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Coating flow on a rotating cylinder in the
presence of an irrotational airflow with
circulation
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A detailed analysis of steady coating flow of a thin film of a viscous fluid on the outside
of a uniformly rotating horizontal circular cylinder in the absence of surface-tension
effects but in the presence of a non-uniform pressure distribution due to an irrotational
airflow with circulation shows that the presence of the airflow can result in qualitatively
different behaviour of the fluid film from that in classical coating flow. Full-film solutions
corresponding to a continuous film of fluid covering the entire cylinder are possible only
when the flux and mass of fluid do not exceed critical values, which are determined in
terms of the non-dimensional parameters F and K representing the speed of the far-field
airflow and the circulation of the airflow, respectively. The qualitative changes in the
behaviour of the film thickness as F and K are varied are described. In particular, the
film thickness can have as many as four stationary points and, in general, has neither
top-to-bottom nor right-to-left symmetry. In addition, when the circulation of the airflow
is in the same direction as the rotation of the cylinder the maximum mass of fluid that
can be supported on the cylinder is always less than that in classical coating flow, whereas
when the circulation is in the opposite direction the maximum mass of fluid can be greater
than that in classical coating flow.

Key words: thin films, coating

1. Introduction

The interaction between an airflow and a film of viscous fluid on a solid substrate is
a fundamental problem in fluid mechanics, not only because of its intrinsic scientific
interest, but also because of its relevance to a wide range of practical situations.
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For example, the interaction between the wind and the rivulets of rainwater that form on
the cables of cable-stayed bridges on wet and windy days is believed to play a key role in
the potentially damaging rain–wind-induced vibrations of such cables (Lemaitre, Hémon
& de Langre 2007; Robertson et al. 2010; Taylor & Robertson 2011, 2015; Gao et al. 2018),
the interaction between the airflow within and the film of oil on the inside of the outer shaft
of the bearing chamber in a rapidly rotating aeroengine is an important aspect of the overall
performance of the engine (Farrall et al. 2006; Noakes, King & Riley 2011; Williams et al.
2012; Kay, Hibberd & Power 2015; Nicholson et al. 2019), the jet-wiping (or air-knife)
coating process in which impinging jets of air are used to control the thickness of a fluid
film on a moving substrate (Barreiro-Villaverde, Gosset & Mendez 2021; Mendez et al.
2021), while a film of fluid on a rotating cylinder in an airflow is a key component of
a recently proposed method for applying pesticides to crops using minimal amounts of
chemical and with minimal drift (Newell & Viljoen 2019).

In order to gain further insight into such complex and multi-faceted problems, in the
present work we investigate the effect of a non-uniform pressure distribution due to an
irrotational airflow with circulation on coating flow, i.e. on the flow of a thin film of a
viscous fluid on the outside of a uniformly rotating horizontal circular cylinder. Following
the now-classical work on coating flow by Moffatt (1977) and Pukhnachev (1977), there
has been a large body of work on many different aspects of coating flow and/or the
closely related problem of rimming flow (i.e. the corresponding flow on the inside of
the cylinder) in the absence of an airflow. These two problems have been the subject
of many notable previous studies, including the pioneering numerical investigation of
coating flow by Hansen & Kelmanson (1994), the study of the critical solution in coating
and rimming flow by Wilson, Hunt & Duffy (2002), the study of the effect of surface
tension in rimming flow by Ashmore, Hosoi & Stone (2003), the series of studies on
the subtle long-time dynamics of coating flow by Hinch & Kelmanson (2003), Hinch,
Kelmanson & Metcalfe (2004), Kelmanson (2009) and Groh & Kelmanson (2014), the
numerical investigations of two- and three-dimensional coating flow by Evans, Schwartz
& Roy (2004, 2005), the study of a ring of fluid in coating and rimming flow by Leslie,
Wilson & Duffy (2013), the bifurcation analysis of coating flow by Lin et al. (2016), the
investigation of coating flow on topographically patterned and elliptical cylinders by Li,
Carvalho & Kumar (2017a,b), the discovery of new branches of steady solutions in coating
and rimming flow by Lopes, Thiele & Hazel (2018) and the formulation and analysis of
a ‘thick-film’ model for coating flow by Wray & Cimpeanu (2020). In particular, Moffatt
(1977) showed that (in the absence of both surface-tension and inertia effects) steady,
two-dimensional, continuous and strictly positive solutions corresponding to a continuous
film of fluid covering the entire cylinder, hereafter referred to as ‘full-film’ solutions,
are possible only below a critical maximum load (or, equivalently, only below a critical
maximum azimuthal volume flux). Somewhat counterintuitively, the azimuthal velocity of
the film in these full-film solutions is always in the same direction as the rotation of the
cylinder, and the streamlines of the flow (including the free surface of the film) always
have top-to-bottom (but not right-to-left) symmetry. Note that other kinds of solutions,
specifically discontinuous ‘jump’ solutions with one or more shocks or jumps (Johnson
1988) and ‘curtain’ solutions which are unbounded at the top and the bottom of the cylinder
(Duffy & Wilson 1999), are also possible, but in the present work we restrict our attention
to full-film solutions.

There has, however, been a great deal less work on the effect of an airflow on coating
and/or rimming flow. Both Black (2002) and Villegas-Díaz, Power & Riley (2003)
modelled the effect of the airflow as a uniform shear stress on the free surface of the film
and independently discovered that, in addition to a branch of full-film solutions connected
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Coating flow in the presence of an airflow

to and qualitatively similar to that in the absence of an airflow, a second branch of full-film
solutions, which is disconnected from and qualitatively different from that in the absence
of an airflow, exists when the shear stress is sufficiently strong and acts in opposition to the
rotation of the cylinder. In addition, Villegas-Díaz et al. (2003) and Villegas-Díaz, Power
& Riley (2005), the latter of whom also included surface tension, considered the existence,
uniqueness and stability of jump solutions. In a series of follow-up papers, Kay, Hibberd
& Power (2013, 2014), Kay et al. (2015) and Nicholson et al. (2019) extended this work to
include fluid inertia, thermal effects, an additional mass flux due to droplets impacting on
the free surface of the film and slip at the surface of the cylinder. Also relevant here is the
work on the effect of an airflow on thin-film flow on a stationary cylinder by Lemaitre et al.
(2007) and Robertson et al. (2010), who modelled the effect of the airflow as prescribed
pressure and shear stress distributions on the free surface of the film, and by Taylor &
Robertson (2011, 2015), who computed the airflow numerically using the Discrete Vortex
Method, as well as that by Paterson, Wilson & Duffy (2014) on the flow of a slowly varying
rivulet around a stationary cylinder in the presence of a uniform surface shear stress and
those by McHale, Flynn & Newton (2011) and Gruncell, Sandham & McHale (2013) on a
thin layer of gas trapped on the surface of a stationary sphere in a flow of a viscous fluid.

In the present work we undertake the first detailed analysis of steady coating flow in
the presence of a non-uniform pressure distribution due to an irrotational airflow with
circulation. This problem is not only of interest in its own right, both as a rare example of
an analytically tractable problem involving the interaction between an airflow and a fluid
film and as a novel extension to the extensively studied classical coating-flow problem, but
also as a paradigm for the wide range of practical situations, including those mentioned
above, in which a thin film of fluid on a moving solid substrate is subject to an airflow.

2. Governing equations

Consider steady two-dimensional coating flow of a thin film of incompressible viscous
fluid on a horizontal circular cylinder of radius a rotating anticlockwise with uniform
angular speed Ω (> 0) in the absence of surface-tension effects but in the presence of a
steady two-dimensional airflow. The air is taken to be incompressible and inviscid, so that
there is a non-uniform pressure (but no shear stress) on the free surface of the film due
to the airflow, the film being supported on the cylinder against gravity by a combination
of the shear that is induced by the rotation of the cylinder and the air pressure on the free
surface of the film. We assume that, since the film is thin, the airflow is unaffected by the
presence of the film. Specifically, following Newell & Viljoen (2019), we take the airflow
to be irrotational with uniform horizontal velocity U∞ from left to right and pressure p∞
in the far field and a circulation κ (measured anticlockwise) round the cylinder, as sketched
in figure 1. The air pressure on the free surface of the film, pa = pa(θ), is therefore given
by the classical expression

pa = p∞ + ρa

2

[
U2

∞ −
(

2U∞ sin θ − κ

2πa

)2
]
, (2.1)

where ρa denotes the constant density of the air and θ is the polar angle round the axis
of the cylinder, measured anticlockwise from the horizontal (see, e.g. Batchelor 1967).
It is clear from (2.1) that we may, without loss of generality, assume that the velocity of
the far-field airflow is non-negative, i.e. that U∞ ≥ 0, while allowing the circulation κ
to be positive (i.e. anticlockwise), negative (i.e. clockwise) or zero (i.e. no circulation).
The inviscid airflow leading to the classical expression for the pressure given by (2.1) is,
of course, physically realisable only if the Reynolds number of the airflow based on the
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Free surface

Irrotational airflow

Viscous film

U∞, p∞

Rotating

cylinder

y = h (θ)

θg
a

x y

Ω

κ

Figure 1. Sketch of coating flow of a thin film of viscous fluid of thickness h(θ) on a horizontal circular
cylinder of radius a rotating anticlockwise with uniform angular speed Ω in the absence of surface-tension
effects but in the presence of an irrotational airflow with uniform horizontal velocity U∞ (≥ 0) from left to
right and pressure p∞ in the far field and a circulation κ shown in the case 0 < κ/(4πaU∞) = K/(2F) < 1.
The locations of the stagnation points of the airflow are indicated with dots (•).

circumferential speed of the cylinder, ρaa2Ω/μa � 1, where μa is the viscosity of the air,
is large, and the boundary layer that forms in the air near to the cylinder remains attached
all the way around the cylinder. We shall return to this point in § 3.

To describe the flow of the thin film of viscous fluid on the cylinder we use local
Cartesian axes Oxyz with Ox in the direction of increasing θ (so that x = aθ locally),
Oy normal to the cylinder, and Oz parallel to the axis of the cylinder, as shown in figure 1.
We denote the thickness of the film by h(θ) (� a), so that its free surface is at y = h(θ).
At leading order in the limit of a thin film, the pressure within the film, p(θ, y), and the
azimuthal velocity of the film, u(θ, y), satisfy

0 = −1
a
∂p
∂θ

− ρg cos θ + μ
∂2u
∂y2 , 0 = −∂p

∂y
, (2.2a,b)

where ρ and μ denote the constant density and viscosity of the fluid, and g denotes
gravitational acceleration. Appropriate boundary conditions are the no-slip condition on
the cylinder,

u = aΩ on y = 0, (2.3)

and normal and tangential stress balances at the free surface, which at leading order take
the forms

p = pa, μ
∂u
∂y

= 0 on y = h. (2.4a,b)

The streamfunction for the flow of the film, ψ = ψ(θ, y), is defined by ∂ψ/∂y = u
subject to ψ = 0 at y = 0, in terms of which the y-component of the velocity of the film,
v = v(θ, y), is given by v = −(1/a)∂ψ/∂θ .
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Coating flow in the presence of an airflow

The azimuthal volume flux per unit axial length of the fluid in the film in the direction
of increasing θ is

Q =
∫ h

0
u(θ, y) dy, (2.5)

and at leading order the constant mass of fluid per unit axial length on the cylinder is

M = ρa
∫ π

−π

h(θ) dθ. (2.6)

As mentioned in § 1, in the present work we restrict our attention to full-film solutions
(i.e. to solutions for h that are continuous and strictly positive for all −π < θ ≤ π,
corresponding to a film of fluid covering the entire cylinder). For such a solution, the flux
Q given by (2.5) is a constant (i.e. it is independent of θ ), but its value is unknown a priori
and has to be determined as part of the solution from either the condition of prescribed
mass M given by (2.6) or an appropriate criticality condition.

3. Solution of the governing equations

Solving (2.2a,b) subject to (2.3) and (2.4a,b) leads to p = pa throughout the film, where
pa is given by (2.1), and

u = aΩ − 1
2μa

(
ρga cos θ + p′

a
) (

2hy − y2
)
, (3.1)

and hence from (2.5)

Q = aΩh − h3

3μa

(
ρga cos θ + p′

a
)
, (3.2)

i.e.

Q = aΩh − h3 cos θ
3μa

(
ρga − 4ρaU2

∞ sin θ + ρaκU∞
πa

)
, (3.3)

where a prime denotes differentiation with respect to argument. Note that it is the gradient
of the air pressure, p′

a, rather than pa per se, that arises in (3.1) and (3.2).
We non-dimensionalise and scale the problem according to

y = Hy∗, h = Hh∗, p = p∞ + ρgap∗, pa = p∞ + ρgap∗
a,

u = aΩu∗, v = HΩv∗, ψ = aHΩψ∗, Q = aHΩQ∗, M = ρaHM∗,

}
(3.4)

where H = (μaΩ/ρg)1/2 � a is a characteristic film thickness. Then, with the stars
dropped for clarity, the pressure p = pa given by (2.1), the azimuthal velocity given by
(3.1), the streamfunction, the flux given by (3.3) and the mass given by (2.6) take the
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forms

p = pa = 1
2

[
F2 − (2F sin θ − K)2

]
, (3.5)

u = 1 − 1
2

(
2hy − y2

)
f , (3.6)

ψ = y − 1
6

(
3hy2 − y3

)
f , (3.7)

Q = h − h3

3
f , (3.8)

M =
∫ π

−π

h(θ) dθ, (3.9)

where we have introduced the function f = f (θ) defined by f (θ) = cos θ + p′
a, i.e.

f (θ) =
(

1 + 2FK − 4F2 sin θ
)

cos θ, (3.10)

and where F (≥ 0) and K, defined by

F =
(
ρaU2∞
ρga

)1/2

, K = κ

2πa

(
ρa

ρga

)1/2

, (3.11a,b)

are non-dimensional measures of the speed of the far-field airflow and the circulation of
the airflow, respectively.

The classical analysis of Glauert (1957) and Moore (1957), supported by numerical
studies by Kang, Choi & Lee (1999), Stojkovic, Breuer & Durst (2002), Mittal & Kumar
(2003) and Aljure et al. (2015), shows that, at least for the case of a cylinder without
a thin film of viscous fluid, the rotation of the cylinder acts to suppress the tendency
of the boundary layer in the air to separate on the downstream side of the cylinder. In
particular, Glauert (1957) and Moore (1957) showed that when the Reynolds number
of the airflow based on the circumferential speed of the cylinder, ρaa2Ω/μa � 1, is
large, and the circumferential speed of the cylinder is large compared with that of the
far-field airflow, aΩ � U∞, the boundary layer remains attached all the way around the
cylinder, and the circulation takes the value κ = 2πa2Ω . Expressed in terms of F and K
this corresponds to the regime F/K = U∞/(aΩ) � 1. Moreover, Mittal & Kumar (2003)
showed numerically that when the value of the Reynolds number of the airflow based on
the far-field airflow and the diameter (rather than the radius) of the cylinder, 2ρaaU∞/μa,
is 200, the pressure distribution on the cylinder is qualitatively similar to that of the present
inviscid airflow in the case κ = 2πa2Ω when F/K = 1/4. However, what (if any) effect
the presence of a non-uniform thin film of viscous fluid on a rotating cylinder has on the
suppression of boundary-layer separation remains an open question, and so in the present
work we describe the behaviour of the film for all values of F and K, while bearing in mind
that the regime F/|K| � 1 is likely to be the most physically relevant. This approach is in
the same spirit as that of Newell & Viljoen (2019), who (in our notation) took κ = 2πa2Ω
and then considered all values of U∞/(aΩ) in the range |U∞/(aΩ)| ≤ 1. As well as being
of interest in their own right, the results of the present analysis for all values of F and K
also provide an analytical benchmark for future studies of regimes in which boundary-layer
separation occurs.

Equations (3.6)–(3.8) show that the flow of the film is a combination of flows due to four
different competing physical effects, namely a uniform velocity u ≡ 1 with flux h due to
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the rotation of the cylinder, and semi-parabolic (in y) velocities with fluxes −(h3/3) cos θ ,
−(2FKh3/3) cos θ and (2F2h3/3) sin 2θ due to the azimuthal component of gravity, the
gradient of the air pressure due to the circulation of the airflow in combination with the
far-field airflow and the gradient of the air pressure due to the far-field airflow, respectively.

In the special case of no far-field airflow, F = 0, the pressure p = pa = −K2/2 is
constant, f = cos θ , and hence (3.8) reduces to the familiar expression for the flux in
classical coating flow (see, e.g. Moffatt 1977), showing that the behaviour of the film
is entirely unaffected by a purely circulatory airflow. On the other hand, in the special case
FK = −1/2 the fluxes due to gravity and the circulation of the airflow in combination
with the far-field airflow cancel each other out exactly, and so the behaviour of the film is
due only to the rotation of the cylinder and the far-field airflow.

For future reference, it is useful to recall that the qualitative behaviour of the
airflow depends on the value of κ/(4πaU∞) = K/(2F). Specifically, the airflow has two
stagnation points on the cylinder when 0 ≤ |K|/(2F) < 1, one stagnation point on either
the top or the bottom of the cylinder when |K|/(2F) = 1, and one stagnation point within
the airflow either directly above or directly below the cylinder when |K|/(2F) > 1 (see,
e.g. Batchelor 1967).

For completeness, in Appendix A we provide the corresponding equations for the more
general situation in which the far-field airflow, rather than being horizontal, is inclined at
some prescribed angle α to the horizontal, but in the present work we restrict our attention
to the case in which the far-field airflow is horizontal, as shown in figure 1.

4. Full-film solutions

Equation (3.8) is a cubic polynomial equation for h as a function of θ , parameterised by
Q, whose full-film solution may be written in the explicit real form

h(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
f (θ)1/2

sin
(

1
3

sin−1 3Qf (θ)1/2

2

)
if f > 0,

Q if f = 0,

2[−f (θ)
]1/2 sinh

(
1
3

sinh−1 3Q
[−f (θ)

]1/2
2

)
if f < 0.

(4.1)

In order to understand the qualitative features of the full-film solution (4.1) it is easiest
to consider (3.8) graphically in the θ–h plane, regarding Q as a function of θ and h, and
exploiting the fact that, since ψ = Q on y = h, any contour of Q (which is, by definition,
a curve on which Q is constant) potentially provides a solution for the free surface y = h.
In particular, we can use this approach to show that, just as for classical coating flow,
(3.8) has full-film solutions only when the flux Q and mass M of fluid do not exceed
certain critical values, which we denote by Qc and Mc, respectively, and will subsequently
determine in terms of F and K. The critical film thickness (i.e. the solution for h with
Q = Qc) is denoted by hc = hc(θ). Some of the properties of these full-film solutions,
including the general expressions for Qc and Mc, will be described subsequently in § 5,
and explicit expressions for Qc in the special case K = 0 and the general case K /= 0 will
be given subsequently in §§ 6 and 7, respectively.

Figure 2 shows plots of contours of Q when K = 0 for 0 ≤ Q ≤ Qc, with each contour
therefore representing the film thickness h for the corresponding value of Q, for a range of
values of F. In particular, figure 2 shows that, as in classical coating flow, critical solutions
with Q = Qc always have a corner in their free surface y = hc but subcritical solutions
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h

Figure 2. Plots of contours of Q when K = 0 for 0 ≤ Q ≤ Qc, with each contour therefore representing the
film thickness h for the corresponding value of Q, for (a) F = 0 (i.e. classical coating flow) (θc = 0, Qc =
2/3), (b) F = 3/10 (θc = −0.096π, Qc 
 0.648), (c) F = 1/2 (θc = −π/6, Qc 
 0.585) and (d) F = 1 (θc =
−0.224π, Qc 
 0.403). In each case the contour interval is Qc/10.

(b)(a) 1.0

0.8

0.6

0.4

0.2

–1.0 –0.5 0.5 1.0

y 1.0

0.8

0.6

0.4

0.2

–1.0 –0.5 0.5 1.0

y

θ/π θ/π

Figure 3. Plots of typical streamlinesψ = constant, whereψ is given by (3.7), for (a) the critical solution with
Q = Qc 
 0.403 and (b) the subcritical solution with Q = 9Qc/10 
 0.363 (< Qc), when F = 1 and K = 0.

with 0 < Q < Qc always have a smooth free surface y = h. The position of the corner in
the critical free surface is denoted by θ = θc.

Despite a superficial resemblance, it should be noted that (except for the critical free
surface y = hc and the substrate y = 0) the contours of Q shown in figure 2 do not
correspond to streamlines of the critical solution. This is confirmed by figure 3, which
shows plots of typical streamlines ψ = constant, where ψ is given by (3.7), for a critical
and a subcritical solution. In particular, figure 3(a) shows that all of the streamlines of the
critical solution (except, of course, for the substrate y = 0), and not just the critical free
surface y = hc, have a corner at the same position θ = θc.
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5. Properties of the full-film solutions

In this section we describe some of the properties of the full-film solutions obtained in § 4.
Then in §§ 6 and 7 we describe the behaviour of the solutions in the special case when the
airflow has no circulation (K = 0) and in the general case when the airflow has non-zero
circulation (K /= 0), respectively, and finally in § 8 we consider the mass of fluid on the
cylinder.

5.1. General properties
In this subsection we describe some of the general properties of the full-film solutions.

At any fixed position θ , differentiating (3.8) with respect to Q gives
(1 − h2f )(∂h/∂Q) = 1, and, since it can be shown from (3.8) that for full-film solutions
it is necessary that h2f ≤ 1, we deduce immediately that ∂h/∂Q > 0, and hence that h
increases monotonically with Q.

On the other hand, for any fixed value of Q, differentiating (3.8) with respect to θ gives
(1 − h2f )h′ = h3f ′/3, showing that h′ has the same sign as f ′ everywhere, and hence that
the positions of the stationary points of h are determined by the equation f ′ = 0, which
may be written in the form

8F2 sin2 θ − (1 + 2FK) sin θ − 4F2 = 0, (5.1)

whose solutions for θ satisfy

sin θ = 1 + 2FK ± [(1 + 2FK)2 + 128F4]1/2

16F2 . (5.2)

As these solutions are independent of Q, the stationary points of h occur at the same
positions θ for all values of Q. Moreover, at all of the stationary points of h we have
3(1 − h2f )h′′ = h3f ′′ and f ′′ = ±[(1 + 2FK)2 + 128F4]1/2 cos θ , which, taken together,
show that the nature of each stationary point is given by the sign of ± cos θ there. In
classical coating flow, h has two stationary points, namely a maximum at θ = 0 (i.e. on
the right-hand side of the cylinder) and a minimum at θ = π (i.e. on the left-hand side
of the cylinder); however, the presence of the airflow can result in qualitatively different
behaviour of the fluid film. In particular, as will be described subsequently, in the present
problem h can have as many as four stationary points. Moreover, as mentioned in § 1, in
classical coating flow h has top-to-bottom (but not right-to-left) symmetry; however, the
presence of the non-uniform pressure due to the airflow means that, in general, in the
present problem h does not have top-to-bottom symmetry.

It is immediately apparent from (3.6)–(3.8) that at any zero of f the film has thickness
h = Q, and that the fluid there moves locally with uniform velocity u ≡ 1 (i.e. as a plug).
Moreover, the fact that Q = h > 0 for such values of θ means that the constant flux Q
is always positive, i.e. for full-film solutions the flux is always everywhere in the same
direction as the rotation of the cylinder (i.e. anticlockwise). In fact, by using (3.6) to show
that u ≥ 1 when f < 0 and 1/2 ≤ u ≤ 1 when f > 0, we can obtain the stronger result that,
since the airflow does not exert a shear stress on the free surface of the film, the azimuthal
velocity of the film u (and not just the flux Q) is always positive, i.e. the azimuthal velocity
of the film is always everywhere in the same direction as the rotation of the cylinder.
This behaviour is in contrast to that of the corresponding problem of coating flow in the
presence of a uniform shear stress on the free surface of the film, in which a sufficiently
strong shear stress that acts in opposition to the rotation of the cylinder can cause not only
the azimuthal velocity of the film u closest to the free surface, but possibly also the flux
Q, to become negative.
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Figure 4. Plots of the critical film thickness hc when K = 0 as a function of θ/π for F = 0, 1/4, 1/2, . . . , 3.

5.2. Critical solutions
In this subsection we describe the behaviour of the critical full-film solutions, i.e. solutions
for which the flux and mass of fluid take the critical values Q = Qc and M = Mc,
respectively, above which no full-film solution exists, so that Mc is the maximum mass
of fluid that can be supported on the cylinder for given values of F and K. As mentioned
in § 4, all of the streamlines of the critical solution (except for the substrate y = 0), and, in
particular, the critical free surface y = hc, have a corner at θ = θc.

As in classical coating flow, the critical solution corresponds to a saddle of the function
Q given by (3.8), at which Q satisfies the criticality conditions

∂Q
∂h

= 0,
∂Q
∂θ

= 0, (5.3a,b)

leading to
h2f = 1, f ′ = 0, (5.4a,b)

and any saddle of Q corresponds to a corner in the critical free surface y = hc. It can be
shown that the function Q has no maximum or minimum stationary points, and, depending
on the values of F and K, has either one or two saddle points; in the latter case it is the
saddle associated with the smaller value of Q (and hence the smaller value of M) that
corresponds to the critical solution.

The first of the criticality conditions (5.4a) gives the thickness of the critical film at the
corner, namely

hc(θc) = 1
f (θc)1/2

(5.5)

(which, in particular, shows that a corner may occur only where f (θc) > 0), while the
second of the criticality conditions (5.4b) shows that solutions for θc satisfy (5.2).

Figure 4 shows plots of the critical film thickness hc when K = 0 as a function of θ/π
for a range of values of F. As figure 4 illustrates, the global maximum thickness of the
critical film (and hence the maximum possible thickness of any film for given values of F
and K) always occurs at the corner, and expanding (3.8) about θ = θc shows that near the
corner the critical free surface y = hc has the local form

hc = hc(θc)+ h1|θ − θc| + O(θ − θc)
2, (5.6)

where

h1 = −h2
c[−f ′′(θc)]1/2

√
6

(< 0). (5.7)
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Evaluating (3.8) at θ = θc gives the critical flux,

Qc = 2hc(θc)

3
= 2

3f (θc)1/2
, (5.8)

and (3.9) gives the critical mass,

Mc =
∫ π

−π

hc(θ) dθ. (5.9)

Note that critical free surfaces with two corners may also occur, but only at leading order
in the limit of a fast far-field airflow, F → ∞, and in the special case FK = −1/2; these
exceptional situations will be described in §§ 6 and 7, respectively.

5.3. Subcritical solutions
In this subsection we describe the behaviour of the subcritical full-film solutions, i.e.
solutions for which the flux Q and mass M of fluid satisfy 0 < Q < Qc and 0 < M <

Mc. As mentioned in § 4, unlike for the critical solutions described in § 5.2, all of the
streamlines of the subcritical solutions, and, in particular, the subcritical free surface
y = h, are smooth. However, as described in § 5.1, the global maximum of the subcritical
film thickness still always occurs at θ = θc (i.e. at the same position as the corner in
the critical free surface y = hc), and expanding (3.8) about θ = θc shows that near the
maximum the subcritical free surface y = h has the locally parabolic form

h = h0 + h3
0f ′′(θc)

6[1 − h2
0f (θc)]

(θ − θc)
2 + O(θ − θc)

3, (5.10)

where h0 = h(θc) (0 < h0 < hc(θc)) is the value of h at θ = θc obtained from (3.8).
In the limit of small flux, Q → 0, the subcritical film thickness h is given by

h = Q + f
3

Q3 + O(Q5), (5.11)

and hence from (3.9) the mass M is given by

M = 2πQ + π

3
[(1 + 2FK)2 + 4F4]Q5 + O(Q9). (5.12)

Eliminating Q between (5.11) and (5.12) we obtain the expression for h in the limit of small
mass, M → 0, namely

h = M
2π

+ f
24π3 M3 + O(M5), (5.13)

showing that the film is very thin with uniform thickness M/(2π) � 1 at leading order in
this limit.

6. Solutions when the airflow has no circulation (K = 0)

In this section we use the results obtained thus far to describe the behaviour of the full-film
solutions when the airflow has no circulation, corresponding to K = 0.

In this case the pressure gradient within the film is entirely due to the far-field airflow,
and the flux it induces, namely (2F2h3/3) sin 2θ , drives flow away from the left-hand
and right-hand sides of the cylinder and towards the top and bottom of the cylinder
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Figure 5. Plot of the scaled positions θ/π of the stationary points of h when K = 0 given by (6.1) as functions
of F. The positions corresponding to a local maximum and a local minimum of h are plotted with solid lines
and dashed lines, respectively.

(i.e. away from θ = 0 and θ = π and towards θ = π/2 and θ = −π/2). The behaviour
of the film is therefore a consequence of the competition between this flux and those due
to the rotation of the cylinder and gravity, which, as in classical coating flow, drive flow in
the same direction as the rotation of the cylinder (i.e. anticlockwise) and away from the top
and towards the bottom of the cylinder (i.e. away from θ = π/2 and towards θ = −π/2),
respectively.

As described in § 5.1, the positions of the stationary points of h are given by (5.2), which
reduces to

sin θ = 1 ± (1 + 128F4)1/2

16F2 (6.1)

when K = 0, and the nature of each stationary point is given by the sign of ± cos θ . We
denote the solutions of (6.1) in the interval −π/2 ≤ θ ≤ π/2 by θ = θ+ (π/4 ≤ θ+ ≤
π/2) and θ = θ− (−π/4 ≤ θ− ≤ 0), respectively, where the subscript ± corresponds to
the ± in (6.1), and in terms of which the solutions of (6.1) are given by θ = θ+ and θ =
π − θ+ for F ≥ 1/2 and θ = θ− and θ = −π − θ− for F ≥ 0.

Figure 5 shows a plot of the scaled positions θ/π of the stationary points of h when
K = 0 given by (6.1) as functions of F. The positions corresponding to a local maximum
and a local minimum of h are plotted with solid lines and dashed lines, respectively. In
particular, figure 5 shows that when K = 0 the film thickness h has two stationary points
when 0 ≤ F < 1/2, three stationary points when F = 1/2, and four stationary points when
F > 1/2, and that the positions of these stationary points on the cylinder are symmetrical
about the vertical line θ = ±π/2.

The plots of the film thickness h for a range of values of Q and F shown in figure 2
illustrate the qualitative changes in the behaviour of h as the speed of the far-field airflow
is increased from zero (i.e. as F is increased from zero).

As mentioned in § 5.1, in classical coating flow h has a maximum at θ = θ− = 0 and
a minimum at θ = −π − θ− = −π (i.e. at θ = π, see figure 2a). Figure 5 shows that as
F is increased from zero this maximum and minimum of h move towards the bottom of
the cylinder, approaching θ = −π/4 and θ = −3π/4, respectively, in the limit of a fast
far-field airflow, F → ∞. Figure 5 also shows that when F = 1/2 a second maximum and
minimum of h appear (initially as a stationary point of inflection) at the top of the cylinder
(i.e. at θ = π/2, see figure 2c), and thereafter that as F is increased from 1/2 this second
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Figure 6. Plot of the thickness of the critical film at the corner, hc(θc), when K = 0 given by (6.2) as a function
of F. The asymptotic behaviours of hc(θc) in the limits F → 0+ given by (6.4) and F → ∞ given by (6.5) are
plotted with dashed and dotted lines, respectively.

maximum and minimum move away from the top of the cylinder, approaching θ = π/4
and θ = 3π/4, respectively, in the limit of a fast far-field airflow, F → ∞. Moreover, as
figures 2–4 illustrate, when K = 0 the largest maximum and the smallest minimum of h
are always located on the lower half of the cylinder. In particular, except in the exceptional
situation mentioned in § 5.2 in which it has two corners, the corner in the critical free
surface y = hc always occurs at θ = θc = θ−.

From (5.5) and (6.1) the thickness of the critical film at the corner (i.e. the maximum
possible thickness of any film for a given value of F) is given explicitly in terms of F by

hc(θc) =
(

32
[
1 + (1 + 128F4)1/2

]
[
3 + (1 + 128F4)1/2

]3
)1/4

, (6.2)

and hence from (5.8) the critical flux is given explicitly in terms of F by

Qc =
(

512
[
1 + (1 + 128F4)1/2

]
81
[
3 + (1 + 128F4)1/2

]3
)1/4

. (6.3)

Figure 6 shows a plot of hc(θc) given by (6.2) as a function of F. In particular, figure 6
shows that hc(θc) is a monotonically decreasing function of F satisfying

hc(θc) = 1 − 4F4 + O(F8) → 1− as F → 0+ (6.4)

and

hc(θc) ∼ 1√
2F

→ 0+ as F → ∞. (6.5)

At leading order in the limit of a fast far-field airflow, F → ∞, the behaviour of the
film is due only to the rotation of the cylinder and the far-field airflow. In this limit the
film is very thin, h = O(1/F) � 1, and both the flux Q = O(1/F) � 1 and the mass M =
O(1/F) � 1 are correspondingly very small. Thus if we write the leading-order solution
as h(θ) = ĥ(θ)/F, Q = Q̂/F and M = M̂/F, where hatted quantities are O(1) in the limit
F → ∞, then the rescaled film thickness ĥ has the form of the solution for h given in (4.1)
with f = −2 sin 2θ , while from (3.8) and (3.9) the rescaled flux Q̂ and the rescaled mass
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Figure 7. Plots of contours of Q̂ for 0 ≤ Q̂ ≤ Q̂c = √
2/3 
 0.471, with each contour therefore representing

the rescaled film thickness ĥ for the corresponding value of Q̂. The contour interval is Q̂c/10.

M̂ are given by

Q̂ = ĥ + 2ĥ3

3
sin 2θ and M̂ =

∫ π

−π

ĥ(θ) dθ, (6.6a,b)

respectively. Figure 7 shows plots of contours of Q̂ for 0 ≤ Q̂ ≤ Q̂c, with each contour
therefore representing the rescaled film thickness ĥ for the corresponding value of Q̂.
As figure 7 shows, the rescaled film thickness ĥ has period π, with two identical maxima
at θ = 3π/4 and θ = −π/4, and two identical minima at θ = π/4 and θ = −3π/4. In
particular, as mentioned in § 5.2, the rescaled critical free surface y = ĥc(θ) corresponding
to Q̂ = Q̂c = √

2/3 
 0.471 and M̂ = M̂c 
 3.141 has two identical corners at θ = θc =
3π/4 and θ = θc = −π/4 at both of which ĥc(θc) = 1/

√
2 
 0.707.

7. Solutions when the airflow has non-zero circulation (K /= 0)

In this section we use the results obtained thus far to describe the behaviour of the full-film
solutions when the airflow has non-zero circulation, corresponding to K /= 0.

In this case, in addition to the pressure gradient due to the far-field airflow described
in § 6, the pressure gradient within the film has an additional contribution due to the
circulation of the airflow in combination with the far-field airflow, and the additional flux
it induces, namely −(2FKh3/3) cos θ , either cooperates (when K > 0) or competes (when
K < 0) with the flux due to gravity by driving flow either away from the top and towards
the bottom of the cylinder (i.e. away from θ = π/2 and towards θ = −π/2) when K > 0
or vice versa when K < 0. As might have been anticipated, the presence of non-zero
circulation leads to somewhat more complicated behaviour of the film than that in the
absence of circulation described in § 6. When K /= 0 it is convenient to introduce the
parameter β defined by

β = 1 + 2FK
4F2 . (7.1)

As described in § 5.1, the positions of the stationary points of h are given by (5.2),
which, in terms of the parameter β defined by (7.1), takes the form

sin θ = β ± (β2 + 8)1/2

4
, (7.2)
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Figure 8. Plot of the scaled positions θ/π of the stationary points of h given by (7.2) as functions of F for
K = −5, −4, . . . , 3. The positions corresponding to a local maximum and a local minimum of h are plotted
with solid lines and dashed lines, respectively.

and the nature of each stationary point is again given by the sign of ± cos θ . As for (6.1) in
§ 6, we denote the solutions of (7.2) in the interval −π/2 ≤ θ ≤ π/2 by θ = θ+ (0 ≤ θ+ ≤
π/2) and θ = θ− (−π/2 ≤ θ− ≤ 0), respectively, where the subscript ± corresponds to
the ± in (7.2), and in terms of which the solutions of (7.2) are given by θ = θ+ and θ =
π − θ+ for β ≤ 1 and θ = θ− and θ = −π − θ− for β ≥ −1.

Figure 8 shows a plot of the scaled positions θ/π of the stationary points of h given by
(7.2) plotted as functions of F for a range of values of K (including the case K = 0 shown
in figure 5). The positions corresponding to a local maximum and a local minimum of
h are again plotted with solid lines and dashed lines, respectively. In particular, figure 8
shows that the film thickness h has two stationary points when K < K1 and when K > K3,
three stationary points when K = K1 and when K = K3, and four stationary points when
K1 < K < K3, where the critical values K = K1, K = K2 = (K1 + K3)/2 and K = K3,
corresponding to β = −1, β = 0 and β = 1, respectively, and satisfying K1 < K2 < 0
and K3 > K2, are defined by

K1 = −2F − 1
2F
, K2 = − 1

2F
and K3 = 2F − 1

2F
, (7.3a–c)

and the positions of these stationary points on the cylinder are again symmetrical about
the vertical line θ = ±π/2.

Figure 9 shows plots of contours of Q for 0 ≤ Q ≤ Qc, with each contour therefore
representing the film thickness h for the corresponding value of Q, for a range of values
of F and K. The plots shown in figure 9 illustrate the qualitative changes in the behaviour
of h as the speed of the far-field airflow and the circulation are varied (i.e. as F and K are
varied).

The qualitative changes in the behaviour of the film thickness h as F and K are varied
are summarised in figure 10, which represents one of the key results of the present work.
Specifically, figure 10 is a plot of the F–K parameter plane showing how the three curves
K = K1, K = K2 and K = K3 given by (7.3a–c) divide the plane into the four regions
K < K1, K1 < K < K2, K2 < K < K3 and K > K3 in which the behaviour of the film
thickness h (typical examples of which are sketched in the insets) is qualitatively different.
In addition, the asymptotes of K = K1 and K = K3 as F → ∞, namely K = ∓2F, are
plotted with dashed lines. Note that these two straight lines correspond to κ/(4πaU∞) =
K/(2F) = ∓1 and so, as described in § 3, they also separate the F–K parameter plane
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Figure 9. Plots of contours of Q for 0 ≤ Q ≤ Qc, with each contour therefore representing the film thickness
h for the corresponding value of Q, for (a) F = 1/2 and K = −3 (θc = 0.881π, Qc 
 0.449), (b) F = 1 and
K = −5/2 (θc = 0.833π, Qc 
 0.292), (c) F = 3/2 and K = −3/2 (θc = 0.789π, Qc 
 0.250), (d) F = 1
and K = −1/2 (θc = 3π/4 and −π/4, Qc 
 0.471), (e) F = 3/2 and K = 5/6 (θc = −0.211π, Qc 
 0.250),
( f ) F = 1 and K = 3/2 (θc = −π/6, Qc 
 0.292) and (g) F = 1/2 and K = 1 (θc = −0.119π, Qc 
 0.449).
In each case the contour interval is Qc/10.

into the three regions K < −2F, −2F < K < 2F and K > 2F in which the stagnation
points of the airflow are directly below the cylinder, on the cylinder and directly above
the cylinder, respectively. In particular, as figure 10 shows, in the limit of a fast far-field
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Figure 10. Plot of the F–K parameter plane showing how the three curves K = K1, K = K2 and K = K3 given
by (7.3a–c) divide the plane into the four regions K < K1, K1 < K < K2, K2 < K < K3 and K > K3 in which
the behaviour of the film thickness h (typical examples of which are sketched in the insets) is qualitatively
different. In addition, the asymptotes of K = K1 and K = K3 as F → ∞, namely K = ∓2F, are plotted with
dotted lines.

airflow, F → ∞, but not otherwise, a second local maximum and minimum in the film
thickness occur if and only if the stagnation points of the airflow are on the cylinder.
Moreover, as figure 9 illustrates, when K < K2 the largest maximum and the smallest
minimum of h always occur on the upper half of the cylinder, and the corner in the critical
free surface always occurs at θ = θc = π − θ+, but when K > K2 the largest maximum
and the smallest minimum of h always occur on the lower half of the cylinder, and the
corner in the critical free surface always occurs at θ = θc = θ−.

From (5.5) and (7.2) the thickness of the critical film at the corner (i.e. the maximum
possible thickness of any film for given values of F and K) is given explicitly in terms of
F and β by

hc(θc) = 1
F

(
2

8 + 20β2 − β4 + |β|(β2 + 8)3/2

)1/4

, (7.4)
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−12 −8 −4 4 8 12

0.2
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0.6

β

Fhc(θc)

Figure 11. Plot of the scaled thickness of the critical film at the corner, Fhc(θc), given by (7.4) as a function
of β. The asymptotic behaviours of Fhc(θc) in the limits β → 0+ given by (7.6) and β → ±∞ given by (7.7)
are plotted with dashed and dotted lines, respectively.

and hence from (5.8) the critical flux is given explicitly in terms of F and β by

Qc = 2
3F

(
2

8 + 20β2 − β4 + |β|(β2 + 8)3/2

)1/4

. (7.5)

Note that θ±, θc, Fhc(θc) and FQc depend on F and K only via β, and that Fhc(θc) and
FQc are even functions of β. Figure 11 shows a plot of Fhc(θc) given by (7.4) as a function
of β. In particular, figure 11 shows that Fhc(θc) is a monotonically decreasing function of
|β| satisfying

Fhc(θc) = 1√
2

− 1
2
|β| + O(β2) → 1√

2

−
as β → 0 (7.6)

and

Fhc(θc) ∼ 1
2
√|β| → 0+ as β → ±∞. (7.7)

As mentioned in § 3, in the special case FK = −1/2, corresponding to K = K2 (i.e.
β = 0), the behaviour of the film is due only to the rotation of the cylinder and the far-field
airflow. Clearly this situation is closely analogous to that at leading order in the limit of a
fast far-field airflow, F → ∞, when K = 0 described in § 6. The parameter F (which may
now take any positive value) may again be scaled out of the problem by writing the solution
as h(θ) = ĥ(θ)/F, Q = Q̂/F and M = M̂/F, where the solutions for ĥ(θ), Q̂ and M̂ are
given in § 6. In particular, the film thickness h has period π, with two identical maxima at
θ = 3π/4 and θ = −π/4, and two identical minima at θ = π/4 and θ = −3π/4, and the
critical free surface y = hc(θ) has two identical corners at θ = θc = 3π/4 and θ = θc =
−π/4 (see, e.g. figure 9d).

At leading order in the limit of a strong circulation, K → ±∞, the behaviour of the
film is due only to the rotation of the cylinder and the circulation of the airflow. In this
limit the film is very thin, h = O(|K|−1/2) � 1, and both the flux Q = O(|K|−1/2) �
1 and the mass M = O(|K|−1/2) � 1 are correspondingly very small. Thus if we
write the leading-order solution as h(θ) = h̄(θ)/(2F|K|)1/2, Q = Q̄/(2F|K|)1/2 and M =
M̄/(2F|K|)1/2, where barred quantities are O(1) in the limit K → ±∞, then the rescaled
film thickness h̄ has the form of the solution for h given in (4.1) with f = ± cos θ , while
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Figure 12. (a) Plot of the mass M of fluid on the cylinder when K = 0 given by (3.9) as a function of Q for
0 ≤ Q ≤ Qc for F = 0, 1/2, 1, 3/2, 2. (b) Plot of the difference M − M0 between M when K = 0 and the mass
of fluid in the absence of an airflow, M0, as a function of Q for 0 ≤ Q ≤ Qc for F = 0, 1/4, 1/2, . . . , 3. In both
panels, the dots denote the values of M = Mc at Q = Qc above which there is no full-film solution.

from (3.8) and (3.9) the rescaled flux Q̄ and the rescaled mass M̄ are given by

Q̄ = h̄ ∓ h̄3

3
cos θ and M̄ =

∫ π

−π

h̄(θ) dθ, (7.8a,b)

respectively. Thus h̄(θ), Q̄ and M̄ are the solutions of the classical coating-flow problem
when K → ∞, and the solutions of the mirror image of the classical coating-flow problem
in the vertical line θ = ±π/2 (i.e. the solutions of the classical coating-flow problem with
the direction of the rotation of the cylinder reversed) when K → −∞. In particular, the
rescaled film thickness h̄ has a local maximum at θ = 0 and a local minimum at θ = π,
and the rescaled critical free surface y = h̄c(θ) corresponding to Q̄ = Q̄c = 2/3 and M̄ =
M̄c 
 4.443 has a corner at θ = θc = 0 at which h̄c(θc) = 1 when K → ∞, and the mirror
image of this behaviour when K → −∞.

8. The mass of fluid on the cylinder

Figure 12(a) shows a plot of the mass M of fluid on the cylinder when K = 0 given by (3.9)
as a function of Q for 0 ≤ Q ≤ Qc for a range of values of F, showing that M increases
monotonically (almost linearly) with Q. Since, as figure 12(a) shows, M depends only
rather weakly on F, figure 12(b) shows a plot of the difference M − M0 between M when
K = 0 and the mass of fluid in the absence of an airflow (i.e. in the corresponding classical
coating-flow problem), denoted by M0, also as a function of Q for 0 < Q ≤ Qc for a range
of values of F. In both parts of figure 12, the dots denote the values of the critical mass M =
Mc at the critical flux Q = Qc above which there is no full-film solution. In particular, note
that the asymptotic solution for M in the limit Q → 0 given in (5.12) provides excellent
approximations to both M and M − M0, namely

M ∼ 2πQ and M − M0 ∼ 4π

3
[(1 + 2FK)2 + 4F4 − 1]Q5, (8.1a,b)

over the entire range of values of Q (i.e. for 0 ≤ Q ≤ Qc).
Figures 13 and 14 show plots of the critical mass of fluid on the cylinder, Mc, given by

(5.9) as a function of F for a range of values of K and as a function of K for a range
of values of F, respectively. Figures 13 and 14 show that when K ≥ 0, Mc decreases
monotonically towards zero with F and K (i.e. the maximum mass of fluid that can be
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Figure 13. Plot of the critical mass of fluid on the cylinder, Mc, given by (5.9) as a function of F for
(a) K = 0, 5, 10 and (b) K = −5, −4, . . . , −1.

−2−6 −4 2
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20
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K

McF = 1/10

F = 3/5

Figure 14. Plot of the critical mass of fluid on the cylinder, Mc, given by (5.9) as a function of K for
F = 1/10, 1/5, . . . , 3/5.

supported on the cylinder is always less than that in classical coating flow), but that
when K < 0, Mc attains the value Mc 
 3.141/F 
 6.282(−K) when FK = −1/2 (i.e.
the maximum mass of fluid that can be supported on the cylinder can be greater than that
in classical coating flow).

9. Stability

The stability of the steady two-dimensional full-film solutions obtained in the present
work to both two-dimensional and three-dimensional (i.e. axial) disturbances is of
considerable interest. For leading-order classical rimming flow, and hence, since the
governing equations for the leading-order film thickness in the two problems are
identical, for leading-order classical coating flow, O’Brien (2002a) showed that subcritical
two-dimensional full-film solutions are neutrally stable to two-dimensional disturbances,
and a number of other authors (including Hosoi & Mahadevan 1999; O’Brien 2002b; Jin &
Acrivos 2004; Benilov & O’Brien 2005; Noakes, King & Riley 2006; Pougatch & Frigaard
2011; Benilov & Lapin 2013) have investigated the stability of coating and/or rimming flow
in the presence of additional physical effects and/or to three-dimensional disturbances.

Particularly relevant to the present work is the recent study by Newell & Viljoen (2019),
who sought to extend the pioneering work of Hinch & Kelmanson (2003) on the long-time
dynamics of two-dimensional coating flow to investigate the effect of the same airflow as
that considered in the present work. However, unlike in the present work, Newell & Viljoen
(2019) also included surface-tension effects, characterised by a constant coefficient of
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surface tension σ . Unfortunately, as we shall now show, their analysis needs to be revisited.
Substituting their equation (2) into their equation (3) recovers the present expression for
pa given by (2.1) in the case κ = 2πa2Ω . However, their expression for Q given by their
equation (5) has the opposite sign for the term due to the pressure gradient within the film
compared with the correct expression given by (3.2), while their expression for p given
by their equation (6) has the opposite sign for the term due to surface tension compared
with the correct expression (see, e.g. Evans et al. 2004). Eliminating p between their
equations (5) and (6) yields their expression for Q, namely

Q = aΩh − h3

3μa

[
ρga cos θ − σ

a2
∂

∂θ

(
∂2h
∂θ2 + h

)
+ 2ρaU∞ cos θ (2U∞ sin θ − aΩ)

]
,

(9.1)

which differs from the present expression for Q given by (3.3) in the case κ = 2πa2Ω due
to the presence of the term due to surface tension (i.e. the term involving σ ) and the sign of
the term due to the airflow (i.e. the term involving ρa). As a consequence of this sign error
in Q, their equation (7) has the wrong sign of the term due to the airflow. Moreover, in the
absence of the airflow their expression for the temporal decay rate of a small perturbation
to a film of uniform thickness given by their equation (13) yields twice the corresponding
expression obtained by Hinch & Kelmanson (2003) for the classical coating-flow problem,
and so obtaining the correct description of the behaviour is evidently not simply a matter of
reversing the sign of the term due to the airflow. Hence the long-time dynamics of coating
flow in the presence of an airflow remains an open question.

A full stability analysis of the present solutions is outside the scope of the present
work, but, as we shall now show, the analysis of O’Brien (2002a) can be generalised to
show that the present subcritical full-film solutions are neutrally stable to two-dimensional
disturbances. Non-dimensionalising time t with Ω−1, the non-dimensional evolution
equation for the film thickness is

∂h
∂t

+ ∂Q
∂θ

= 0, (9.2)

and so perturbing around any of the present steady full-film solutions with a small
perturbation with growth rate s of the form φ(θ) exp(st) and linearising yields the equation

(1 − h2f )φ′ + [s − (h2f )′]φ = 0, (9.3)

with solution

φ ∝ 1
1 − h2f

exp
(

−s
∫

1
1 − h2f

dθ
)
. (9.4)

Since, as previously remarked, the present subcritical full-film solutions satisfy h2f < 1,
the integrand in (9.4) is positive, and so, since φ must be 2π-periodic in θ , we deduce that
the growth rate s must be purely imaginary, i.e. the present subcritical full-film solutions
are neutrally stable to two-dimensional disturbances. This is, of course, only a rather
limited result, but it at least provides a starting point for future work on the stability of
coating flow in the presence of an airflow.

10. Conclusions

In the present work we undertook a detailed analysis of steady coating flow of a thin
film of a viscous fluid on the outside of a uniformly rotating horizontal circular cylinder
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in the absence of surface-tension effects but in the presence of a non-uniform pressure
distribution due to an irrotational airflow with circulation and showed that the presence
of the airflow can result in qualitatively different behaviour of the fluid film from that
in classical coating flow. This problem is not only of interest in its own right, but also
as a paradigm for the wide range of practical situations in which a thin film of fluid on
a moving solid substrate is subject to an airflow. We found that, as in classical coating
flow, full-film solutions are possible only when the flux Q and mass M of fluid do not
exceed critical values Qc and Mc, which we determined in terms of the parameters F
and K representing the speed of the far-field airflow and the circulation of the airflow,
respectively. In particular, (6.3) and (7.5) are explicit expressions for Qc in the special case
of no circulation K = 0 and in the general case of non-zero circulation K /= 0, respectively.
The qualitative changes in the behaviour of the film thickness as F and K are varied are
summarised in figure 10 and illustrated in figure 15. Specifically, figure 10 shows how the
three curves K = K1, K = K2 and K = K3 given by (7.3a–c) divide the F–K parameter
plane into the four regions K < K1, K1 < K < K2, K2 < K < K3 and K > K3 in which the
behaviour of the film thickness is qualitatively different. In particular, the film thickness
can have as many as four stationary points and, in general, has neither top-to-bottom
nor right-to-left symmetry (in contrast to having two stationary points and top-to-bottom
symmetry in classical coating flow). It should be noted that the behaviour summarised in
figure 10 is qualitatively different from that in the corresponding problem of coating flow
in the presence of a uniform shear stress on the free surface of the film, in which the film
thickness only ever has two stationary points.

When the circulation of the airflow is anticlockwise (i.e. in the same direction as the
rotation of the cylinder) the maximum mass of fluid that can be supported on the cylinder
is always less than that in classical coating flow, whereas when the circulation is in the
opposite direction the maximum mass of fluid can be greater than that in classical coating
flow. However, whatever the speed of the far-field airflow and the circulation of the airflow
(i.e. whatever the values of F and K), the azimuthal velocity of the film is always in the
same direction as the rotation of the cylinder.

Figure 15 shows examples of both critical and subcritical free surfaces on the
rotating cylinder, including three examples with one corner in the critical free surface
(figure 15a–c) and one example in the special case FK = −1/2 with two corners in the
critical free surface (figure 15d), and examples for which the critical flux Qc and the critical
mass Mc are larger (figure 15b,d) and smaller (figure 15c) than the critical flux Qc = 2/3
and the critical mass Mc = 4.443 for classical coating flow (figure 15a).

In the present work we assumed that, since the film is thin, the airflow is unaffected by
the presence of the film. In reality, this will not always be the case, and determining the
influence of the shape of the film on the airflow remains an open problem. For example, the
numerical studies of a thin rivulet of viscous fluid on a stationary cylinder in the presence
of an airflow by Robertson et al. (2010) and Taylor & Robertson (2011, 2015) suggest that
there could be circumstances in which it is significant.
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(b)(a)

(d )(c)

Figure 15. Examples of both critical and subcritical free surfaces on the rotating cylinder, for (a) F = 0 and
K = 0 (i.e. classical coating flow) (θc = 0, Qc = 2/3), (b) F = 1/2 and K = −7/5 (θc 
 0.790π, Qc 
 0.745),
(c) F = 1/2 and K = 1/4 (θc 
 −0.152π, Qc 
 0.541) and (d) F = 1/2 and K = −1 (θc = 3π/4 and −π/4,
Qc 
 0.943), with Q = Qc and Q = 0.85Qc in each case. All of the panels are drawn on the same scale, but,
for clarity the thicknesses of the fluid films are exaggerated.

Appendix A

In this appendix we provide the equations for the more general situation in which the
far-field airflow, rather than being horizontal, is inclined at some prescribed angle α
(measured anti-clockwise from θ = 0) to the horizontal.

The air pressure on the free surface of the film, pa = pa(θ), previously given by (2.1),
becomes

pa = p∞ + ρa

2

[
U2

∞ −
{

2U∞ sin(θ − α)− κ

2πa

}2
]
, (A1)

and hence the volume flux, Q, previously given by (3.3), becomes

Q = aΩh − h3

3μa

[
ρga cos θ − 2ρaU2

∞ sin 2(θ − α)+ ρaκU∞
πa

cos(θ − α)

]
. (A2)
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Non-dimensionalising and scaling according to (3.4), the pressure p = pa, previously
given by (3.5), is now given by

p = pa = 1
2

[
F2 − {2F sin(θ − α)− K}2

]
, (A3)

while the azimuthal velocity, the streamfunction, the flux and the mass are again given by
(3.6)–(3.9), respectively, where the function f = f (θ), previously given by (3.10), is now
given by

f (θ) = cos θ + 2FK cos(θ − α)− 2F2 sin 2(θ − α), (A4)

where F (≥ 0) and K are again defined by (3.11a,b). In particular, the equation for the
positions of the stationary points of h, previously given by (5.1), is now given by

sin θ + 2FK sin(θ − α)+ 4F2 cos 2(θ − α) = 0. (A5)
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