On a problem in the theory of ordered groups

Colin D. Fox

The group G presented on two generators a, c with the single defining relation $a^{-1}c^2a = c^2a^2c^2$ [proposed by B.H. Neumann in 1949 (unpublished), discussed by Gilbert Baumslag in *Proc.* Cambridge Philos. Soc. 55 (1959)] has been considered as a possible example of an orderable group which can not be embedded in a divisible orderable group, contrary to the conjecture that no such examples exist. It is known from Baumslag's discussion that G can not be embedded in any divisible orderable group. However, it is shown in this note that G is not orderable, and thus is not a counter-example to the conjecture.

DEFINITIONS. A group, G, is an orderable group (0-group) if G admits a linear order, \leq , which has the property that if $x \leq y$ then $axb \leq ayb$ for a, b, x, y in G.

G is an R-group if it has the property that $x^n = y^n$ implies x = y for x, y in G.

G is a divisible group if for each g in *G* and integer, *n*, there exists a (not necessarily unique) x in *G* such that $x^n = g$.

It is convenient to ignore the presentation of the group G given in the abstract, and instead to construct G as a generalized free product, as follows:

Received 4 January 1972. The author thanks Professor B.H. Neumann for his help with, and constructive criticism of, this work.

Take groups $A = gp(a, b : a^{-1}ba = b^2)$ (whose elements may be written uniquely in the form $a^n b^\beta$ where *n* is an integer and $\beta = m2^{-k}$, *m* an integer and *k* a non-negative integer - see Fuchs [2], p. 60) and *C*, the infinite cyclic group with generator, *c*. Let *G* be the generalized free product of *A* and *C* with amalgamated subgroup

$$H = gp(c^{2} = ba^{-2}) = gp(c^{2} = a^{-2}b^{1/4}) .$$

Baumslag [1] has shown that G is an R-group which cannot be embedded in a divisible R-group. Thus G can not be embedded in a divisible 0-group, because every 0-group is an R-group (Fuchs [2], p. 61). We show that G cannot be linearly ordered.

LEMMA 1. $ac^2a \neq ca^2c$ in G.

Proof. We use a normal form argument. (See Neumann [3] for the theory of normal form in a free product with amalgamation.)

Let S be a system of left coset representatives of A with respect to H such that both $b^{1/4}$ and $b^{1/2}$ belong to S. $T = \{1, c\}$ is a system of left coset representatives of C with respect to H. (Observe that $b^{1/4}$ and $b^{1/2}$ lie in different cosets of H because every non-identity element of H has a non-trivial power of a in its unique representation in A.)

Now

$$ac^{2}a = ac^{2}a^{2}a^{-1} = aba^{-1} = b^{1/2}$$

Since $b^{1/2} \in S$, $b^{1/2}$ is the normal form of ac^2a in G (with respect to S, T and H).

 \mathtt{But}

$$ca^{2}c = ca^{2}ba^{-2}a^{2}b^{-1}c$$

= $cb^{1/4}a^{2}b^{-1}c$
= $cb^{1/4}a^{2}(c^{2}a^{2})^{-1}c$
= $cb^{1/4}c^{-1}$
= $cb^{1/4}cc^{-2}$.

436

Since $b^{1/4} \in S$, $c \in T$ and $c^{-2} \in H$, $cb^{1/4}cc^{-2}$ is the normal form of ca^2c in G.

The next lemma shows that G is not an O-group.

LEMMA 2. Let K be an O-group with elements x and y which satisfy

(1)
$$x^{-1}y^2x = y^2x^2y^2$$

Then $xy^2x = yx^2y$.

Proof. We show that neither

nor

hold in K.

If we assume that (2) holds, we have

$$xy^{2}x < yx^{2}y \Rightarrow xy^{2}x < y^{-1}x^{-1}y^{2}xy^{-1} \text{ by (1)}$$

$$\Rightarrow xy^{2}x < y^{-1}x^{-2}xy^{2}xy^{-1}$$

$$\Rightarrow xy^{2}x < y^{-1}x^{-2}yx^{2}yy^{-1} \text{ by (2)}$$

$$\Rightarrow xy^{2} < y^{-1}x^{-2}yx$$

$$\Rightarrow xy^{2} < y^{-1}x^{-2}y^{-1}y^{2}x$$

$$\Rightarrow xy^{2} < x^{-1}y^{-2}x^{-1}y^{2}x \text{ by (2)}$$

$$\Rightarrow xy^{2} < x^{-1}y^{-2}y^{2}x^{2}y^{2} \text{ by (1)}$$

$$\Rightarrow xy^{2} < xy^{2} - \text{impossible.}$$

So $xy^2x \not = yx^2y$.

Now assume that (3) holds. By substituting > for < and (3) for (2) in the above argument, the validity of this argument is not affected. So $xy^2x \nmid yx^2y$. Hence $xy^2x = yx^2y$ and Lemma 2 is proven.

Finally, we observe that a and c in G satisfy (1). (Because

 $b = c^2 a^2$ and $a^{-1}ba = b^2$ imply $a^{-1}(c^2 a^2)a = (c^2 a^2)^2$; that is $a^{-1}c^2 a = c^2 a^2 c^2$.) So, if G were an O-group, then, by Lemma 2, $ac^2 a = ca^2 c$ would hold, contrary to Lemma 1, so G is not an O-group.

References

- [1] Gilbert Baumslag, "Wreath products and p-groups", Proc. Combridge Philos. Soc. 55 (1959), 224-231.
- [2] László Fuchs, Teilweise geordnete algebraische Strukturen (Akadémiai Kiadó, Budapest, 1966).
- [3] B.H. Neumann, "An essay on free products of groups with amalgamations", Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503-554.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.