VOL. 6 (1972), 435-438.

On a problem in the theory of ordered groups

Colin D. Fox

The group G presented on two generators a, c with the single defining relation $a^{-1} c^{2} a=c^{2} a^{2} c^{2}$ [proposed by B.H. Neumann in 1949 (unpublished), discussed by Gilbert Baumslag in Proc.
Cambridge Philos. Soc. 55 (1959)] has been considered as a possible example of an orderable group which can not be embedded in a divisible orderable group, contrary to the conjecture that no such examples exist. It is known from Baumslag's discussion that G can not be embedded in any divisible orderable group. However, it is shown in this note that G is not orderable, and thus is not a counter-example to the conjecture.

DEFINITIONS. A group, G, is an orderable group (0-group) if G admits a linear order, \leq, which has the property that if $x \leq y$ then $a x b \leq a y b$ for a, b, x, y in G.
G is an R-group if it has the property that $x^{n}=y^{n}$ implies $x=y$ for x, y in G.
G is a divisible group if for each g in G and integer, n, there exists a (not necessarily unique) x in G such that $x^{n}=g$.

It is convenient to ignore the presentation of the group G given in the abstract, and instead to construct G as a generalized free product, as follows:

Received 4 January 1972. The author thanks Professor B.H. Neumann for his help with, and constructive criticism of, this work.

Take groups $A=\operatorname{gp}\left(a, b: a^{-1} b a=b^{2}\right.$) (whose elements may be written uniquely in the form $a^{n} b^{\beta}$ where n is an integer and $B=m 2^{-k}, m$ an integer and k a non-negative integer - see Fuchs [2], p. 60) and \mathcal{C}, the infinite cyclic group with generator, c. Let G be the generalized free product of A and C with amalgamated subgroup

$$
H=\operatorname{gp}\left(c^{2}=b a^{-2}\right)=\operatorname{gp}\left(c^{2}=a^{-2} b^{1 / 4}\right) .
$$

Baumslag [1] has shown that G is an R-group which cannot be embedded in a divisible R-group. Thus G can not be embedded in a divisible 0 -group, because every 0 -group is an R-group (Fuchs [2], p. 61). We show that G cannot be linearly ordered.

LEMMA 1. $a c^{2} a \neq c a^{2} c$ in G.
Proof. We use a normal form argument. (See Neumann [3] for the theory of normal form in a free product with amalgamation.)

Let S be a system of left coset representatives of A with respect to H such that both $b^{1 / 4}$ and $b^{1 / 2}$ belong to $S . T=\{1, c\}$ is a system of left coset representatives of C with respect to H. (Observe that $b^{1 / 4}$ and $b^{1 / 2}$ lie in different cosets of H because every non-identity element of H has a non-trivial power of a in its unique representation in A.)

Now

$$
a c^{2} a=a c^{2} a^{2} a^{-1}=a b a^{-1}=b^{1 / 2} .
$$

Since $b^{1 / 2} \in S, b^{1 / 2}$ is the normal form of $a c^{2} a$ in G (with respect to S, T and H).

But

$$
\begin{aligned}
c a^{2} c & =c a^{2} b a^{-2} a^{2} b^{-1} c \\
& =c b^{1 / 4} a^{2} b^{-1} c \\
& =c b^{1 / 4} a^{2}\left(c^{2} a^{2}\right)^{-1} c \\
& =c b^{1 / 4} c^{-1} \\
& =c b^{1 / 4} c c^{-2}
\end{aligned}
$$

Since $b^{1 / 4} \in S, c \in T$ and $c^{-2} \in H, c b^{1 / 4} c c^{-2}$ is the normal form of $c a^{2} c$ in G.

The next lemma shows that G is not an 0 -group.
LEMMA 2. Let K be an o-group with elements x and y which satisfy

$$
\begin{equation*}
x^{-1} y^{2} x=y^{2} x^{2} y^{2} \tag{1}
\end{equation*}
$$

Then $x y^{2} x=y x^{2} y$.
Proof. We show that neither

$$
\begin{equation*}
x y^{2} x<y x^{2} y \tag{2}
\end{equation*}
$$

nor

$$
\begin{equation*}
x y^{2} x>y x^{2} y \tag{3}
\end{equation*}
$$

hold in K.
If we assume that (2) holds, we have

$$
\begin{aligned}
x y^{2} x<y x^{2} y & \Rightarrow x y^{2} x<y^{-1} x^{-1} y^{2} x y^{-1} \text { by (1) } \\
& \Rightarrow x y^{2} x<y^{-1} x^{-2} x y^{2} x y^{-1} \\
& \Rightarrow x y^{2} x<y^{-1} x^{-2} y x^{2} y y^{-1} \text { by (2) } \\
& \Rightarrow x y^{2}<y^{-1} x^{-2} y x \\
& \Rightarrow x y^{2}<y^{-1} x^{-2} y^{-1} y^{2} x \\
& \Rightarrow x y^{2}<x^{-1} y^{-2} x^{-1} y^{2} x \text { by (2) } \\
& \Rightarrow x y^{2}<x^{-1} y^{-2} y^{2} x^{2} y^{2} \text { by (1) } \\
& \Rightarrow x y^{2}<x y^{2}-\text { impossible. }
\end{aligned}
$$

So $x y^{2} x \nmid y x^{2} y$.
Now assume that (3) holds. By substituting > for < and (3) for (2) in the above argument, the validity of this argument is not affected.

So $x y^{2} x \ngtr y x^{2} y$. Hence $x y^{2} x=y x^{2} y$ and Lemma 2 is proven.
Finally, we observe that a and c in G satisfy (1). (Because
$b=c^{2} a^{2}$ and $a^{-1} b a=b^{2}$ imply $a^{-1}\left(c^{2} a^{2}\right) a=\left(c^{2} a^{2}\right)^{2} ;$ that is $a^{-1} c^{2} a=c^{2} a^{2} c^{2}$.) So, if G were an 0 -group, then, by Lemma 2, $a c^{2} a=c a^{2} c$ would hold, contrary to Lemma 1 , so G is not an 0 -group.

References

[1] Gilbert Baumslag, "Wreath products and p-groups", Proc. Combridge Philos. Soc. 55 (1959), 224-231.
[2] László Fuchs, Teilweise geordnete algebraische Strukturen (Akadémiai Kiadó, Budapesṭ, 1966).
[3] B.H. Neumann, "An essay on free products of groups with amalgamations", Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503-554.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.

