ON QUASISIMILARITY FOR TOEPLITZ OPERATORS

BY
K. SEDDIGHI

Abstract

In this article we give a sufficient condition for quasisimilar analytic Toeplitz operators to be unitarily equivalent. We also use a result of Deddens and Wong to give a sufficient condition for an operator intertwining two analytic Toeplitz operators to intertwine their inner parts too. Analytic Toeplitz operators with univalent symbols satisfying a suitable normalization that are quasisimilar are shown to have equal symbols.

1. Introduction. Let H^{2} denote the Hilbert space of functions f analytic in the open unit disk \mathbb{D} which satisfy $\sup _{0 \leq r<1} \int\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta<\infty$. Let H^{∞} be the space of bounded analytic functions on \mathbb{D}, and for φ in H^{∞} let T_{φ} denote the operator on H^{2} defined by $T_{\varphi} f=\varphi f$. The operator T_{φ} is said to be an analytic Toeplitz operator. In this article we consider the following questions. If an operator intertwines two analytic Toeplitz operators does it necessarily intertwine their inner parts too? Do quasisimilar analytic Toeplitz operators have equal essential spectra? Does quasisimilarity imply unitary equivalence? Although the study of Toeplitz operators has been extensive, little seems to be known about their quasisimilarity. Our purpose is to answer parts of the above questions. In particular, we give a sufficient condition for an operator intertwining two analytic Toeplitz operators to intertwine their inner parts too. We also give a sufficient condition for quasisimilarity to imply unitary equivalence.

If \mathscr{H} is a separable Hilbert space, let $\mathscr{B}(\mathscr{H})$ denote the Banach algebra of all bounded linear operators on \mathscr{H}. If \mathscr{H}_{1} and \mathscr{H}_{2} are Hilbert spaces and $X: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$ is a bounded operator having trivial kernel and dense range, then X is said to be quasi-invertible. If A_{1}, A_{2} are operators on $\mathscr{H}_{1}, \mathscr{H}_{2}$, then A_{1} is quasisimilar to $A_{2}\left(A_{1} \sim A_{2}\right)$ if there are quasi-invertible operators $X: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$ and $Y: \mathscr{H}_{2} \rightarrow \mathscr{H}_{1}$ satisfying $X A_{1}=A_{2} X$ and $A_{1} Y=Y A_{2}$. If A_{1} and A_{2} are unitarily equivalent we write $A_{1} \cong A_{2}$.

Raphael [8] has shown that quasisimilar cyclic subnormal operators have equal essential spectra. Williams [9] has shown that quasisimilar quasinormal operators have equal essential spectra. However the equality of essential spectra under quasisimilarity for general subnormal operators is still open. We study the intertwining operators and suggest the pertinent questions to be considered.
A function g in H^{∞} is said to be inner if $\lim _{r \rightarrow 1}\left|g\left(r e^{i e}\right)\right|=1$ for almost every θ. A

[^0]© Canadian Mathematical Society 1984.
function F in H^{∞} is outer if T_{F} has dense range. Every φ in H^{*} has a factorization $\varphi=g F$ where g is inner and F is outer [7].

An isometry T on H^{2} is a pure isometry if $\bigcap_{n=0}^{\infty} T^{n} H^{2}=\{0\}$. For $g \in H^{\infty}, T_{g}$ is a pure isometry if and only if g is a nonconstant inner function. For an inner function g in H^{∞} we obtain the decomposition $H^{2}=\sum_{k=0}^{\infty} \oplus g^{k}\left(H^{2} \theta g H^{2}\right)$. If $\left\{u_{k}\right\}_{k=1}^{n}$ (n possibly ∞) is a basis for $H^{2} \theta g H^{2}$, then $\left\{u_{k} g^{m}\right\}_{m=0 k=1}^{\infty}$ is a basis for H^{2}, and with respect to this basis the matrix for T_{g} has a block form with an (n by n) identity matrix on its subdiagonal. Also any X in the commutant $\left\{T_{g}\right\}^{\prime}$ of T_{g} has a lower triangular block form which is constant along its diagonals. We denote this X by the purely formal sum $\sum_{n=0}^{\infty} \hat{X}_{n} T_{g}^{n}$ with X_{n} on the nth subdiagonal. Throughout the rest of this paper we assume φ_{1} and φ_{2} are in H^{x} and have the inner-outer factorization $\varphi_{i}=g_{i} F_{i}(i=1,2)$ unless otherwise stated.
2. Quasisimilarity. The following simple lemma is essential to our purposes.

Lemma 2.1 For $\varphi \in H^{\times}$, let $\varphi=g F$ be its inner-outer factorization. Then T_{φ} is Fredholm if and only if T_{g} is Fredholm and T_{F} is invertible.

Proof. If T_{g} is Fredholm and T_{F} is invertible then it readily follows that $T_{\varphi}=T_{g} T_{F}$ is Fredholm. On the other hand if T_{φ} is Fredholm, then ker $T_{\varphi}^{*}=\operatorname{ker} T_{g}^{*}$ is finite dimensional and since T_{g} is an isometry it follows that T_{g} is Fredholm. Because $T_{F}=$ $T_{g}^{*} T_{\varphi}$, it follows that T_{F} is Fredholm. Hence T_{F} has closed range and therefore it is invertible.
Q.E.D.

We would like to point out that if $\varphi=g F$ is the inner-outer factorization of φ then T_{φ} is Fredholm if and only if g is a finite Blaschke product and F is invertible in H^{∞}. The index of T_{g} is the negative of the number of zeros of g counting multiplicity.

Note that if $T_{\varphi_{1}} \sim T_{\varphi_{2}}$ then $T_{g_{1}} \cong T_{g_{2}}$. Indeed $T_{\varphi_{1}} \sim T_{\varphi_{2}}$ implies that $H^{2} \theta g_{1} H^{2}$ and $H^{2} \theta g_{2} H^{2}$ have the same dimension and we know that any two pure isometries of the same multiplicity are unitarily equivalent. Therefore the inner parts are strongly related to each other. In the next lemma we investigate this property further.

Lemma 2.2. If $X: H^{2} \rightarrow H^{2}$ is an operator such that $X T_{\varphi_{1}}=T_{\varphi_{2}} X$ and $X T_{g_{1}}=T_{g_{2}} X$ then $X T_{F_{1}}=T_{F_{2}} X$.

Proof. Since $X T_{\varphi_{1}}=T_{\varphi_{2}} X$, we have $X T_{g_{1}} T_{F_{1}}=T_{g_{2}} T_{F_{2}} X$. Using the relation $X T_{g_{1}}=$ $T_{g_{2}} X$ we get $T_{g_{2}} X T_{F_{1}}=T_{g_{2}} T_{F_{2}} X$. Because $T_{g_{2}}$ is an isometry, it follows that $X T_{F_{1}}=$ $T_{F_{2}} X$.
Q.E.D.

Remarks. Let $T_{\varphi_{1}} \sim T_{\varphi_{2}}$. If we can show that $T_{g_{1}} \sim T_{g_{2}}$ in such a way that the same quasi-invertible operators intertwining $T_{\varphi_{1}}$ and $T_{\varphi_{2}}$ also intertwine $T_{g_{1}}$ and $T_{g_{2}}$ then Lemma 2.2 shows that $T_{F_{1}} \sim T_{F_{2}}$. Using a result of Clary [1] we conclude that $\sigma\left(T_{F_{1}}\right)=\sigma\left(T_{F_{2}}\right)$. Therefore $T_{F_{1}}$ is invertible if and only if $T_{F_{2}}$ is invertible. In other words, $T_{\varphi_{1}}$ is Fredholm if and only if $T_{\varphi_{2}}$ is Fredholm.

The following lemma is a slight extension of Lemma 2 of [6] and will be used in the sequel.

Lemma 2.3. Let N, N^{\prime} be nilpotent operators on K, K^{\prime} respectively and let $X_{0}=$ $\lambda I_{K}+N, X_{0}^{\prime}=\lambda I_{K^{\prime}}+N^{\prime}$ where λ is a nonzero complex number. If B, A_{0}, A_{1}, $A_{2}, \ldots \in \mathscr{B}\left(K, K^{\prime}\right)$ satisfy
(a) $\left\|A_{k}\right\| \leq M, \quad k=0,1,2, \ldots$, and
(b) $A_{k} X_{0}=X_{0}^{\prime} A_{k-1}+B, \quad k=1,2,3, \ldots$,
then $A_{0}=A_{1}=A_{2}=$
Proof. Write $K=\sum_{i=1}^{n} \oplus K_{i}\left(K^{\prime}=\sum_{i=1}^{m} \oplus K_{i}^{\prime}\right)$ such that $X_{0}\left(X_{0}^{\prime}\right)$ has a lower triangular operator-valued matrix with diagonal entries $\lambda I_{i}\left(\lambda I_{i}^{\prime}\right)$ and repeat the proof of Lemma 2 of [6].
Q.E.D.

The next lemma says that the intertwining operator should be lower triangular.
Lemma 2.4. Assume $X T_{\varphi_{1}}=T_{\varphi_{2}} X$ and for $i=1,2$ write $H_{i}^{2}=\sum_{n=0}^{\infty} g_{i}^{n}\left(H^{2} \theta g_{i} H^{2}\right)$ then $X: H_{1}^{2} \rightarrow H_{2}^{2}$ is lower triangular.

Proof. It suffices to show that $X^{*}: H_{2}^{2} \rightarrow H_{1}^{2}$ is upper triangular. Equivalently we will show that X^{*} maps the subspaces $M_{2 n}=\sum_{k=0}^{n} \oplus g_{2}^{k}\left(H^{2} \theta g_{2} H^{2}\right)$ into the subspaces $M_{1 n}=\sum_{k=0}^{n} \oplus g_{1}^{k}\left(H^{2} \theta g_{1} H^{2}\right)$.

Now $X T_{\varphi_{1}}=T_{\varphi_{2}} X$ implies $X T_{\varphi_{1}}^{n+1}=T_{\varphi_{2}}^{n+1} X$ and hence $X^{*} T_{\varphi_{2}}^{*_{n}+1}=T_{\varphi_{2}}^{*_{n+1}} X^{*}$. Thus X^{*} maps the kernel of $T_{\varphi_{2}}^{*_{n}+1}$ into the kernel of $T_{\varphi_{1}}^{*_{n+1}}$. But

$$
\operatorname{ker} T_{\varphi_{i}}^{* n+1}=\operatorname{ker} T_{g_{i}}^{* n+1}=H^{2} \theta g_{i}^{n+1} H^{2}=M_{i n}(i=1,2)
$$

Hence X is lower triangular.
Q.E.D.

Note that a necessary and sufficient condition for the relation $X T_{g_{1}}=T_{g_{2}} X$ to hold is that $X: H_{1}^{2} \rightarrow H_{2}^{2}$ be constant along its diagonals. Indeed writing $T_{g_{i}}(i=1,2)$ in its block form and carrying out the necessary computations it follows that $X_{k+i, k}=$ $X_{i 0} i, k=0,1,2, \ldots$.

Lemma 2.5. Assume $X T_{\varphi_{1}}=T_{\varphi_{2}} X$ where $X: H_{1}^{2} \rightarrow H_{2}^{2}$ is a bounded operator. If $T_{F_{1}}=\sum_{n=0}^{\infty} \hat{T}_{n} T_{g_{1}}^{n}$ and $T_{F_{2}}=\sum_{n=0}^{\infty} \hat{T}_{n}^{\prime} T_{g_{2}}^{n}$ where $T_{0}=\lambda I+N, T_{0}^{\prime}=\lambda I^{\prime}+N^{\prime}$ with N and N^{\prime} nilpotent, then $X T_{g_{1}}=T_{g_{2}} X$.

Proof. By Lemma 2.4 X is lower triangular. We will show that X is constant along its diagonals by inductively proving that $X_{k .0}=X_{k+1,1}=X_{k+2,2}=\ldots$ for $k=0,1$, $2, \ldots$ We also remark that $\left\|X_{k+i, i}\right\| \leq\|X\|$ for all $k, i=0,1,2, \ldots$.

If $1 \leq j<i$ then the (i, j) entry of $\left(X T_{g_{1}}\right) T_{F_{1}}=T_{F_{2}}\left(T_{g_{2}} X\right)$ is

$$
\begin{align*}
X_{i, j+1} T_{0}+X_{i, j+2} T_{1}+\ldots+X_{i, i} & T_{i-j-1}= \tag{2.6}\\
& =T_{i-j-1}^{\prime} X_{j, j} \\
& +T_{i-j-2}^{\prime} X_{j+1, j}+\ldots+T_{0}^{\prime} X_{i-1, j}
\end{align*}
$$

If $i=j+1$ then $X_{j+1, j+1} T_{0}=T_{0}^{\prime} X_{j, j}$ and by Lemma 2.3 we obtain $X_{0,0}=X_{1,1}=$ $X_{2,2}=\ldots$. To apply induction let us now assume that $X_{p, 0}=X_{p+1,1}=X_{p+2,2}=\ldots$ for all $p \leq k$. Setting $i=j+k+2$ in (2.6) we get

$$
\begin{aligned}
X_{k+1+j+1, j+1} T_{0}=T_{0}^{\prime} X_{k+1+j, j}+\left[T_{1}^{\prime} X_{k, 0}+\right. & \ldots+T_{k+1}^{\prime} X_{0,0} \\
& \left.-X_{k, 0} T_{1}-\ldots-X_{0,0} T_{k+1}\right] .
\end{aligned}
$$

An application of Lemma 2.3 gives us $X_{k+1.0}=X_{k+2.1}=\ldots$ and hence by induction $X_{k, 0}=X_{k+1.1}=\ldots$ for all $k=0,1,2, \ldots$. Therefore $X T_{g_{1}}=T_{g_{2}} X$. Q.E.D.

The following theorem is the main result of this section. The idea of the proof is due to Deddens and Wong [6].

Theorem 2.7. Let φ_{1}, φ_{2} be in H^{*} with inner-outer factorization $\varphi_{i}=g_{i} F_{i}(i=1$, 2). Suppose there is $a \lambda$ in \emptyset such that g_{i} factors as $g_{i 1} g_{i 2} \ldots g_{i n}$ and such that F_{i} λ is divisible by each $g_{i j}$, that is $F_{i}-\lambda=g_{i j} h_{i j}$ for $i=1,2$ and $j=1,2, \ldots, n$. If $X: H_{1}^{2} \rightarrow H_{2}^{2}$ is a bounded operator such that $X T_{\varphi_{1}}=T_{\varphi_{2}} X$ then $X T_{g_{1}}=T_{g_{2}} X$.

Proof. Write $T_{F_{i}}=\sum_{n=0}^{\infty} \hat{T}_{n, i} T_{g i}^{n}(i=1,2)$. We will show that $T_{0, i}=\lambda I_{i}+N_{i}$ where N_{i} is nilpotent $(i=1,2)$. Then Lemma 2.5 implies that $X T_{g_{1}}=T_{g_{2}} X$.

For convenience set $T_{F_{i}}=T_{i}, T_{g_{i j}}=T_{i j}$ and $H_{i}^{2}=\mathscr{H}_{i}$. Then $T_{g_{i}}=T_{i 1} T_{i 2} \ldots T_{i n}$. Since $T_{0, i}^{*}$ is the restriction of $T_{F_{i}}^{*}$ to

$$
\mathscr{H}_{i} \theta T_{g_{i}} \mathscr{H}_{i}=\left(\mathscr{H}_{i} \theta T_{i 1} \mathscr{H}_{i}\right) \oplus T_{i 1}\left(\mathscr{H}_{i 1} \theta T_{i 2} \mathscr{H}_{i}\right) \oplus \ldots \oplus T_{i 1} \ldots T_{i n-1}\left(\mathscr{H}_{i} \theta T_{i n} \mathscr{H}_{i}\right),
$$

it follows that $T_{0, i}^{*}$ is upper triangular and hence that $T_{0, i}$ is lower triangular. Let $\left(T_{0, i}\right)_{j j}$ be the compression of $T_{0, i}$ to $T_{i 1} \ldots T_{i j-1}\left(\mathscr{H}_{i} \theta T_{i j} \mathscr{H}_{i}\right)$. If $f, g \in \mathscr{H}_{i} \theta T_{i j} \mathscr{H}_{i}$ then since T_{i} $=\lambda+T_{i j} T_{h_{i j}}$ we obtain

$$
\begin{aligned}
T_{i}\left(T_{i 1} T_{i 2} \ldots T_{i j-1} f\right)=\left(T_{i 1} T_{i 2} \ldots T_{i j-1}\right) T_{i} f=\lambda & T_{i 1} T_{i 2} \ldots T_{i j-1} f \\
& +T_{i 1} T_{i 2} \ldots T_{i j-1} T_{i j} T_{h_{i j}} f .
\end{aligned}
$$

But $\left(T_{i j} T_{h_{i j}} T_{i 1} \ldots T_{i j-1} f, T_{i 1} T_{i 2} \ldots T_{i j-1} g\right)=0$, hence $\left(T_{0, i}\right)_{j j}=\lambda I_{j}$. This shows that $T_{0, i}-\lambda I_{i}$ is nilpotent.
Q.E.D.

Corollary 2.8. Suppose φ_{1}, φ_{2} are in H^{∞} with inner-outer factorization $\varphi_{i}=g_{i} F_{i}$ $(i=1,2)$. If $g_{i}(z)=(a-z)^{n}(1-\bar{a} z)^{-n}(i=1,2 ; n \geq 0,|a|<1), F_{1}(a)=F_{2}(a)$ and $X: H^{2} \rightarrow H^{2}$ is a bounded operator such that $X T_{\varphi_{1}}=T_{\varphi_{2}} X$ then $X T_{g_{1}}=T_{g_{2}} X$.

Proof. Factor $g_{i}=g_{i 1} g_{i 2} \ldots g_{i n}$ where $g_{i j}(z)=(a-z)(1-\bar{a} z)^{-1}, i=1,2$ and $j=1,2, \ldots, n$. Then $F_{i}-\lambda$ is divisible by each $g_{i j}$, where $\lambda=F_{i}(a)$. Applying Theorem 2.7 we obtain $X T_{g_{1}}=T_{g_{2}} X$.
Q.E.D.

Corollary 2.9. Suppose $\varphi_{i}=z^{n} F_{i}(i=1,2), F_{1}(0)=F_{2}(0)$ and $X T_{\varphi_{1}}=T_{\varphi_{2}} X$. Then $X T_{z^{n}}=T_{z^{\prime \prime}} X$.

Even though the following result looks like the uniqueness statement in the Riemann mapping theorem, we would like to point out that from the relation $T_{\varphi_{1}} \sim T_{\varphi_{2}}$ it only follows that the two sets $\varphi_{1}(\mathbb{D})$ and $\varphi_{2}(\mathbb{D})$ have the same closures and this does not convey any information about the equality of the two sets themselves. Also $G=\varphi_{1}(\mathbb{D})$ being simply connected might not have the property that $(\bar{G})^{\circ}=G$. Examples are easy to construct.

Proposition 2.10. Let $\varphi_{1} \in H^{\infty}$ be univalent, $T_{\varphi_{1}} \sim T_{\varphi_{2}}$ and assume the normalization $\varphi_{1}(0)=\varphi_{2}(0), \varphi_{1}^{\prime}(0)=\varphi_{2}^{\prime}(0)>0$ holds. Then $\varphi_{1}=\varphi_{2}$.

Proof. Since $\operatorname{dim}\left(\operatorname{ker} T_{\varphi_{2}-\lambda}^{*}\right)=\operatorname{dim}\left(\operatorname{ker} T_{\varphi_{1}-\lambda}^{*}\right)=1$ or 0 for every $\lambda \in \not \subset$ we conclude that the number of zeros of $\varphi_{2}-\lambda$ in \mathbb{D} is at most 1 . Hence φ_{2} is univalent. Also $X T_{\varphi_{1}}=T_{\varphi_{2}} X$ implies $X T_{\varphi_{1}-\varphi_{1}(0)}=T_{\varphi_{2}-\varphi_{2}(0)} X$. Let $\varphi_{i}-\varphi_{i}(0)=z F_{i}$ be the inner-outer factorizations. Since $F_{1}(0)=\varphi_{1}^{\prime}(0)=\varphi_{2}^{\prime}(0)=F_{2}(0)$, by Corollary 2.9 we obtain $X T_{z}=T_{z} X$. Hence $X=T_{h}, h$ outer in H^{∞}. Since $X T_{\varphi_{1}}=T_{\varphi_{2}} X$ we conclude that $\varphi_{1} h=\varphi_{2} h$, so $\varphi_{1}=\varphi_{2}$.
3. Unitary Equivalence. In this section we consider the following problem. If two analytic Toeplitz operators are quasisimilar, must they be unitarily equivalent? The answer to this question is still unknown. However, in certain special cases an improvement is possible. For example, Conway [3] has shown that if S is the unilateral shift of multiplicity one, $S \sim T_{\varphi}$ then $S \cong T_{\varphi}\left(\varphi \in H^{*}\right.$). We use results of Conway ([2], [4, p. 220] and Clary [1]) to obtain an extension of a result of Cowen [5]. Note that if u is an inner function, we say that the order of u is n if u is a finite Blaschke product of order n; otherwise we say the order of u is infinity. For any operator $A \in \mathscr{B}(\mathscr{H})$, let $P^{\infty}(A)$ denote the weak * closed subalgebra of $\mathscr{B}(\mathscr{H})$ generated by A. That is, $P^{\infty}(A)$ is the weak * closure in $\mathscr{B}(\mathscr{H})$ of the polynomials in A.

Theorem 3.1. Suppose φ and ψ are in H^{∞} and there are inner functions u and v such that $P^{\infty}\left(T_{\varphi}\right)=P^{\infty}\left(T_{u}\right)$ and $P^{\infty}\left(T_{\psi}\right)=P^{\infty}\left(T_{v}\right)$. Then the following are equivalent:
(a) $T_{\varphi} \cong T_{\psi}$,
(b) $T_{\varphi} \sim T_{\psi}$,
(c) there are functions g in H^{∞} and w_{1}, w_{2} inner such that $\varphi=g \circ w_{1}, \psi=g \circ w_{2}$ and order $w_{1}=$ order w_{2}.

Proof. (c) implies (a) follows from Theorem 1 of [5], and (a) implies (b) is clearly true, so we only need to prove that (b) implies (c).

By hypothesis, there are inner functions u and v so that $P^{\infty}\left(T_{\varphi}\right)=P^{\infty}\left(T_{u}\right)$ and $P^{\infty}\left(T_{\psi}\right)$ $=P^{\infty}\left(T_{v}\right)$. We will show that u and v have the same order. Let $n=$ order u and $m=$ order v. It is easy to see that $P^{\infty}\left(T_{\varphi}\right)=P^{\infty}\left(T_{u}\right)=\left\{T_{\text {gои }}: g \in H^{\infty}\right\}$ and $P^{\infty}\left(T_{\psi}\right)=P^{\infty}\left(T_{v}\right)$ $=\left\{T_{g \circ v}: g \in H^{\infty}\right\}$. Let X and Y be quasi-invertible operators such that $X T_{\varphi}=T_{\psi} X$ and $Y T_{\psi}=T_{\varphi} Y$. By a result of Conway [2] (see also [4, p. 220]) there is an isometric isomorphism $F: P^{\infty}\left(T_{\varphi}\right) \rightarrow P^{\infty}\left(T_{\psi}\right)$ having the following properties
(1) $F\left(T_{\varphi}\right)=T_{\psi}$,
(2) $X A=F(A) X$ and $Y F(A)=A Y$ for every A in $P^{\infty}\left(T_{\varphi}\right)$, and
(3) F is a weak $*$ homeomorphism.

Now F induces an algebra isomorphism $\Phi: H^{\infty} \circ u \rightarrow H^{\infty} \circ v$ given by $\Phi(g \circ u)=$ $h \circ v$ where $T_{h \circ v}=F\left(T_{g \circ u}\right)$. Let $w=\Phi(u)=q \circ v$ and $w_{0}=\Phi^{-1}(v)=q_{0} \circ u$. Since Φ is weak * continuous we have $v=\Phi\left(w_{0}\right)=\Phi\left(q_{0} \circ u\right)=q_{0} \circ w=q_{0} \circ q \circ v$. Because v is inner, we have $q_{0}(q(z))=z, z$ in \mathbb{D}. Also $w=q \circ v=q \circ \Phi\left(w_{0}\right)=$ $q \circ \Phi\left(q_{0} \circ u\right)=q \circ q_{0} \circ \underline{w}$. Moreover since $T_{u} \sim T_{w}$, we have by a result of Clary [1], $\sigma\left(T_{u}\right)=\sigma\left(T_{w}\right)$ Hence $\overline{w(\mathbb{D})}=\overline{u(\mathbb{D})}=\overline{\mathbb{D}}$. Therefore $q\left(q_{0}(z)\right)=z, z$ in \mathbb{D}. But
$\overline{q(\mathbb{D})}=\overline{q(v(\mathbb{D}))}=\overline{w(\mathbb{D})}=\overline{\mathbb{D}}$ and $\overline{q_{0}(\mathbb{D})}=\overline{\mathbb{D}}$. Hence q is a Möbius transformation of \mathbb{D} onto \mathbb{D} and w is an inner function of order m. But $T_{u} \sim T_{v}$ implies dim $\left(\operatorname{ker} T_{u}^{*}\right)=\operatorname{dim}\left(\operatorname{ker} T_{w}^{*}\right)$. Thus order $u=\operatorname{order} w$, so $n=m$.

Since $T_{\varphi} \in P^{\infty}\left(T_{\varphi}\right)$, there is $g \in H^{*}$ such that $\varphi=g \circ u$. Since Φ is weak * continuous we have $\Phi(\varphi)=g \circ \Phi(u)=g \circ w$, but we have $F\left(T_{\varphi}\right)=T_{\psi}$ so $\Phi(\varphi)=\psi$. Therefore, we have $\varphi=g \circ u$ and $\psi=g \circ w$ where $g \in H^{*}$ and order $u=$ order $w=n$ so the conclusion follows with $w_{1}=u$ and $w_{2}=w$.
Q.E.D.

References

1. W. S. Clary, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), pp. 88-90.
2. J. B. Conway, On quasisimilarity for subnormal operators, III. J. Math. 24 (1980), pp. 689-702.
3. - On quasisimilarity for subnormal operators, II, Canad. Math. Bull. 25 (1) (1982), pp. 37-40.
4. ——, Subnormal Operators, Pitman, London, 1981.
5. C. C. Cowen, On equivalence of Toeplitz operators, J. Operator Theory 7 (1982), pp. 167-172.
6. J. A. Deddens and T. K. Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), pp. 261-273.
7. P. L. Duren, Theory of H^{p}-spaces, Pure and Appl. Math., 38, Academic Press, New York, 1970.
8. M. Raphael, Quasisimilarity and essential spectra for subnormal operators, Indiana Univ. Math. J. 31 (1982), pp. 243-246.
9. L. R. Williams, Equality of essential spectra of quasisimilar quasinormal operators, J. Operator Theory 3 (1980), pp. 57-69.

Department of Mathematics and Statistics
Shiraz University
Shiraz, Iran

[^0]: Received by the editors January 20, 1984 and, in revised form, May 18, 1984.
 AMS Subject Classification: Primary, 47B20; Secondary, 47B35.
 Key words and phrases: Toeplitz operator, quasisimilarity, inner-outer factorization.
 The author had a postdoctoral fellowship from the University of Calgary during the preparation of this paper.

