ip is a polynomial of degree at most N.

PROOF: Since Iw(<p) is a closed ideal with cospectrum {e}, we conclude from
Theorem 3.1 that Iw(tp) = Ik for some k, 0 ^ ifc < N. Now for arbitrary / € L\,(Z)
and m 6 Z, we have Ak_^f € h and so /* * A*+V = (A*^1/)* * f = 0. So
/»(A^+V) = Ll(Z) and sPtl)(A£+V) = 0- By Proposition 1.1 (d), A*+V = 0, and
by Proposition 2.3, tp is a polynomial of degree at most k. D

We now consider functions on more general groups G.

THEOREM 3 . 4 . Let w be a weight function satisfying (3.1) and (3.2) and let
tp £ L^(G). Let spw(tp) = {71, . . . , 7n}- Then there exist polynomials p\, ... , pn

n

in L^{G) of degree at most N such that <p = £) fkPk • la particular if spw(ip) = {£}
fc=i

tiien tp = p for some polynomial p of degree at most N.

PROOF: AS spw((p) is compact, <p coincides almost everywhere with a continuous
function. (See [5, p.142].) We may therefore assume <p £ C(G). Now suppose spw(<p) —
{e}. For y £ G, let Hy be the subgroup generated by y and let Ky be its closure.
Let viy be the restriction of w to Ky and tpy[h) = <p(h + y) for h £ Ky. Then
ipy £ £Jf (.Ky) asl^- by a theorem of Reiter (see [5, p.144]) spWy(ipy) C ^{spw(ip)) —
{e^}, where ir : G —* Ky is the canonical projection and ey is the unit in Ky. By
a theorem of Weil (see [5, p.88]) either Ky is compact or Ky is isomorphic to Z
(Hy = Z). If K is compact then tp is bounded with sp(tpy) C {ey}• Therefore tpy is
a constant. (See Rudin [6, 6.8.3].) On the other hand, by Corollary 3.3, if Hy = Z
then tp is a polynomial of degree at most N. Applying these results to ip, defined by
ip(z) = <p(x + z) for x,z £ G, and noting that apw(^)) = apw(tp) we conclude that
tp(x + my) is a polynomial in m £ Z+ of degree at most N for each x,y £ G. So tp
is a polynomial of degree at most N. For the general case, spw{<p) = {71, . . . , 7n},
choose a neighbourhood V of {e} in G and functions / 1 , . . . , / n £ L^G) such that
/it = 1 on jkV and jjV D 7*V = supp/,- D supp/t = 0 for j , k = 1, . . . , n and
j ^ k. (See Proposition l.l(b).) Then apw(fl * tp) C supp/j. D ^^ (v ) = {74} and
by the first part of this proof, 7j71(/jb * f) = P* 1 a polynomial of degree at most N. So

n n ^

f* * tp = ^2 jkPk, where / = J ) /* . But / = 1 on a neighbourhood of spu(y>) and

so, again by Proposition 1.1, /* * (p = tp. D
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4. UNIFORMLY CONTINUOUS FUNCTIONS WITH BOUNDED DIFFERENCES

Let C-u(G) be the space of uniformly continuous complex-valued functions on G.

Let Cub(G) = CU(G) D L°°(G) and denote by Cttd{G) the linear subspace of CU(G)

consisting of functions <p G CU(G) satisfying

(4.1) Ah<p G Cub{G) for all h G G.

We notice that if G is connected then by a theorem of Pontrjagin (see [5, p.97])
G = K X Rn, where K is compact and connected and n ^ 0. It follows that Cud{G) =
CU(G).

In this section we study the spectra of functions <p G Cud(G). To do this we
construct associated Beurling algebras. Indeed, define wv : G —> C by

(4.2) wv(y) = 1 + IdlA^IL + ||A_,V||J, y G G.

PROPOSITION 4 . 1 . If ip £ Cud{G) then wv is a uniformly continuous weight
function on G satisfying the condition

(4.3) lim Wv{™x) = 0 for all x g G.

Moreover <p G L^

PROOF: Let a(y) = wv(y) - 1. Then a(yi + y2) ^ a(yi) + a(y2), a(y) = a{-y),
and |a(j/i +1/2) — "(j/2)| ^ «(l/i) for I/)J/ii3/2 6 G. It follows that a and wv are
uniformly continuous on G, and that w^, is a weight function. Moreover, for n £ Z
and y £ G, wv(rny) — 1 + a(mi/) < 1 + |m|a(t/), from which (4.3) follows. Finally,
M*) | ^ |v(*)-V(O)| + 1̂ (0)1 ^ 2o(«) + |V(0)| ^ (2+|v>(0)IW(*), for s G G,
showing <p£L%v(G). U

We remark that condition (4.3) implies condition (3.1) with N=l. This in turn
implies the Beurling-Domar condition (1.8).

THEOREM 4 . 2 . If <p e Cud{G) and egspWv(<p) then tp is bounded.

PROOF: Let V be a compact neighbourhood of e" such that V D spWip(tp) — 0.
By Proposition 1.1 there exists / G L\, (G) such that supp/ C V and /(e) = 1. So
»Pv.¥(F * V) = 0 and hence / • • <p = 0. Hence tp(t) = <p{t) - f* * <p{t) = Ja[<p(t) -

<p(t-s)]r(8)ds and \<p(t)\ ^ 2jawv(a)\r{s)\ da - 2 | | / | | l i t i v > for t e G . So «P is

bounded. D

As is customary, we identify R n with R n so that R™ becomes an additive
group with unit 0. We now consider the indefinite integrals Pip(xi,X2, ..,xn) —

/O
ZI <p(i,x2, ..,xn)dt of functions <p G L°°(Rn).
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THEOREM 4 . 3 . If <p e L°°(Rn), 0 £ ap(<p) and Pip G Ca(Rn) then Pip is

bounded.

PROOF: If w(xi, . . . , xn) = 1 + |xi| then w is a weight on R n satisfying (1.8)

and <p,P<p G ZJjf(Rn). By remark 1.2, sp(tp) = spw(<p) and similar to Proposition

l. l(f) , apw{Ptp) C ap{ip) U {0} . Let V be a neighbourhood of 0 with sp(ip) C\V —

0. By Proposition l . l (b) , there is a function h G L\,{Kn) such that h = 1 on a

neighbourhood W of 0 and supp/i C V. By Proposition 1.1 (a), spw(h* * Pip) C {0}

and h* *ip = 0. Since w also satisfies the conditions (3.1) and (3.2) with N = l , we have

by Theorem 3.4, h* * Pip — p, a polynomial of degree at most 1 in £ ~ ( R n ) . Since, by

(1.7) |p(x)| ^ c(l + |a:i|) for some constant c > 0 and all z E Kn, we conclude that

p(x) = h* * Pip — ci + c2xi for some ci,c2 G C. But (d(h* * Pip))/(dx1) - h**ip -0.
Hence c2 = 0 and h* * Pip = c\. If 77 = Py> — c\ then 0 ^ spwiv) • Indeed, h* * 77 =

A* * i V - h* * ci = ci - cx = 0. Thus h 6 i ^ ) and h(0) = 1, showing 0 £ sp^ry).

Finally, 77 G Cu(En) = Cu(<(Rn) so by Theorem 4.2, 77 is bounded. Hence Pip = 77 + ci

is bounded. U

COROLLARY 4 . 4 . If y? G L°°(R) and 0 ^ sp(tp) then Pip is bounded.

PROOF: Since \Pip{x) - Pip(y)\ ^ Hvlloo I35 ~ »l» Pf G Cu{&) and the corollary

follows from the theorem. U

REMARK 4.5. Let ip{x) — xetx and 10(35) = 1 + |a;| for x G R. By Proposition 2.6

spw{ip) — {1} . So 0 ^ spw{ip) yet ip is unbounded. Hence the condition ip G Cud{G)

is necessary in Theorem 4.2. Let ip{x,y) = e** for (x,y) G R2. Then sp(ip) = {(0,1)} .

So (0,0) 0 sp(p) yet Pip(x,y) - xeiy is unbounded. Hence the condition Pip G C«(R)

is necessary in Theorem 4.3.
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