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A FINITENESS CRITERION FOR 
ORTHOMODULAR LATTICES 

GUNTER BRUNS 

The main result of this paper is the following: 

T H E O R E M . Every finitely generated orthomodular lattice L with finitely many 
maximal Boolean subalgebras (blocks) is finite. 

If L has one block only, our theorem reduces to the well-known fact tha t 
every finitely generated Boolean algebra is finite. On the other hand, it is 
known tha t a finitely generated orthomodular lattice without any further 
restrictions can be infinite. In fact, in [2] we constructed an or thomodular 
lattice which is generated by a three-element set with two comparable ele
ments , has infinitely many blocks and contains an infinite chain. 

As preliminaries of our main result, we obtain two more theorems, which may 
be of some independent interest. The first one gives an or thomodular analogue 
of the well-known direct factorization of finite-dimensional complemented 
modular lattices, see e.g. [1, p. 93, Theorem 10]. The second theorem, of which 
our main result is an immediate corollary, describes in detail the generating 
process of an orthomodular lattice with finitely many blocks. 

My thanks go to G. Kalmbach for many helpful discussions in the early 
stages of this paper and to H. Mandel for help, the exact nature of which I 
would not like to specify. 

1. Basic def in i t ions a n d resu l t s . The notions and facts of this section are 
s tandard and well known, see for example [1, p. 55 f.f. ; 3 ; 4]. 

An ortholatt ice is an algebra (L; V , A , ', 0, 1), where (L; V , A ) is a lattice 
with lower bound 0 and upper bound 1 and x —» x' is an orthocomplementat ion, 
tha t is an anti-monotone complementation of period 2. An orthomodular lattice 
(abbreviated: O M L ) is an ortholatt ice satisfying the or thomodular law: 

if a S b then a V {a' A b) = b. 

If a is an element of an O M L L, define a0 — a and a1 — a'. If A is a finite 
subset of L the commutator c(A) of A is defined by c(A) = /\a^A \ZaeA aa(a\ 
If A = {x, y] we write c(x, y) instead of c({x, y}). If A and B are finite subsets 
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of L and A Q B then c(A) ^ c(B). The elements a,b G L commute, in sym
bols: aCb, if and only if c(a, è) = 0. This is in particular the case if a and b 
are comparable. The relation C is symmetric and the set C(a) of all elements of 
L commuting with the element a is a subalgebra of L. If one of the elements 
a, b, c commutes with the other two then the distributive law a V (b A c) = 
(a V b) A (a V c) and its dual hold. The center C(L) of L is the set of all 
elements of L which commute with every element of L. Clearly {0, 1} C C(L). 
C(L) is said to be trivial if and only if C(L) = {0, 1}. L is (directly) irreducible 
if and only if C(L) is trivial and 0 ^ L A block of L is a maximal Boolean sub-
algebra of L. Every set of pairwise commuting elements is contained in a block 
and the blocks are exactly the maximal sets of pairwise commuting elements of 
L. C(L) is the intersection of all blocks of L. 

If a G L then the interval [0, a] = {x G L|0 ^ x ^ a} becomes an OML if 
if we define the orthocomplement x# of an element x G [0, a] by x# = a A x'. 
The map x —» a A x is a homomorphism of L onto [0, a] if and only if a G 
C(L). In this case the map x —> (a A x, a' A x) is an isomorphism between L 
and the direct product [0, a] X [0, a']. If Li, L2 are OMLs then the blocks of 
the product Lx X L2 are exactly the direct products of the blocks of L\ and 
the blocks of L2. If, in particular, L\ and L2 are not Boolean, then Lx and L2 

have fewer blocks than L\ X Li. 

2. Some preliminary results. Throughout the rest of this paper we assume 
that L is an OML with finitely many blocks, that 21 is the set of all blocks of L 
and that 12 is the set of all 33 C 21 satisfying H 23 g U (21-23). Here we define 
the intersection of the empty subset of 21 to be L and the union of the empty 
subset of 21 to be {0, 1}, so that 21 G Œ if and only if C(L) is not trivial. Note 
that every S G Œ is not empty and that Q is empty if and only if L is a Boolean 
algebra with at most two elements. We define the rank f(23) of a set 23 G & 
to be n ( ^ 1) if and only if for every sequence 23 = 23i C 232 C . . . C 23fc in 
12(C proper inclusion), k S n holds and there exists such a sequence with 
k = n. 

(2.1) 7/93 £ £2 and a G (H S3) - (U (21 - $ ) ) ^ew C(a) = U 23; in particu
lar U 23 is a subalgebra of L. The blocks of this subalgebra are exactly the elements 23. 

Proof. Clearly U S ÇZ C(a). If b G C(a) then there exists 5 G 31 with a, b G 
J3. Since a G U (21 - 23) it follows B G 23 and hence b G U 23, proving C(a) = 
U 23. Clearly every B G 23 is a block of U 93. If there was a block in U 23 not in 
23, such a block would be B H U 23 for some £ G 21 - 23. But if B H U 23 was 
a block of U 93, then, since a d B there would exist 6 G i? H U 23 with a #* & and 
it would follow that 6 G C(«) and b G U 93, contradicting C(a) = U 93. 

(2.2) C(L) = n {U23|93 G 12). 

Proof. If x G C(L) then x G i* for every i? G 21; hence, since every 93 G 12 
is non-empty, x G U 93 for every 93 G 12 and x G Pi {U 23|23 G 12}. Assume con-
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versely that x G C(L). Then there exists y G L with x C y. Define 23 = 
{B G %\x G B,y G B). Clearly y G 0 23. But;y G U (21 - 23) would imply the 
existence of a set B G §1 with x, y £ B, contradicting x C y. We thus have 
23 G £2 and x G U 23, i.e. x G H{U 23|23 G fi}. 

(2.3) L^ .4 be a finite subset of L containing, for every 23 G fi, an element of the 
set ( n 23) - (U (SI - 23)). Then for every a G 2A, V*€A xa(z) G CÇL) and hence 
c(A) G C(L). 

Proof. For every a Ç i , either a ^ V ^ ^ xa(:c) or a' ^ V^ÇA #a(x) and hence 
a C V l U f ( I ) . It follows from (2.1) and (2.2) that VxeA xa^ G D {C(a)|a G 4} 
= H{U23|23 G fi} = C(L). 

(2.4) 7/ A is a set as in (2.3), A Q X Q L and X finite then c(A) = c(X). 

Proof (by induction on the number \X — A\ of elements of X — A). If 
\X — A\ = 0 there is nothing to prove. If \X — A\ ^ 1, pick b G X — A and 
define Y = X - {b\. By (2.3), Wy^Y y*{y) G C(L) holds for every /3 G 2F . 
It follows that 

C(X) = A ( L V / W ) A (ft' v V /<*>)) 

= A ((6 A J ' ) V V / ( v ) ) = c ( F ) , 

which gives the claim by inductive hypothesis. 

(2.5) If A is a set as in (2.3) then [0, d (A)] is a Boolean algebra. 

Proof. Assume x, y G [0, c'C4)] and let c(x, y) be the commutator of {x, y] 
in [0, c'(A)]. We have to show thatc(x, y) = 0. But by (2.4): c(x, y) = c(x, 3O 
A c ' U ) ^ c(4 U {x, y}) A c'(4) = c(4 U {*, y}) A c'(A U {*, y}) = 0, 
which implies c(x, y) = 0. 

(2.6) If A is a set as in (2.3) then the OML [0, c(A)] has no non-trivial Boolean 
factor. 

Proof. If [0, d] is a Boolean factor of [0, c(A)] and if c(̂ 4 A d) is the com
mutator of {a A d\a G A} in [0, d] then we have by the general finite distribu
tive law in Boolean algebras 0 = c(A Ad) = c(A) A d = d, i.e. the factor 
[0, d] is trivial. 

From (2.3), (2.5), (2.6) and the earlier remark that a non-trivial factor of 
an OML without Boolean factor has less blocks than L, the following theorem 
may be proved easily by induction. 

THEOREM 1. Every OML L with finitely many blocks is isomorphic to a direct 
product Bo X Lx X L2 X . . . X Ln (n ^ 0) where B0 is a Boolean algebra and 
Li, L2, . . . , Ln are irreducible OMLs with at least two blocks each. 
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COROLLARY. There exists a finite sequence c0, . . . , cn of central elements of L 
satisfying: 

1. [0, Co] C C(L); 
2. d A \^j^i Cj = 0 (i = 0, 1, . . . , n) ; 
3. every a G C(L) is o/ the form a = a0 V a\ V . . . V an, w/zere a0 ^ Co and 

ay = 0 or at = ctfor i = 1, 2, . . . , w. 

Proof. If L ~ 5o X i i X . . . X I B is a direct factorization of L as in 
Theorem 1, then the elements of L corresponding to the elements (1, 0, 0 , . . . , 0), 
(0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1) of the product obviously form a sequence 
with the desired property. 

We call a sequence c0, . . . , cn with the properties described in the corollary 
a central basis of L. 

3. The fundamental l emma. Let L be irreducible and let X be a generating 
set of L containing the elements of a central basis of each subalgebra U 33 with 
93 G 12. Define recursively for every n^l a set Xn, and for every 33 G 12 with r(33) = 
n, a set S% as follows (TA is the subalgebra generated by A): 

Xi = X and S% = T(X C\ (J 33) if r (33) = 1, and 

Xn = X W U {S»'|r(«') < n], SSQ= T(Xnn U 33) tfr(S) = n ^ 2. 

Then fï 33 C ^ holds for all 33 G H 

Proof (by induction on r(93)). Assume w ̂  1, that the claim is true for all 
k < n (1 ^ k) and let 33 G 12 have rank n. 

(1) If SB C « ' £ « and 6 6 O 33' then b G S%. 

Define 33" = {B G »|6 6 5 } . If 93" = 21 then 6 G C(L) = {0, 1} C 5». If 
93" ^ 21 then 53" G 12, r(SB") < n and it follows by inductive hypothesis that 

b G 5«- n u s ç z M n u s ç ^ . 
Define now an element g G L to be good if and only if it satisfies the following 

two conditions: / 

(Gl) If a G Ss8 and a V g G H S3 then a V g G 5», 
(G2) If a G S* and a A g G O 33 then a A g G 5©. 

(2) Every g G S© is good. 

This is an immediate consequence of the definition. 

(3) Every g G L — U 33 is good. 

If a V g G Pi 33 in this case then a V g G B for some 13 G 21 — 33 and the 
claim of (Gl) follows from (1). The condition (G2) follows dually. 

(4) Every g G X is good. 

If g G U 33 then g G S® and the claim follows from (2). If g (2 U 33 the claim 
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follows from (3). 

(5) If gi, g2 are good then g = gx V g2 satisfies ( G l ) . 

If a V g G D S3' for some 93' D 33 the claim follows from (1). We may thus 
assume tha t a V g G ( f | 93) - (U(Sl - 33)). Since a V g and a V ^ (i = 1,2) 
are comparable it follows tha t a V gt G U 93 (i = 1, 2) . Let c0, ci, . . . , cn be 
a central basis of U S belonging to X and let a V g = a0 V ai V . . . V an 

be a representation of a V g as in condition 3 of the corollary. Since a V gi, 
« V g2 € U S it follows from the corollary tha t a V c</ V g* G H S 
(i = 1, 2) and, since gu g2 are good, tha t a V c0' V g* G S$ (i = 1, 2) and 
hence a V c0' V g G 5«. Since cQ V ai V . . . V an G 5$ it follows from this 
t ha t (a V Co' V g) A (co V ai V . . . V an) G S©. But (a V c0' V g) A (c0 V 
ai V . . . V an) = a V g V (c0' A (c0 V ai V . . . V an)) = a V g V (c0

f A 
(ai V . . . V an)) = a V g, which proves (5). 

(6) If gi, g2 are good then g = gi V g2 satisfies (G2). 

By (1) we may again assume tha t a A g ? U ( 2 I — 93). Let c0, c\, . . . , cn 

again be a central basis of U S belonging to X. Since by (3) every g £ L — 
U S is good we may assume tha t g G U 93 and hence tha t cô V g £ O 93. We 
claim tha t <V V g G 5©. If c0' V g G B for some 5 G 21 — 93 the claim follows 
from (1). If c0' V g g U (81 - 93) we obtain c0' V gi G H 93 and, since the g* 
are good, tha t cô V g* G 5$ and hence c0' V g G 5$. I t follows from this tha t 
Co A a A g = Co A ((a A g) V c0') = Co A ((a V cô) A (co' V g)) G 5®. Let 
again a A g = &o V ai V . . . V an be a representation of a A g as in the 
corollary. We then obtain (c0 A a A g) V (ai V . . . V an) G S«B, which, since 
(c0 A a A g) V Oi V . . . V an) = a A g A (c0 V ai V . . . V an) = a A g, 
implies (6). 

By definition the set of all good elements is closed under orthocomplementa-
tion. Since it contains X by (4) and is a subalgebra by (5) and (6) it follows 
tha t it is equal to L and hence tha t every element of L is good. To prove the 
claim, assume now tha t g G O S3. Then O V g = g G P l 9 3 , hence, since 0 G S% 
and g is good, g = 0 V g G S», which proves the lemma. 

4. Proof of t h e m a i n t h e o r e m . As an immediate consequence of the 
fundamental lemma we obtain the following: 

T H E O R E M 2. Under the assumptions of the fundamental lemma 

L = U {5»|SB G ^ } . 

{Here we define U {5»|5B G 12} = {0, 1} ifQ = 0.) 

Proof. Clearly the right hand side of the equation is contained in the left. 
Assume now a G L. If a G C(L) then a = 0 or a = 1 and a is trivially contained 
in the right hand side. If a G L - C(L) then the set 93 = {B G 2I|a G B) be-
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longs to fi and a £ f) 39. It follows from the fundamental lemma that a Ç S% 
and hence that a belongs to the right hand side. 

Proof of the main theorem. We use induction on the number m of blocks of L. 
If m = 1 the claim reduces to the well-known fact that a finitely generated 
Boolean algebra is finite. Assume then that m ^ 2 and let L c^ BQ X L\ X . . . 
X Ln be a representation of L as in Theorem 1. If n ^ 2 then each of Li, . . . , 
Ln has less blocks than L and the claim follows by inductive hypothesis. Hence 
we may restrict ourselves to the case that L is irreducible. Let in this case X be 
a finite generating set of L. We may assume without loss of generality that X 
contains the elements of a central basis of each of the subalgebras U 33 with 
93 Ç ft. By (2.1 ) the blocks of U 53 are exactly the elements of 53. By the remarks 
preceding (2.1) the irreducibility of L implies that U 33 has fewer blocks than L. 
Since 5̂ 3 is a subalgebra of U 33 it has at most as many blocks as U 33, hence 
also fewer blocks than L. Since by definition the 5$ are finitely generated they 
are, by inductive hypothesis, finite. It follows from Theorem 2 that L is finite, 
which completes the proof. 
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