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POLYNOMIALS AND FUNCTIONS WITH FINITE
SPECTRA ON LOCALLY COMPACT ABELIAN GROUPS

B. BASIT AND A.J. PRYDE

In this paper we define polynomials on a locally compact Abelian group G and
prove the equivalence of our definition with that of Domar. We explore the proper-
ties of polynomials and determine their spectra. We also characterise the primary
ideals of certain Beurling algebras Li,(Z) on the group of integers Z. This al-
lows us to classify those elements of Ly (G) that have finite spectrum. If ¢ is a
uniformly continuous function with bounded differences then there is a Beurling
algebra naturally associated with ¢. We give a condition on the spectrum of ¢
relative to this algebra which ensures that ¢ is bounded. Finally we give spectral
conditions on a bounded function on R that ensure that its indefinite integral is
bounded.

1. INTRODUCTION, NOTATION AND PRELIMINARIES

Throughout this paper G will denote a locally compact Abelian group equipped
with Haar measure. We consider certain unbounded functions ¢ : G — C and discuss
the notion of Beurling spectrum for ¢.

Firstly, the spaces LP(G) with corresponding norms ||.||, are defined as usual
using the Haar measure (see [6]). We shall always identify functions on G which agree
almost everywhere (see [3 p.36]). In particular, L!}(G) is a Banach algebra under the
convolution product and carries an involution defined by

(1.1) f*(2)=f(-z) for =z€G, felLYG).

By L{2.(G) we mean the space of functions ¢ : G — C such that xx¢ € L>(G)
for every compact set K C G, xk denoting the characteristic function of K.

The action of the dual group G on G will be denoted y(z) = (z,7) where z € G,
4 € G and the Fourier transform of f € LY(G) is defined by f('y) =[5 f(z)(—z,7)dz
for v € G. Unless otherwise stated, the group operation on G will be addition and
on G multiplication. The unit character in G is denoted by €. The translate ¢y and
difference A, ¢ by y € G of a function ¢ : G — C are defined by

(1.2) py(z) = p(z +y) and Ayp(z) =p(z +y) —p(z) for z € G.
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Following Reiter [5, p.83] we call a function w € L{2,(G) a weight function on G
ifforall z,yc G

(1.3) w(z)> 1,
(1.4.) w(z +y) < w(z)w(y).

Given a weight on G we define
(1.5) IL(G) = {f € I}(G) : 0 = /G (=) w(=) dz < oo}.

Then LL(G) is a subalgebra of L}(G) which is a Banach algebra under the norm 101, -
The Banach space dual of L. (G) is

le(2)|
w(z)

(1.6) L3(G) ={p € L5A(G) : [|#lloo, = €58 s sup < oo}

As noted by Reiter [5, p.84], we may assume that w is upper semicontinuous, and so
each continuous function ¢ € LL(G) satisfies

(1.7) 19(2)] < 9llogyw(z) forallz €@

It is known that LL(G) is a Wiener algebra if and only if w satisfies the following
condition of Beurling-Domar [5, p.132], {1, Theorem 2.11]:

(1.8) Zbg":nﬂ<oofora.llz€G

m=1

These algebras were introduced by Beurling for the case G = R and studied in the
general case by Domar (see [1]).

If o € LY(G), f* * ¢ is well-defined for all f € L1 (G) and IL,(¢) = {f € LL(G) :
f* * @ = 0} is an ideal of the algebra L. (G). We define the Beurling spectrum of ¢
relative to L1 (G) to be the set

(1.9) spuw(p) = hull I(p) = {y € G : f(y) = 0 for all f € L,(¢)}-

As each such function f 1s continuous on @, spuw(p) is a closed subset of G.
If in addition w is bounded, so that L} (G) = L'(G), we shall write I(p) = I,(y)
and sp() = spu(p).
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PROPOSITION 1.1. Let w be a weight function on G satisfying the condition
(1.8) and let ¢ € L(G).

(a) spw(f* *¢) C supp f Nspu(yp) for all f € LL(G). ~

(b) Given a neighbourhood V of a compact set W in G, there exists f €
LY(G) such that f=1on W andsuppfCV.

(c) KfelLlG) and F=1 on a neighbourhood of spw(p) then f*xp =p.

(d) spw(p) = 0 if and only if ¢ = 0 and sp,(p) = {€} if ¢ is a non-zero
constant.

(€) spul(rp) = 15pu(p) forall v € G.

(f)  spu(Byp) C spu(p) C {€}U,cq 3pw(Azp) forall y € G.

PROOF: Since L) (G) is a Wiener algebra the proof of (a)-(e) can be carried out
in the same manner as for L(G). See [2, p.988] or [5, pp.140-141].

Let y € G. Since L(G) is translation invariant, I,(¢) C I,(Ayp). Hence
3pw(Ayp) C spu(p). Conversely, suppose v & sp,,(A.p) forall z € G, and v # €.
Then there exists z € G such that 7(z) # 1 and f € I,(A.p) such that f(y) #0.
If g=A_,f then §(v) = (v(—2) — 1)f(7) # O whereas g* x ¢ = f* x A,p = 0. So
g € I,(p) which implies 4 & spw(¢). This proves (f).

REMARK 1.2. Let w; and w, be two weight functions on G satisfying the condition
(1.8). If ¢ € L, (G)N LG, (G) then spy, (¢) = 8pw,(¢). Indeed, w = wiw; is also a
weight function on G satisfying (1.8). Since w; € w and w; < w it follows from [5,
p.138} that spw,(¥) = $pw(P) = 8puw,(¢). If ¢ € L(G) and w is a weight function
satisfying (1.8), then ¢ € LY (G) and so spy(p) = sp(p)-

2. POLYNOMIALS AND THEIR SPECTRA

In this section we define polynomials on G and prove the equivalence of our defini-
tion with that of Domar [1, Definition 2.3.2]. We explore the properties of polynomials,
and prove in particular that sp,(p) = {€} for each non-zero polynomial p € L (G).

A continuous function ¢ : G — C will be called a polynomial of degree n if

(2.1) Ay .. .Ay =0 forall y1,..., Y1 €G
(2.2) Ay ...y ¢ #0 for some yy,...,yn €G.

Denote by Z, the semigroup of non-negative integers with the discrete topology.
Set Z% = (Z4)*, k> 1. For arbitrary topological semigroups H denote by C(H) the
set of continuous complex valued functions on H. The following two propositions will
be found useful. The first is proved by induction and the second, a simple chain rule

for difference operators, is obvious.
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PROPOSITION 2.1. If ¢ € C(G) then ¢(z +my) = i (7)Ajp(z) for all
i=0
m€E€Zy and z,y € G.

PROPOSITION 2.2. Given & € C(G"), define ¥ € C(Z%3 xG") by

‘I’(tl, vee sy tny Y1y ee 7yn) = Q(tlyl, ...,tnyn), where tJ € Z+ and Yji € G. K
A, ; denotes difference by y in position j only, then ij,j@(tlyl, veestnyn) =
Al,jq’(tl, cee sty Y1y -y yn).

Recall that a function ¢ € C(G) is a polynomial of degree n in the sense of Domar
if p(z + ty) is a polynomial in ¢ € Z of degree at most n for each z,y € G and of
degree n for some z,y € G.

PROPOSITION 2.3. For a function ¢ € C(G) the following are equivalent:
(a) Ay .--Dyp=0foraly,...yn+1 €G.
(b) Atlo=0forall yeG.
(¢) (z +ty) is a polynomial in t € Z4 of degree at most n for all z,y € G.
(d) @(z+tiys + ...+ teyx) is a polynomial in (t1, ..., tx) € Z% of degree
at most n for all z,y;,...,yx € G,and k> 0.
ProoF: That (a) implies (b) is obvious. If (b) holds then by Proposition 2.1
we have p(z +ty) = % (;) Alp(z), showing that (b) implies (c). Given (c) and
J=
Z,91, ..., Y& € G, define $(t) = p(z + tiya + ... +txyx) for (t1, ..., tx) € ZX. Then
¥ is a polynomial in each t; of degree at most n. So % is a polynomial in t of degree
at most kn. Hence

P(t) = Z ant®, where a, €C, a =(az, ..., ak) EZ_’;_ and |a|=a; + ...+ a;.
|e|Skn

Moreover, for A € Z,, the function

P(At) = Z ag Mot = oz + My + ... + Myr)

lxl<kn
is again a polynomial in A of degree at most n. Hence aqa = 0 for |af > n,
showing that (c) implies (d). Finally, given (d) and z,y1,...,¥n4+1 € G, define

¥(t) = p(z +tyr + -+ tag1yns1) for (t1, ..., ta41) € Z}*. Then 4 is a poly-
nomial in t of degree at most n. So all {n+1)th differences of 4 are zero. Hence, by
Proposition 2.2, Ay, ... Ay, ., ¢(2) = A11...A1,n+1%(0) = 0, showing that (d) implies
(a). 0
THEOREM 2.4. For a function ¢ € C(G) the following are equivalent:
(a) ¢ is a polynomial of degree n.
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b) Arlp =0 forall yc€ G and A%p # 0 for some y € G.
v ¥ v
(c)  is a polynomial of degree n in the sense of Domar.
(d) ¢(z+tiys + ...+ trys) is a polynomial in (1, ..., tk) € ZX of degree

at most n for all z,y1,...,yx € G,k > 0 and of degree n for some
Z,Y1,..-, Y €EG, E>0.

PROOF: Given (d), we have Proposition 2.3(c). Moreover we can choose
Z,Y1, ... , Y& such that @(z + tiy1 + ...+ tgyx) is a polynomial in (21, ..., tx) € Z%
of degree n. So p(z +tiys +... +tkyr) = Y. @at™, where ao € C, and Y, aqt®is

lal<n lal=n
not identically zero. Choose t so that Y. ant® # 0 and set y = t1y1 + ... + Ly -
lee|=n

Then @(z+Ay) = Y aqat®Al?l is a polynomial in A € Z, of degree n, showing
lel<n

that (d) implies (c). Given(c), we have Proposition 2.3(b). Moreover, there exist
n .
z,y € G such that o(z +1y) is of degreenin t € Z;. So p(z +ty) = Y. ajt’ where

=0

a;j € C,a, # 0. By Proposition 2.2, Alp(z) = Y ajATt/ = ann! # 0, showing that
i=0
(c) implies (b). That (b) implies (a) is obvious. Finally, if (a) holds then Proposition
2.3(d) holds. Moreover, there exist z,y1, ..., yn € G such that Ay ... A, ¢(z) #0.
Sop(z +tiyr +... +tayn) = , ; aot* and by Proposition 2.2, A, ... Ay, ¢(z) = ag
al<n

where 8 = (1,1,...,1) € Z}. So ag # 0 and @(z + t1y1 + ... + tnYn) is a polynomial
in (t1, ..., ty) of degree n, showing that (a) implies (d). 0

REMARKS 2.5. (a) On any Abelian group G the polynomials of degree 0 are precisely
the constant functions. Polynomials of degree larger than 0 are unbounded. So the
only polynomials on a compact group are the constant functions. Any polynomial ¢
on G of degree 1 is of the form ¢(z) = ¢(0) + a(z), where a(z +y) = a(z) + a(y) for
z,y€GqG.

(b) The definition of polynomials and the results proved so far in this section require
only that G be an Abelian topological semigroup.

We turn now to the investigation of spectra of polynomials.

PROPOSITION 2.6. Let p be a non-zero polynomial on G. Suppose that w is
a weight function satisfying (1.8) and p € LY(G). Then sp,(yp) = {7} forall vy €G.
In particular sp,(p) = {€}

PROOF: Let p have degree n. By Theorem 2.4, A} p # 0 for some yo € G. Ap-
plying Proposition 1.1(f) n times we obtain sp, (A;‘op) C spw(p) C {€} U spw (A;‘p) .
yeEG

But by Proposition 1.1 (d), sp., (A;‘op) = {€} and spw(A;‘p) C {€} for each y € G.
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Hence spw(p) = {€} and by Proposition 1.1(e), spu(7p) = {7}. 0

3. PRIMARY IDEALS AND FUNCTIONS WITH FINITE SPECTRUM

In this section we study Beurling algebras L. (G) when the weight function w
satisfies the following two conditions for some N € Z:

(3.1) p - T(T:‘Z"‘(') < oo for all z € G and some a(z) < 1;
meZl + |m
(3.2) inf w(m;) > 0 forsome z € G.
meZ |m|

It should be noted that condition (3.1) implies the Beurling-Domar condition (1.8).
Using conditions (3.1) and (3.2) we characterise those functions ¢ € L(G) for which
8pw(¢p) is finite.

We begin by studying the primary ideals of L1(Z) when w satisfies (3.1) and
(3.2) with G = Z. Recall that a primary ideal is one that is contained in exactly one
maximal ideal, and the cospectrum of an ideal J of L (@) is the set {y € G: f('y) =
0 for all f € J}.

When G = Z, conditions (3.1) and (3.2) are equivalent to the existence of ¢; >
0,¢2 > 0 and a € (0,1) such that

(3.3) a1 (1 + |m|N) <w(m)<ec (1 + |m|N+°) for all m € Z.

In this case, {f : f € LL(Z)} is a subalgebra of CN(T), the algebra of continuous
functions on T = R/27Z with derivatives up to order N also continuous on T'. We
then define

(3.4) Iy = {f € LL(Z): fY)(€) = 0for 0 < j < k}, where 0 < k < N.

So I} is a closed primary ideal of L. (Z) with cospectrum {e}.
THEOREM 3.1. Let w be a weight function on Z satisfying (3.3). Then
Iy, I, ..., In are the only closed primary ideals of L., (Z) with cospectrum {€}.
PROOF: Let em(n) = ém,n denote the Kronecker function, where m,n € Z. Then
e; and e_; generate the algebra L. (Z), and éi(t) = ¢ and e_{(t) = e for t € T.
Moreover, e* = em 50 am = ||eT*||; ,, = w(m) for each m € Z. It follows from (3.3)
oo oo
that lim (1 -7r)"*? ¥ apr™ = Lm (1 —r)¥*? S a_,r~™ = 0. By a theorem
r—l— m=0 r—1- m=0
of Gelfand (4, p.209]), LL(Z) has exactly N+1 ideals with cospectrum {€}, namely
IyI, ..., In.
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PROPOSITION 3.2. Let w be a weight function on Z satisfying (3.3). If 0 <
k< N then A"‘HfEIk for all m € Z and all f € L (Z).

PROOF: If g = AEF1f then g(t) = (ef™ — )k+1f(t) Hence g € I; as claimed. [}

CorROLLARY 3.3. Let w be a weight function on Z satisfying (3.3). If ¢ €
L1(Z) and sp,(p) = {€}, then ¢ is a polynomial of degree at most N.

PROOF: Since I,(p) is a closed ideal with cospectrum {€}, we conclude from
Theorem 3.1 that I,(¢) = It for some k, 0 < k < N. Now for arbitrary f € L. (Z)
and m € Z, we have A*!f € I and so f* x Akt = (Ak‘”f) *p = 0. So
I,(AkF'p) = LL(Z) and sp,(A%f'¢) = 0. By Proposition 1.1 (d), A¥flp =0, and
by Proposition 2.3, ¢ is a polynomial of degree at most k. 0

We now consider functions on more general groups G.

THEOREM 3.4. Let w be a weight function satisfying (3.1) and (3.2) and let
¢ € L(G). Let spu(¢) = {M1,...,n}. Then there exist polynomials p1, ..., pn

in LY(G) of degree at most N such that ¢ = Y vpx. In particular if sp.,(p) = {€}
k=1
then ¢ = p for some polynomial p of degree at most N.

PROOF: As spy(¢p) is compact, ¢ coincides almost everywhere with a continuous
function. (See [5, p.142].) We may therefore assume ¢ € C(G). Now suppose sp,(p) =
{€e}. For y € G, let H, be the subgroup generated by y and let K, be its closure.
Let w, be the restriction of w to K, and ¢y(h) = ¢(h+y) for h € K;. Then
¢y € L3 (Ky) and by a theorem of Reiter (see [5, p.144]) spw,(y) C m(spu(p)) =
{&}, where = : G — K, is the canonical projection and €, is the unit in K,. By
a theorem of Weil (see [5, p.88]) either K, is compact or K, is isomorphic to Z
(Hy =Z). If K is compact then ¢ is bounded with sp(p,) C {€,}. Therefore ¢, is
a constant. (See Rudin [6, 6.8.3].) On the other hand, by Corollary 3.3, if Hy, = Z
then ¢ is a polynomial of degree at most N. Applying these results to 1, defined by
¥(z) = ¢(z + 2) for z,z € G, and noting that sp,(¥) = spu(p) we conclude that
¢(z + my) is a polynomial in m € Z, of degree at most N for each z,y € G. So ¢
is a polynomial of degree at most N. For the general case, spy,(9¢) = {71, ..., n},
choose a neighbourhood V of {} in G and functions fy, ..., fa € L:,,(G) such that
f =1 on vV and 4; VNV = suppf, N suppf;= =0 for b =1,...,n and
j # k. (See Proposition 1.1(b).) Then spy(fi *¢) C supp fi N spw(p) = {—yk} and
by the first part of this proof, 75 '(f{ * ¥) = px, a polynomial of degree at most N. So

f**o =3 vipr, where f = Y fi. But f=1ona neighbourhood of sp,(¢) and
k=1 k=1

so, again by Proposition 1.1, f* ¢ = ¢. 0
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4. UNIFORMLY CONTINUOUS FUNCTIONS WITH BOUNDED DIFFERENCES

Let Cu(G) be the space of uniformly continuous complex-valued functions on G.
Let Cup(G) = Cu(G) N L*°(G) and denote by Cu4(G) the linear subspace of Cy(G)
consisting of functions ¢ € Cy(G) satisfying

(4.1) App € Cyup(G) for all h € G.

We notice that if G is connected then by a theorem of Pontrjagin (see [5, p.97])
G = K x R™, where K is compact and connected and n > 0. It follows that Cy4(G) =
Cu(G).

In this section we study the spectra of functions ¢ € Cu4(G). To do this we
construct associated Beurling algebras. Indeed, define w, : G — C by

1
(4.2) we(y) =1+ 5 (1849l + 18-4¢ll) ¥ € G-

ProrPosITION 4.1. If ¢ € Cui(G) then w, is a uniformly continuous weight
function on G satisfying the condition

wy(mz)

(4.3) =0 forall z € G.

|mj—o0 m
Moreover ¢ € L3 (G).

PROOF: Let a(y) = wy(y) — 1. Then o(y1 +132) < a(y1) + a(y2), afy) = o(-y),
and |a(y1 +¥2) — a(y2)| € a(y1) for y,y1,¥2 € G. It follows that « and w, are
uniformly continuous on G, and that w, is a weight function. Moreover, for n € Z
and y € G, wy(my) = 1+ a(my) < 1+ |m|a(y), from which (4.3) follows. Finally,
le(2)] < le(z) — e(0)] + le(0)] < 2a(z) + [0(0)] < (2+ |¢(0)Jwe(z), for = € G,
showing ¢ € LY (G). 0

We remark that condition (4.3) implies condition (3.1) with N=1. This in turn
implies the Beurling-Domar condition (1.8).

THEOREM 4.2. If p € Cua(G) and € ¢ spy,(p) then ¢ is bounded.

PROOF: Let V be a compact neighbourhood of € such that V N spy, () = 0.
By Proposition 1.1 there exists f € L}%(G) such that suppr V and f(éj =1. So
8pw,(f* *p) = 0 and hence f* xp = 0. Hence p(t) = o(t) — f* * p(t) = [5le(t) -
ot — $)11*(s)ds and lp(t)] < 2 fqwe(s)|F*(s)] ds = 2| fll . for t € G. So ¢ is
bounded. U

As is customary, we identify R™ with R™ so that R™ becomes an additive
group with unit 0. We now consider the indefinite integrals Py(z1,Z2,..,Zn) =
ot e(t, 22, .. ,zn) dt of functions ¢ € L®(R™).
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THEOREM 4.3. If ¢ € L=(R"), 0 ¢ sp(¢) and Py € Cu(R™) then Py is
bounded.

ProOF: If w(zy,...,2n) = 1+ |2;| then w is a weight on R™ satisfying (1.8)
and ¢,Pp € LP(R™). By remark 1.2, sp(¢) = spw(p) and similar to Proposition
1.1(f), spw(P¢) C sp(¢) U {0}. Let V be a neighbourhood of 0 with sp(p) NV =
0. By Proposition 1.1(b), there is a function h € L.(R") such that » = 1 on a
neighbourhood W of 0 and supph C V. By Proposition 1.1 (a), spw(h* * Pp) C {0}
and h*xp = 0. Since w also satisfies the conditions (3.1) and (3.2) with N=1, we have
by Theorem 3.4, h* x Py = p, a polynomial of degree at most 1 in LZ(R™). Since, by
(1.7) |p(2)| € ¢(1+ |#1]) for some constant ¢ > 0 and all z € R™, we conclude that
p(z) = h* * Pp = ¢1 + caz; for some ¢;,¢2 € C. But (8(h* * Pp))/(0z1) = h* xp = 0.
Hence ¢ = 0 and h* * Pp = ¢;. If n = Pp — ¢; then 0 ¢ sp,(). Indeed, h* x5 =
h*x Po —h*%¢; = ¢; — ¢y = 0. Thus h € I,(7) and h(0) = 1, showing 0 ¢ spw(n).
Finally, 7 € C4(R™) = Cr4(R™) so by Theorem 4.2, 5 is bounded. Hence Py =7+ ¢;
is bounded. 0

COROLLARY 4.4. If ¢ € L°(R) and 0 ¢ sp(p) then Py is bounded.

PROOF: Since |Pp(z) — Po(y)| < |lello Iz — yl, Py € Cu(R) and the corollary
follows from the theorem. 1]

REMARK 4.5. Let p(z) = ze*® and w(z) = 1 + |z| for z € R. By Proposition 2.6
spuw(p) = {1}. So 0 & spu(¢) yet ¢ is unbounded. Hence the condition ¢ € Cud(G)
is necessary in Theorem 4.2. Let ¢(z,y) = e for (z,y) € R2. Then sp(p) = {(0,1)}.
So (0,0) ¢ sp(p) yet Py(z,y) = ze'¥ is unbounded. Hence the condition Py € Cyu(R)
is necessary in Theorem 4.3.
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