ON ABELIAN VARIETIES

HISASI MORIKAWA

In a Bourbaki semirary note, La Théorie des Fonctions Théta, A. Weil has
discussed two fundamental theorems of the general theory of Theta functions.
The first, due to H. Poincaré, was proved very skilfully in the note by means
of harmonic integrals on a torus and the second, due to Frobenius, was treated
by the systematic use of the notion of analytic structure.

In the present paper we shall give an algebraic geometrical proof of the
Second (Frobenius) Theorem and shall make clear the algebro-arithmetic struc-
ture of divisors on abelian varieties defined over fields of any characteristic.

Section 1 is to give a Picard variety of a given abelian variety and to show
the duality between the Picard variety of an abelian variety satisfying a certain
condition and the abelian variety itself; Picard Variety has been an object of
deep and interesting researches by A. Weil, J. Igusa, W. L. Chow and T. Matsu-
saka. In section 2 some arithmetic preparations on rings of endomorphisms
of abelian varieties are given. In section 3 we prove the main theorems and
study the behaviours of divisors for the homomorphisms (or endomorphisms)
between abelian varieties. In the last section we shall treat a problem on posi-
tive divisors, which was left open in Weil’s book, Variétés abéliennes et courbes
algébriques (1948)—quoted as [V]—, as an application of the results in §3.

The notations and results in Weil’s books [ V] and Foundations of algebraic
geometry (1946)—quoted as (F)—, are freely used. Beside Weil’s results re-
ferred to in §1, the Lemma” due to W. L. Chow plays an essential role and
in §3 the theorem on the square sum of four integers of an algebraic number
field, due to C. L. Siegel,? is a key-point in our proof.

§ 1. Duality of abelian varieties satisfying a certain condition
LemMA 1. (Chow) Let A be an abelian wariety defined over k in a pro-
jective space. Let C be an algebraic subgroup of A which is normally algebraic
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over k. Then there exists an abelian variety B defined over k in a projective
space and a separable homomorphism from A onto B defined over k whose ker-
nel is exactly C.

We call the abelian variety B the quotient variety of A by C.

LemMmA 2. Let A be an abelian variety defined cver k in a projective space
and l2t B be an abelian varietyv defined over k from which there is a purely
inseparable homomorphisin A defined over k onto A. Then B is isomorphic to
an abelian variety defined over k in a projective space.

Proof. Let x be a generic point of B over k and let (x5, %, ..., x3)
be the hemogeneous coordinates of the generic point Ax of A over k. Let (a9,
Xl « .., X%, Y1, .-.,%m) be a point in a projective space of dimension 7+ m
such that k(x) = &(Ax, y:i/%5, ¥:/%3, . . . , ym/%}). Let A be the locus of (xd, xi,
e ey Xn Yis ..., Ym) over k in the projective space. Since A4, A are non-
singular und the function (%3, 2%, ..., 2%, ¥, - .. Y= (2, x1, .. ., ) is
purcly inseparable, this correspondence is one-to-one. Let %, z be independent
generic points of B over & and let (&3, %1, « « ., %o Y15 -« 5 Ym)s (20, 200 o o o,
Zh, Wi, - - «, Wm) be the independent generic points over k corresponding to
(xd, x5, .« ., %0, (20, 21, . . ., z») respectively. We introduce a law of compo-
sition such that

A A by A A by
(%05 X1y o oo s Zns Vis o v o s Ym) (20, 21y o o o 5 20y Wiy = « - 5 W)
X 'y
=((x+2), (x+2)0 ..., (x+2)n, 1, U2y o v o 5 Um),
where ((x+2), (x+2)}. ..., (x+2)h, w4, . . ., um) is the point of A corre-

sponding to the point A(x 4 2) of A. Since the specialization of x over any
specialization of Ax is uniquely determined, the specialization of (x3, #7, ...,

%% Y1, . . - . ¥m) over the specialization A(z-+2x) of x+z is equal to ((x+ 2)3,
(X420 o ov (X420, w1, %00, . . ., um). Hence E(Ax, yi/%0, y2/%0, . o o, Yml %3,
2z, wilz, wel2h, . .., wmlz) =k(x, 2) DE(x+2) =k(Ax+2), w/(x+2), w/(x
42)3, ..., wn/(x+2)}). Easily we prove the associative law and the existence

of unit and inverses. Moreover A is complete, hence .4 is an abelian variety
over % and is isomorphic to B.
Similarly we can verify the following lemma.

LemMA 3. Let A be an abelian variety defined over k in a projective space
and let (%o, %1, . . ., Xu) be a generic point of A over k. Then the locus B of
(", 20", ..., xB") over k is an abelian variety defined over k, where p is the

characteristic of k.

LeMMA 4. Any abelian variety A defined over k is isomorphic to an abelian
variety defined over the algebraic closure k in a projective space.
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Proof. Since any curve is birationally equivalent to a non-singular curve
in a projective space, its Jacobian variety is always constructed in a projective
space by Chow’s method and we can choose the algebraic closure of the field
of definition for the curve as a field of definition for the Jacobian variety. On
the other hand we can easily see that there exists a curve defined over kon A
which does not lie on any translation of a proper abelian subvariety of A. Fence
there exist a Jacobian variety J defined over % in a projective space and a homo-
morphism 2 from J onto A. Let C be the kernel of 2 on J and let B be the
quotient variety of J by C, which exists in a projective space and is defined
over 2, by Lemma 1. We denote by p the separable homomorphism from J
onto B whose kernel is C. Let x be a generic point of J over £ and B’ be the
locus of ((x)¥™, (D)™, . .., (x0)*Y)¥ Gver k, which is an abelian variety
by Lemma 3, (x5, x7, ..., x%) being the homogeneous coordinate of the point
ox of B. Then k(Ax) DR((x8/x8)*™, .. ., (x5/x0)" and [k(x) @ k((x?/x0)" ),
v, (x5/%5)¥V)1;=1. Hence the one-to-one correspondence 2x «— ((xf)"’.
(x0)"™, ..., (2£)*M) is a purely inseparable bomomorphism from A onto A
By virtue of Lemma 2 there exists an abelian variety defined over k in a pro-
jective space which is isomorphic to A.

By virtue of Lemma 4 we get the following lemma.

LEMMA 5. Let A be an abelian variety defined over k and let C be an alge-
braic subgroup which is algebraic cver k. Then there exists an abelian variely
B in a projective space defined over % and a separable homomorphism defined
over k Jrom A onto B whose kernel is exactly C.

LEmMMA 6. Let X, Y be non-degenerate divisors® on a Jacobian variety
satisfying X — Y =05 Then there exists a point t such that Y ~X:.

Proof. By virtue of Corollary 3 of Theorem 32, N° 62, § VII, [V] there
exists an endomorphism ok such that X3 — X~8sit—0. From X-Y =0, we
can write Y — X~ 0, — O with a suitable point #. Since X is non-degenerate,
% is an onto endomorphism. Hence there exists a point satisfying oyt = .
Therefore

Xt —X~0st—-0=0,-0~Y - X.
Hence X;~Y.

LEMMA 7. Let A be an abelian variety and let X be a non-degenerate divisor

M pi(n) =[R(ax) : B(x)]i.

1) We mean by a non-degenerate divisor X a divisor such that X,— X~0 for only finite num-
ber of points £. .

5 Z=0 means that Z,—Z~0 for all points £. We call such a divisor Z algebraically equiva-
lent to zero.
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on A. Then there exists a natural number ¢ depending only on A such that
Jor any divisor satisfying Z =0 there exists a point of A satlisfying cZ~X:— X.

Proof. Let A’ be an abelian variety and let J be a Jacobian variety such
that Ax A’ and J are isogeneous, which always exist. Let A be a homomor-
phism from J onto AX A and let W be a non-degenerate divisor on A. Put Y
=Z+ X. Since A7(Xx A'+ AX W), by virtue of Lemma 6, there exists a point
s of J such that

ANY XA+ AXW)~2H(XXA' + AXW)s.
Therefore
AHY XA+ AX W)~ Xux A+ AX W),
(Y = X)X A+ AX (W= W) ~0,
where #, v are the projections of is on A, A’ respectively. Hence
ATN(Y —- X)) ~O0.

Let ' be the homomorphism from A X A’ onto J such that AA' = »(21)d.axr.
Then

FTTATNY = X)) = (0(2)0axa) HY = X)) ~v(A(Y — X)) ~0.
Hence
vMNZ =AY = X))~ Xu— X)~Xiryu — X.

This proves our lemma.
We denote by Ga(A) the group of all divisors algebraically equivalent to
zero and by Gi(A) the group of all divisors linearly equivalent to zero.

THEOREM 1. (Existence theorem) Let A be an abelian variety defined over
k. Then there exists an abelian variety A™ defined over k in a projective space
satisfying
Ga(A)/Gi(A)= A*

and isogeneous to A. If A lies in a projective space, A* is defined over k.

Proof. Let X be a non-degenerate divisor on A. Then there exists a natu-
ral number ¢ depending only on A such that ¢Z~ X; — X with a point ¢ for any di-
visor satisfying Z=0. Putting cu =1, we have Z=¢c(Xy — X) +(Z— (X — X)).
Hence
Go(A)={cZ; Z=0}U{Z; cZ~0},
G(AYN{cZ; Z=0}={cZ ; cZ~0).

Therefore
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Go(A)/Gi(A)Y={cZ ; Z=0}/{cZ ; cZ~0}.

Let C be the subgroup of all points ¢ of A satisfying X: — X. Then C is a finite
subgroup normally algebraic over 2. Let A be the quotient abelian variety of
A by C and let A be the separable homomorphism from A onto A™ whose kernel
is C. Since ¢Z~X;~ X~0 ifandonly if t € C, {cZ ; Z=0}/{cZ ; cZ~0}= A",
Therefore

G.(A)/G(A)= A",

When A lies in a projective space, A* is defined over £ by Lemma 1.

LeMMma 8  Let V be a normal projective variely defined over a field k and
let X be a V-divisor linearly equivalent to zero. Then every specialization X'
of X over k is also linearly equivalent to zero.

This can be proved in the same way as in the case of a curve.”

LEMMA 9. Let X be a divisor on an abelian variety. If X is linearly equiva-
lent to zero, then any specialization of X' is also linearly equivalent to zero.

This is an immediate consequence of Lemma 5 and Lemma 8.

LEmMA 10. Let X, Y be non-degenerated divisors of an abelian variety.
Then for any point t there exists al least one point s such that X — X~ Ys-Y.

Proof. From Lemma 7 ¢(Xy — X)~Ys— Y with a certain s. Putting cu
=t, we have c(Xy - X)~Xey = X~ X; - X~ Y- Y.

LeMMA 11. Let X, Y be non-degenerate divisors on an abelian variety A
defined over k and let x be a generic point of A over k. Lel ¥ be the point of
A such that X, — X~Yy—Y. Then k(x, y) is algebraic over k(x), k(y) and y
is also a generic point of A over k.

Proof. Let A be the locus of (x, ¥) over k. Since Ax A is complete, .l
is also complete. (X;--X)—(Yy—Y)~0, hence by virtue of Lemma 10 (X,
—-X)—=(Yy —Y)~0 for any specialization (x/, »') of (x, y) over k. On the
other hand X, Y are non-degenerate, hence the number of the specializations
of y over any specialization x' of x is always finite. This shows that y is alge-
braic over k(x). Similarly x is algebraic over %k(y). Hence v is also a generic
point of A over k.

THEOREM 2. Let X, Y be non-degenerate divisors on an abelian variety A
defined cver k. Let A{ be the quotient abelian variety of A by the subgroup C,
of points t satisfying Xi — X~0 and let X be the separable homomorphism from
A onto A whose kernel is the subgroup C., and let AS be the quotient abelian

6) See Lemma 10, N° 35, §V, [V].
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variety of A be the subgroup C- of points s satisfying Ys— Y ~0 and . be the
separable homomorphism whose kernel is C.. Then there exists an abelian va-
yiety from which there exist purely inseparable homomorphisms onto A, AS
respectively.

Proof. Using the notations in the proof of Lemma 11, (x, ¥) is a generic
pair of points of A over % such that Xy — X~Y,—Y. Let A® be the locus of
(ix, py) over k. Then E(Ax, ;v) is purely inseparable over k(ix), k(uy) and a
law of composition is introduced onto A™ as follows:

Az, w) G, po) = (Mx+u), pl(y+v)),

where (x, ¥), (u, ») are independent generic pairs of points of A satisfying
Xe—-X~Yy—Y, X —X~Y,—Y, which are also generic points of A* from
Lemma 11. This clearly satisfies the conditicns of the law of group compo-
sition. Since A* is complete, A™ is an abelian variety. This A™ is our abelian
variety.

This theorem shows that the abelian variety A™ constructed in the proof
of Theoream 1 is uniquely determined within purely inseparabie homomorphisms.
Therefore we call A™ a maodel of the Picard variety of A.

CorROLLARY. All models of the Picard variety of an abelian variety defined
over a field of characteristic zero are cach other isomorphic.

TueorReM 3. (Duality) Let A be an abelian variety with a non-degenerate
divisor X such that there is no point t satisfying Xt — X~0 and p’t =0 with a v.
Let A™ be a model of the Picard variety of A. Then A is a model of the Picard
variety of A*.

Proof. Let 1 be the separable homomorphism from A onto A* such that
/t=0 if and only if X;— X~0. Let »’ be the homomorphism from A™* onto A
such that A2 =2»(1)84,"” 22 =p(1)é.+, and let t, to, . . ., Lo, be all points of A
satisfying ##=0, i=1, 2, ..., »(1). Since X, + X, + .. . + X, is invariant
for all translations by #;,....tu and p does not divide »(1), by virtue of
Proposition 13, N° 78, §XI, [V], there exists a divisor ¥ on A such that
X+ Xe,+ oo o + Xeyo, =4"HY). Since Xy, + Xy, + ...+ Xnoy=2(1DX and
PTHOTHY)) = (D00 THY) =) Y =2 D) X) = p(DXTHX), (D) Y =2 TH XD,
Therefore E/(X (X)) =E(»()Y), E(A™(Y)) =E(»(1)X). From the formula
in N° 77, §XI, [V].

EQG™X) =" ME(X)M) = oM E(Y), EWNY)) = M) E(Y)M()
=p(M)E(X). Since X.oy—X~0 if and only if Aw(D)t=pR)it=0, X,on~X
~p(M)(X: = X)~0 if and only if »(2)t =i()t=0. Hence A7 (Yx) —i"(Y)

7 §4 is the identical endomorphism of A.
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~0 if and only if »(1)#=0. Denoting by =/(z) the l-coordinate of » on A,
»(Mr(w) =0 (mod. 1) if and only if "M E(Y ) o) =0 (mod. 1). Hence »(1)U
='M/(J)E(Y) with an l-adic unimodular matrix U and E(Y) =*M/) (1)U
= MO M) M) U ="M U.  From E(Y)= —E(Y) we get E(Y)
= —'UM(2"). Hence, when 'u=0, Yu~ Y~0 if and only if 2, =0. On the
other hand there is no point satisfying Y:— Y~0 and p't =0 with a ». This
shows that A is a model of the Picard variety of A*.

§ 2. Arithmetic preperations

LemMma 1. Let k be a number field and ' be an involution of k such that
Sp(a’'a)>0. Then k is a totally real or a totally imaginary field and o =w,

where @ means the complex conjugate of «.

Proof. Let %' be the invariant subfield of 2 by ! and let ¥ =k, ...,
PO D R et RIS e the conjugate fields over
the rational number field, where &'"**" and K" ;=1 2, ..., r are mutu-
ally complex conjugate fields.

First we assume that 7 %0. We take a number 38 of % such that | 57|
= lﬁ(rﬁrz.rl) | >205+ 272, lﬁ(j) i</ 20 +27) Uxrn+1,7+7+1)and z/2> Arg
Bt >3/8%. This is always possible, for the numbers of /Y
the complex plane and there exists a unit % of 2 such that

are dense on

g = g >0, 90 1<1 Gxn+l, ndnt1),

therefore there exists 7 satisfying for arbitrary positive e and M,

lﬂmﬂ)l — [7?(1‘14—7‘24-1) >]W, M(J‘){ <7V17 (j# rit 1’ 71474 1),

> Arg >

T = €.

Hence

427

S8 8) =2 2 B <2( = (2(ri+2m)/~V2)
4+ ((r1+2(rz—1))/2(n+27))) <0.

This contradicts to the assumption in Lemma. Hence 7.=0.

Let ~ a; be the canonical generater of & over ¥ and let be ai”, ...,

a”>0 and ", . .., a}¥’? <0, where » is the (absolute) degree of k. We
take a number B of k' satisfying

IBH)!>“/?W (i=1,2,...,7),
189 <~ Z1jad (G=r+1,..., n/2).
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Then 8 a'>2n (i=1,2, ...,7),0< =" a' <1 (j=7r+1,...,n/2). Hence
Spel (14 B~ ag (148~ a0 ) =2Sp((14+ BV a0 ) (1= v a0 )

r - . n/2 - .
22§(1 -8+ 2 21(1 ~ B £27(1 = 2n) +2:2(n/2 - 7).
= 3

=r+

Therefore 7 =0.
This shows that if 2=k then & is totally imaginary. Hence a'=a for
either case B=Fk or k= k.

ProroSITION 1. The center 3 of the ring of endomorphisms N(A) of a simple
abelian variely is totally real or totally imaginary.

Proof. Let Mi(B) be an [l-adic representation by I-coordinates with = p.
As we see in §X, [V] the characteristic polynomial of M;(3) has rational coef-
ficients. Therefore there exists a non-singular matrix F of an extension of the
l-adic field such that

B(l) \

o
FIMy(8) F = '
.

\ .ﬁ(f) /

where f=87, %, ..., 8™ are mutually conjugate over the rational field. If
B is in 3, then @ also belongs to 3. Moreover we can take the same F for all
elements B of the center, hence

B \

.B'(”
F- M) F = '
o

p )
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B(l‘ﬁ'(l)

B(l‘) Bl(l)
F-1Mi(B8) F = '
B(r-1 ﬁur)

B(f’) B'(f)
Each conjugate field ;¥ has a function 7(8%) = o(8) = S, Mi(B) = nSpyi (B), where

n is the multiplicity of 8 in the characteristic equations a(6B) = ((B8))
=nSp,i)(BB')>0. This shows that B9 =% and 3 is totally real or totally
imaginary from Lemma 1.

ProrosITION 2. Let « bz a symmetric element of the ring of endomorphism
N(A) of an abelian wvariety. Then the roots of the characteristic equation of
M a) are all real.

This is an immediate consequence from the fact that Mi(a) can be trans-
formed into a diagonal form and Lemma 1.

Prorosition 3. Let X be a positive divisor on a Jacobian variety. Then
the roots of the chacteristic equation of Mi(8y) are non-negative.

Proof. By Corollaire 1 of Théoréem 31, N° 61, § VIII, [V], ¢(1'6x4) =0 for
all endomorphisms A of J. Let B be a commutative subring of symmetric ele-
ments in 2(J) containing 8%. Then all matrices M)(8) with 8 in B are trans-
formed intc a diagonal form with a matrix F, so as, in particular

(% \
In

. .
F'M(8%) F=

(1)
&0

757‘)

\ }L”
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where (Zy, 2", ..., 77 is a complete set of conjugates over the rational
number field. By virtue of Proposition 2 all diagonal elements of F'M(BF
with 3= B are real. From the independence of valuations, {(3/m, 8%/m, . ..,
37 /m)} is dense in 7+ 1 dimensional euclidean space, where m runs over all
rational integers.

o(B'/m+ 53 B/m) =1/m* 1 B = 271087 m)* 20,

v, i
hence

W20, i=1,2...,75v=1,2,...,n

§3. Proof of the main theorem.

DeriNiTION, Let X be a divisor on an algebraic variety V over k and lei K
be a field containing k over which X is rational- We denote by I(X) the dimen-
sion over K of the module of functions f(x) on V defined over K satisfying (f(x))
>—-X.

By virtue of Theorem 10, [3], [VIII], [F], /(X) does not depend on K.

PropositioN 4. Let X, Y be divisors on algebraic varieties A and B respec-
tively. Then (IXXB+AxY)=UIX)I{Y).

This is an immediate consequence from the definition of /(X).

LEMMA 1. Let J be a Jacobian variety and let O% be the theta divisor on J.
Then I(0) =1.

Proof. Let I be the non-singular curve corresponding to J and let ¢ be
the canonical function. Let 2 be a common field of definition for J, ¢, ® and
let x be a generic point of J over 2 Then by virtue of Theorem 20, § V, [V],
¢(I')+0, is a non-specia! divisor on ¢(I"). Suppose that y is present in ¢(I7)+0Ox
with a positive multiplicity. Then y —x is in 0, and ¥y —x is a generic point
of @ over k, for the dimension of » over k is one and the dimension of ¥ over
k is equal to the dimension of J. Let Y be a positive divisor defined over &
such that Y~ 0. Since ¢(I')*0; is non-special, ¢(I')*Y,=¢(I)*@,. Hence y —x
is in a component of Y. On the other hand y — x is a generic point of @ over
k and Y is rational over &, hence ® is present in Y with a positive multiplicity.
Since Y ~0, necessarily Y =60. This shows (@) =1.

LemMma 2. Let X be a divisor on an abelian variety. If u=wu+u2+ . . .
ttn, By =12u= ... =llun=0 and (I, p)=1, I, ) =104, j=1,2,...,

8 See N° 40 §V, [W].

https://doi.org/10.1017/5S0027763000017086 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017086

ABELIAN VARIETIES 161

n). Then X, —X~0, if and only if E(X)c,(u) =0 mod.1 (i=1,2,...,n)
where v, (ui) means the li-coordinate of u;.

s

Proof. The case n=1 is the result in 76°, § XI, [V]. We shall apply the
induction on n. We assume that this is true for n —1. If X, — X~0, I7( Xy — X)
~(Xpiy — X ) = Xi i rugtreetuy — X = X vyt vug — X~0. By virtue
of the assumption of indution

Ei(X) w17 w) =19 Er(X) v,(4:) =0 mod. 1 for i J.
Since (I, [;) =1,

E(X)r(ui)=0mod.1 (:=1,2,..., n).

The convers is clear.

THEOREM 4. Let A, B be abelian varicties, let i be a homomorphism from
A onto B satisfying p + v(2) and let X be a positive non-degenerate divisor of
B. Then I(J7(X)) =p(MDIX).

Proof. Let k be a common field of definition for A, B, 2 over which all
the points satisfying i# =0 and the divisors X; — X, A" (X, — X) satisfying X:
—~X~0, 27 (Xy—X)~0 are rational. Let x be a generic point of A over k.
Then, by virtue of Theorem 12 and its Corollary, N° 27, § IV, [V], &(x) is nor-
maly algebraic over k(1x) and the galois group is isomorphic to the group of
all points #; satisfying Ati=0; x+t, x+t, ..., x+ b0, =12, ..., p))
is the complete set of conjugates of x over £(ix). From the formula E(17(X))
='M(2) EXX) M%) in N° 76, § XI, [V] and Lemma 2, there exist points u,
%2, . .., tyy of B such that A7'( Xy, — X)~0 and Xu, — Xu;+0 for ixj (4, j
=12 ..., ). Since 7 (Xy,—X) (4=1,2, ..., »(2)) are rational over
k, there exist functions ¢:i(%), ¢2(x), . . ., ¢v0,(x) in k(x) such that

(¢1(x)) =X—1(Xu1—'X), (([)2(1\7)) =/1"1(X1:2-X), c e ey, (¢v(n)(x)>l—l(qu;) _X).

From A7 (X)e=2""(Xe), A7 (X = X)ty=2""(Xu; - X) (4, j=1,2,...,
»(2)). Hence

0i(x + t;) = ei(t;) pi(x),

where ei(t)) (4, j=1, 2, ..., v()) are roots of unit.

Since Xu;4 Xu, for i, ei(t;) (i=1,2,..., »(2)) are different with each
other as functions of tj (j=1, 2,..., »(3)).

From this result we can conclude that {#:(x), ..., ¢.(x)} is a base of
k(%) over kB(ix) and {eit) ;£=1, 2,..., »(2)} is the character group 7(®)
of the galois group & ={t1, . .., o 5 Ati=0}.

By virtue of the fundamental theorem of abelian group, 8 =3;+ 3+ . ..
+ 31, where 3; are cyclic groups of prime power order. Let {1, el(?), exX?),
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<, et ()} be the annihilator of 3:+ . .. + 3 after suitable permutations
of suffices of e;(#). Let ¢ be a generator of z;.
Let f(x) be a function defined over k satisfying f(x)> — X. W€ write

v(
flx) = é)ai(/lx)gbi(x)

by the above base.

-1

flx+t) —f(x) =Z:1. (ej(t) — 1) aj(Ax) ¢j(x)

[Hai]

fx+28) —f(x+1) =’§=;,(e,-(t) ~1)ej(#) aj(Ax) ¢i(x)

.................................................

1T-1

(%) =fx+ @ =1t) = jz_}l(ej(t) — D ei(1)F 7 aj(x) 9 ().
Since ej(t) = e(t)’, where e(t) is a generator of {1, ex(?), ex(2), . . ., efr_,(¢)}
and fixf; for ixj,

el(t), ext). . .e_i(2)
e,(t)zez(t)z .o .e:;“_l(t)z

: Tl e;(8) TH(en(t) = ex(8))
|
|

Co _
e L emo ()

=11 e(t)th’J (e(t)™ - e(2)f¥) % 0.

This shows that the above system of linear equations are uniquely solvable with
respect to a;(x) ¢1(%), ax(Ax) o), . . ., a-1(2x) ¢i-1(x). Hence
-1

aj(Ax) ¢i(x) =§00kf(x+kt) (j=1,2...,I=1).

By the same method we can determine all @i(ix)¢i(x) (:=1,2,..., »(2)
—1) except @y, (Ax) ¢v0,(x) where we assume that e,n)(¢) =1.

Let (ai(x))=Ai—B; (§=1,2,..., »(2)). Since (f(x+kt;))> =27 (X)se
= —=A4X) fori=1,2, ..., (1) =1, we have

(ai(A%) 9i(%)) =27 A) + A7 X)) = A7 UB) =271 X)> = 27U(X).
Hence
ATHAD = 7B = 17N (Xw))

and A;~ B> — Xu;. This shows that the dimension of the module {z;(ix)} over
k is exactly I(X) for i=1,2,..., »(3)—1.
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MPSER
(v, (35) ooy (2)) = () — ‘S‘L () 4i(x))> — 17X,

hence 271 (A,0) + A7 Xvo)) — A H(Buy,y) — 27X > - 17H(X),
AV =27 Byoy) > -2 M Xa).

This shows that the dimension of the module {a,n,(Ax)} over k is also I(X).
Therefore I(A7(X)) = »(A) I X).

LemMmaA 3 (Siegel). Let k be a totally real number field. Then there exists
an integral in k such that every totally positive integer in it is expressed as a
sum of four squares of integers. In other words, there exists a uniquely deter-
mined natural number c = c(k) such that, for every totally positive integer a, ca
s expressible as a sum of four squares of integers.

c(k) shall be called Siegel’s constant of % in the following.

LEMMA 4. Let a be a symmetric element of W(J) satisfying o(faB) =0 for
all BEU(]J). Then there exist a natural number ¢ and an emdomorphism 1 in
WA(JO) =W X JxJX]) such that

ca
ca
ca
ca

where 09 =0X X IXJ+IXOXTXJ+ XXX J+JxJxJx8.

’
=2 = dr-x o),

Proof. From the proof of Proposition 3, §2, the roots of the characteristic
equation of Mi(a) are all real and non-negative. Let B be a maximal com-
mutative subring of A(J) of symmetric elements containing a. Then by a
suitable non-singular matrix F

B

g
FMi(8)F = '
8y

\ " )
for all BE B, where (B, B, ..., B") is the complete set of conjugates of

B over the rational number field” By virtue of Proposition 1, §2, 8y, 8 (=1,

9) Let Bo be the ring generated by ~~;—,’ n=1,2,3..., ye8. Then Bo is an algebra of type

S. Therefore Bo is semi-simple. This shows that there is a non-singular matrix with /-
adic element F such that F~!Mi(B)F is diagonal for every S& ®Bo.
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..,7;v=1,...,n) are all real. B is a integral demain of a direct sum
of real number fields and the elements on the diagonal of F'Mi(B)F are all
totally positive or zero ; for them Siegel’s Lemma can be applied.

ca=ri+ri+r+ri with 7, 12 73, T4 € U(A),

where ¢ is the product of Siegel’s constants of our components of B. This shows

that
cx T —7T2 T3 T4 71 T2 T3 T4
ca N Y Y PRl PR £ -7 71 <Y1 T3
ca B O PR R SR ) s —74 — T T2
ca T4 Ta T2 — T T4 3 —72 —7
ot 71 T2 73 T4 7L T2 T3 71
_ -T2 T —T4 T3 -T2 71 —T4 73
- 73 —74 —T T2 s =74 —T1 T2
T4 3 =72 —7T1/ T1 3 —T2 —TT
! 7‘; Té Té:l T% T1 T2 3 T4
- - T; T; - T‘; T.; ik 1 T4 [EI A
Tr,; - T.’x - T; Ti s — 71 —T T2
T4 T3 —7T2 — T T4 T3 —72 —T
where
t ] ' ) ]
71 T2 T3 74 T: T? T:; T7
1= -T2 T T T T3 , M= - T:; T: - T¢ T:;
s —7T4 —T1 T2 T:,z - T? - T: T;
T4 3 —T2 —n T4 Ta —72 —T1

is the conjugate of A as an element A(J*') from Proposition 5. Hence

ca
cx
ca
ca

!
=2 =010«

DEFINITION. A base divisor of an abelian variety A is the positive divisor
of A satisfying 1) KU) =1, ii) for any divisor X of A there is an endomorphism
&% of A such that Xy — X~ Usiy — U.

We shall denote by U always a base divisor and briefly shall call an abelian
variety with a base divisor a special abelian variety.

LemMA 5. Let A be a special abelian variety. Then the ring of all square
matrices of a certain degree, say n, over W(A) is considered as the ring of endo-
n

morphisms of A =AXAX ...xA. Put U"=Ux A"V 4+ Ax Ux A"
+ ...+ A"V X U. Then an involution (a;;)' ="(ai;) is introduced into A(A™)
such that (a;) (U™ —U™)~ UG e - U

Proof. Let t be a generic point of A over a definition field k£ for A over
which U is rational. Since Us-- U~0 if and only if s =0, the point #* such that
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(ai)) MU = U™)~ U = U™ is uniquely determined. Let 1 be the locus of
(¢, t*) over k. Then by vertue of Lemma 11, § 1. k (t.t%) is purely inseparable
over k(t). Therefore k(¢ j)“t*)D?e(t) with a suitably large ». Putting ¢*
= (aij)*t, we have p"(aij)™ € A(A™). Similarly as for 6 on J, we have
Mi(p*(aij)*) = ECU™) ™ My(p*(ai)) EXU™).  After a suitable change of
the l-coordinates of A,
E(U)
EnU)
E/(U(")) = ’

E(U)

and Mi((aij)) = (Mi(ei;)). Hence M p*(a)*) = p"Mi(*(aly)) = p"M((aij)') ie.

(aij)* = (aij)".
We can prove the following lemma similarly as for @ on J.

Lemma 6. Let A be a sPecial abelian variciy. Then for every symmetric
element « of W(A) (by an involution induced by « basic divisor U) there exists
a divisor X such that

2a =0k, where X;— X~ Usy— U.
Moreover, if p=2, we can choose X such thai « = k.

LemMmAa 7. Let A, B be abelian varietics and let A be a separable homo-
morphism from A onto B satisfying v(i)=0. Lei X be a divisor on B. Then
IA7YX) =21 if and only if I(X)=1.

Proof. Let k be a common field of definition for A, B and 2 over which
all points #, . .., t,, satisfying i#; =0 are rational. Let x be a generic point
of A over k. Let f(x) be a function defined over % satisfying (f(x))> —17'(X).
Let (f(x) =fi(x), f:{x), . . ., fou(x)) be the complete set of conjugates over
k(Ax). Then the representation M(t;) of the Galois group {#, t, . . ., bun) 5
2ti =0} by permutations of fi(x), fo(x), . . . , fuxxy(¥) can be considered.

From the theory of representation of abelian groups {M(#;)} is equivalent
to

ei(t;)
ez(tj)

* .
ey (1)

where en(t;) (j=1,2,..., ), k=1,2,..., »(1)) are roots of the unit. Let
the equivalence is effected by the matrix F. We put (fi(x), ..., finn(x))F
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=(g(x), ..., &n(x)). Then

gonx+t) =eo,tNanx) G=12,...,2Q)),
(filx)) = (f(x))> - 271(X),

(fe(2)) = (flx+t))> -2 (X)py= = 27H(X), . . .,
(fun(®) = f(x+ 2.a))> =2 U Xe gy = — 271X,

hence
(g (%)= = 271(X).

We put Z=1(g0,(x))+1"(X). Then Z>0 and Z~1"'(X). Since it;=0
and k(x)/k(ix) is separable, Zy, = (g (%)), + 27 (X)), = (guoy(x + 1)) + 27H(X)
= (g,m(x)) +1 (X)) =2

Hence, by virtue of Proposition 33, N° 78, § XI, [V], there exists a divisor
Y on B such that Z=2"(Y). From Z>0, Y>0. Since Z~1"4X), 2(Y)
-2 HX)~2"(Y = X)~0. Hence Y=X. Therefore (X)=1(Y)=1.

LeEMMA 8. Let A be a special abelian variety with a positive basic divisor
U. Then the operation ' on W(A) which is defined by o™ (U; ~U) ~Uuys ~ U s
an involution satisfying i) o(a') = a(a,, ii) o(a’a) =d(aa’)>0 for a =0, where
0‘(0() = SpM(a).

Proof. Similarly for 0 on a Jacobian variety we get Mi(a') = E(U) " Mi(a)
E(U), M(d%) = E(U)'E(X). Hence

o(a’) = spMile’) = s, (U ) ™ Mi(a) E(U) = spMi(a) = o(a).

Since o(a) is a rational integer by Weil’s result, o(a’) = g(a) = s(a).

The proof of ii) is rather difficult. Let J be a Jacobian variety from which
there exists a homomorphism 2 onto A. Let B be an abelian variety such that
J and AX B are isogeneous and let u be a homomorphism from J onto B. Let
W be a non-degenerate positive divisor on B. we put

o=(AxXpn) ie. pt=AtXxut.
Since
UxXxB+AxW>0, o HUXB+AXW) >0.

From Proposition 3, §2, o(y'ar) 20 for all y € A(J) where a = 8 -vyxpraxw).” By
virtue of Lemma 2 there exists a natural number ¢ and an endomorphism £ of
J* such that

ca
ca e
ca =¢&e.
ca

1) For 4}, see Definition in preceding Lemma 5.
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In the following we denote
[
(p)“)= o , (p;)m: 0z .

and

’
From plyxnsaxwyp = 6:,—1((,')(}:4»,4)(!{') =a, we get

Mi((p2)™ (p) @) + Mi(&") Mi(8),
Mi(()'") = Mi(&") Mi(8) Mi((p)™) 7,

where Z+UXxB-+ Ax W. Since

MiQGe-ranA) = Ef(0) 7 Mi(2) Ea™(U)) Mi(2)
= E/(0) " Mi(a) EXU) Mi(a) Mi(2)
= Mi(g) Mi(a') Mi(2) Mi(2) = Mo ad),

we have
'
' ('
Qla= U)X B+ax i) 0 = Pz( Py )0-

Put Z,=a (U)xB+AXW.
Then

’ (4)
Mi((o5e0)™) = M (o) (5 ) (0)®)
= M) MU M) M (€% ) ) M)
= Mi(¢§') Mi(§) Mi((p 1 ( P 1o

Mi(&) 7 Mi((pz,0)') Mi(§)
] (4
= & M ((Y,,) ) M) M),

(4)
ME™ ) ¥e™) = M08 M (9%, ) ) M (007,
B

Since

o MZ) =0 a(U)XB+AxW)>0,
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by virtue of Proposition 3, § 2, the characteristic roots of Mi(&'*(pz,0)*'2¢™") are
! (4)
non-negative real numbers. Since Mz((Ct « 61,») ) has the same characteristic

roots as the characteristic equation of Mi(8' *(pz,0)*’4™"), this shows that the
characteristic equation of Mj(a'a) has non-negative real roots only. Therefore
o(a’a) T sy Mi(a'a) >0 for a=0.

By this lemma most results on divisors obtained for Jacobian varieties are
also true for special abelian varieties.

TueoOrEM 5. Let A be a special abelian variety and X be a positive non-
degenerate divisor of A. Let Y1, X2, . . . , Yan be the roots of the characteristic
polynomial of Mi(8%) and let ¢1=c(Q(71)), ;z=Cz(Q(Zz)), coes Cn=c(Q@(X2n))
be Siegel’s constants of Q(), Q(12), . . ., QU2n) respectively (where @ is the
rational number field). If »(X) and c= ;_ch; are not divisible by p, then 1(X)
= ~(3%).

Proof. Similarly as the case of Jacobian varieties 71, %2, ..., ¥%2» are non-
negative real numbers. From Lemma 4 there exists an endomorphism 1 of A¥
+Ax AxAXxA such that

oy

2/
c 0y /
x U = Z’A = 8)‘—1(11(4))
X

with a natural number ¢, where /-1y, is the endomorphism such that A~}

~UN~UE wo=U® and UPY=UxAXAxA+AxXUxAxA+AxA
XUXA+AXAxAxU. From Theorem 3
17U =M UUY), USEXY) =1(c040) (X)) = p(cdaw) UX™),
where XY= XX AXAXA+AXXXAXA+AXAXXXA+AXAXAXX.
EQTHU™)) ="M EU ) MiQ2) = E(U)™ Mi(¥'2)

c*d)
=E1(U“))_1E1(U“))M( " )=Et(ch“)).

Hence E(A"(U™)) = E(c*X"™). This shows ¢ X® =2"U"). By virtue of
Proposition 1,

I(CZXH)) — l(c2x)4 - II(CBA)4I(X)(4) = I(A—I(U“)))
=AU =R AT )™ =2(2)

c*o’
= ‘\/P(ll) D(l) = /D< "1 ) = D(625;)2 = D(664)4D(3_v)2.
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Therefore I(X) = ~3(5,).

LEMMA 9. Let A be an abelian variety. There exists an isogencous abelian
variety B with a positive diviscr Z such that Zi— Z~0 if and only if t =0.

FProof. Let X b> a non-degenerate positive divisor of A and let C be the
finite subgroup of all points ¢ of A satisfying X: — X~0. Let B be a quotient
abelian variety of A by C and let 2 be the separable homomorphism from A
onto B whose kernel is exactly C. Then X:— X~0 for all points ¢ satisfying
it =0. Since 2 is separable, by Proposition 33, N° 78, § XI, [V] there exists a
positive divisor Z such that X=1"'(Z). This Z is our divisor, for X:— X
~2NZw) = 2AHZ) =2 N 2w — Z)~0 if and only if At =0.

Lemma 10. Let A be an abelian variety defined over a field of character-
istic zero. Then there exists an isogeneous abelian variety B with a pesitive
divisor U such that (U) =1.

Proof. Let A be an abelian variety such that A X A’ is isogeneous to a
Jacobian variety J. Let B be the abelian variety isogeneous to A con which
there exists a positive divisor V such that Vi— V~0 if and only if { =0, and
let B' be the abelian variety isogeneous to A on which there exists a positive
divisor W such that Ws— W~0 if and only if s=0. If 2 is a homomorphism
from J onto BX B!, A7 (VXB' +BxW))=u(2)I(V)I(W). On the other hand
ANV XB' +BXW)) =~y (0h-smpr s moary) = ~ M) [VE(V) | E(W) || M2y
=p(1). Hence {V)I{W)=1. Since V, W>0, I(V)=UW)=1

LemMa 11. Let A be an abelian variety defined over a field of characteristic
zero and let V be a divisor of A such that Vi— V~O0 if and only if t=0. Then
Uv)y=1.

THEOREM 6. (Frobenius’ Theorer) Let A be an abelian variety defined over
a field of characteristic zero and let X be a positive non-degenerate divisor of
A. Then U(X)=~]E(X)|, where |E(X)| = ll] 1 I%a=E(X)!, l+a.

Proof. Let B be a special abelian variety isogeneous to A and let 2 be a
homomorphism from B onto A. Then from Theorem 4 KA (X)) = »(A) I X).
On the other hand, /(A™(X)) = ~3(§l-1y,) by Theorem 5. Since »(di-1x)
=|E(U)" M) E(X) Mi(D)| = ()} EXU) ™ E(X)| and E(U) is an l-adic
unit, »(dh-1y) =2(A)*I11% where !E/(X)| =0a, I+a. Hence I(X)=~TII*

{

]
=~ E£X)].
For an abelian variety onto which there exists a homomorphism from a
special abelian variety satisfying p + v(4), we can easily prove the same result.
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§ 4. Positive divisors

THEOREM 7. Let A be a special abelian variety. Let a be a symmetic ele-
ment of N(A) satisfying s(f'af) 20 for all B € WU(A), where the involution ' is
introduced by U as follows: a (Ui —U)~U.t—U. Then there exist a positive
divisor X and a natural number v such that p’a = 6% where X; — X~Usyt — U.

Proof. By virtue of Lemma 8, §3, ¢(f'af) =0 for all 8 implies that there
exist a natural number ¢ and an endomorphism of AV =AxAxAxA such
that

ca
ca
ca

where UV = UXAXAXA+AXUXAXA+AXAXUXA+AXAXAXU.
From Lemma 4, §3 there exists a divisor W such that a = 8y when p=x2
and 2« =06, when p=2. Therefore

sgca v o
< .' ) _< -' ):B:,—w,,

where W'W=WXAXAXA+AXWXAXA+AXAXWXA+AXAXAXW,
and ¢=1, 2 according as p= or =2. Hence A" (eU"™) =W"™. From Lemma 1
of §1 A7(:U") — W' = 0 with a suitable t. Put (f(x1, %2, %3, %)) =ed (U™);
- WS> —-Ww'".  Let %3, xi, %} be independent generic points of A over a
common field of definition for W, A, U and f. Put g(x;) =/(%1, %3, 23, «%).
Then g(x)>—W. Put Z=(g(x))+ W. Then Z>0 and 0% = eca = ecdiy = decw-
Let zc =p"d, p+b. Then p'bZ = (bW = p"(b8) (W), bZ =p"(63) (W). From
Lemma 7, §1, (bZ2):~ (b8)"H(p"W) with a suitable #. Hence I(Z) =1((65)"(p"Z))
= p(00)I(p"W)=1. Therefore I(p’W)=1. Let (¢(x))>—pW and let X
=(¢(x))+p"W. Then X>0, X=p"W and 6% =0prw =0 0w =cp’a. Therefore
P e =8 when p=2 and 2"« =8 when p=2.

= ).’1 = 6:—1(17(4))

CoroLLARY 1. Let A be a special abelian variety defined over e field of
cliaracteristic zero. Then for a symmetric element « (by the involution intro-
duced by a basic divisor), ¢(faB) =0 for dll R & A(A) if and only if there exists
a positive divisor X such that « = dk.
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