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A NOTE ON STRONG RIESZ SUMMABILITY 

BY 

B. T H O R P E 

ABSTRACT. This note proves that if l < p < o o and 1 —l/p<fc< 
2 —1/p then the space of sequences strongly Riesz summable 
[R, À, k]p to 0 has AK. Using general results of Jakimovski and 
Russell it is then possible to deduce a best possible limitation 
condition and a convergence factor result for [JR, À, k]p. 

1. In a recent paper Jakimovski and Tzimbalario obtained a mean value 
theorem for absolute Riesz summability (Theorem 8 of [6]) that played an 
analogous role to the Riesz mean value theorem in ordinary Riesz summability. 
That is to say, just as Peyerimhofr was able to use the Riesz mean value 
theorem to deduce that the space (JR, À, fc)0 of sequences that are summable to 
0(R, À, k), has AK in the case 0 < f c < l (see Satz 8.2 of [9]), Jakimovski and 
Tzimbalario were able to use their absolute Riesz mean value theorem to prove 
the corresponding result for \R, À, fc|0, the space of sequences absolutely Riesz 
summable to 0 (see the case p = 0 of Theorem 5 in [6]). Kratz and Shawyer 
have recently proved a strong Riesz mean value theorem (see [7], [10]) and 
used it to obtain summability factor results for strong Riesz summability 
[jR, À, fc]p. However it does not appear to be possible to investigate the AK 
property of [R, À, fc]p from their inequality. It is the purpose of this note to give 
a direct proof of the AK property of strong Riesz summability. The main result 
extends Theorem 5 of [8] from strong Cesàro summability to strong Riesz 
summability and as applications a limitation condition and a convergence factor 
result are given. Using the ideas of this paper it is possible to obtain an 
alternative strong Riesz mean value theorem to that given in [7] and this will 
be investigated elsewhere. 

2. In this section we give the notation and some basic properties. Let À 
denote an unbounded, monotonie, strictly increasing positive sequence {An}n>0. 
Suppose 1 < p < oo and fc > 1 — 1/p. We say YZ=o an = l [R, K k]p if and only if 

f \R(k-1\w)-l\pdw = o(X) 
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as X^ 00 where 

Rik- -»(w) = 
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(see [3], [11]). If s = {sn}nS=0 where sn =Sv=o ^ let 

o[K,A,fc]p = fs: t on = 0[JR,A,k]p] 
^ n=0 J 

and for s G O[R, A, fc]p define 

(1) INI = sup (^\X\Rik-1)(wtdwYP. 

It is not hard to prove, using Fatou's lemma, that with this definition of a 
norm, o[R, A, k]p is a Banach space with continuous coordinate mappings i.e. 
s *-> sn is continuous for each n > 0. (cf. the proof for ordinary Riesz summabil-
ity in P. 46 of [9]). 

Also using integration by parts and the fact that k > 1 — (lip), an equivalent 
norm to (1) is 

(2) Hsld = sup (x ( 1 " k ) p - 1 f X |A ( k"1 )(w)|p dwYP. 

We say o[R, A, k]p has AK if {Sm}mS=0 is a Schauder basis, where Sm denotes 
the sequence with 1 in the mth coordinate and O's elsewhere i.e. for every 
seo[# ,A, k]p 

as n -» oo. This concept was introduced into summability by Zeller in [12] for 
more general sequence spaces. 

As in page 47 of [9] we see, if A(f) = XXm<t am, that 

I n - 1 II / CX I J / fw \ |p \ 1/p 

s- Z sm8i =supX (1-*-' f- (w-O^AWdt dw) 
m=o Hi x>\„\ Jx„ \dw \JK / I / 

= sup (x ( 1- f c ) p"1 fX U^-^w) 

= sup(x(1-fc)p-1fX
 IA^XW) 

- (fc - 1 ) [ "(w - Ofc~2A(f) d*|P dw) 

\ I / P 
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Now seo[R, À, fc.]p implies that J* |A(fc-1)(w)lp dw = o(X1-(1"k)p) and so 

(4) lim sup (x ( 1~k ) p"11 |A(k_1)(w)|p dw) P = 0 

If fe = 1, this proves that o[R, À, k]p has AK for p > 1. If k£ 1, an application 
of Minkowski's inequality in the case p > 1 and trivially if p = 1 shows, using 
(4), that (3) holds if and only if 

(5) lim sup x 1 - * - ^ (w-t)k-2A(t)dt\ dw) =0. 
n-*ooX>An \ J \ n Ulo I / 

3. We now state and prove the main result. 

THEOREM 1. Let l < p < o o . / / l - l / p < k < 2 - l / p then o|\R, À, k]p has AK. 

Proof. The case fc = 1 was pointed out in Section 2 above and so in what 
follows we assume fc^l. If K f c < 2 then we replace the inner integral in (5) 
by 

(6) J V - t)k~2A(t) dt=r^rg^fc1) f "(w " M ) - 1 ^ ~ uy-'A^Xu) du. 

This is an identity due to M. Riesz and a proof is given on page 89 of [2]. If 
0<fc < 1 we can obtain the same identity as (6) by using Lemma 6 of [4] with 
K — jit = k i.e. 

(6) now follows by either using the same techniques used by Bosanquet in [2] 
or, as Professor D. Borwein showed me, by writing the inner integrand as 

(^-;-i)~Vo-2 

\ w-t I 

and evaluating the integral directly. Thus, if l - ( l / p ) < f c < 2 - ( l / p ) , fc^ 1, then 
a necessary and sufficient condition for o[R, À, k]p to have AK is that 

(7) 

lim sup x1- 'c-< 1 / p )( f (w-\Jk~1)p 

X I (K-uY^iw-u^A^-^Mdul dw) =0. 
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(8) 

lim sup X ^ - w ^ f f (w-A„) ( k 

n^oo X > 2 \ n ^ 2 X n 

x l f \kn-u)1-k(w-urlA(k-1Ku)du 
P \ !/P 

dw) = 0 

To do this, notice that (w-u) 1 < ( w - À n ) x and so 

sup x 1 " ^ 1 ^ (w-A n ) ( k - 1 ) p 

X>2Xn (I 
P \ 1/P 

dw) 
• ) ' 

f "(A„ - uy- k (w - u)-1 A ^ - ^ M ) dw 

< sup x 1- k- ( 1 / p )(fX (w-An) ( k-2 ) pdwy / P(fX , ,(A I l-M)1-k |A ( k-1 )(M)|dM) 

(9) < - J ^ ( A ^ u y - M A ^ X ^ I d u 

where M denotes a constant (independent of n) that may be different at each 
appearance. If p > l , apply Holder's inequality to (9) (where l/q + l / p = 1) to 
get 

j - J \ A „ - uY-k |A(fc-»(u)| du s J - ( jo
X"(A„ - M ) ( 1 - k )" du)1 '" 

M /fx» \1 / p 

<—Ark+(1/q) lA^Xu)? du) 
A„ \J0 / 

(10) 

since l - l / p < k < 2 - l / p . Also seo[jR, A, k]p so that 

(11) JV ( k _ 1 ) (u) | p duf'" = o(Ak-1+(1/p>) 

and putting this in (10) gives (8) in the case p > 1. If p = 1, then since 0 < k < 1 
a trivial estimate in (9) gives (8) (using (11).) 

To complete the proof it is sufficient to show that, with the same integrand as 
in (7), 

(12) lim sup 
n—>oo X>Kn \ J\ J

m min(X, 2k ) I ÇK 

- | [ - ( . . , d u 
1/P 

dw I = 0 . 

By an application of Minkowski's inequality if p > 1 and the triangle inequal
ity if p = 1, it is sufficient for (12) that 

(13) lim sup I 
. ( ( 

min(X, 2K ) 
(..)du 

P \ i/p 
dw) =0 
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and 
/ rmin(X, 2\n) I Ç kn |p \ 1/p 

(14) lim sup I (. )du\ dw) =0. 
n^coX>kn\JK I hkn-w I / 

To prove (13), since w < A n < w we have 

(15) (An - W)1~k(w - uT1 < (An - uTk 

and putting this in the inner integral in (13) gives 

I Ç2k - w I r2k - w 

(i6) I n (K-uy-^w-ur'A^Mdu < I n (K-ur^A^Midu. 
Now, if p > l , choose T J > 0 S O that ( - n - k ) < - ( l / q ) i.e. 0 < T J < k - ( l - ( l / p ) ) 

and apply Holder's inequality to (16) to get 

ç 2k - w / ç2k —w \ 1/p 

1
2Xn-w \ 1/q 

(An - w)(T1-k)q du) < M ( w - A n ) 7 1 ~ k + ( 1 / q ) 

ç2k - w \ 1/p 

J " (K-ur^lA^Xutdu) . 

Hence the LHS of (13) becomes 

rmin(X, 2k ) 

0" min(X, 2k ) 

-- • -.. x„ 

U2X i -w -j \ 1/p 

= Mlim sup x 1 - k - ( 1 / p ) ( I "(A„-u)-T,p |A(fc-1)(u)|p 

n-»oo X > \ n VJo 

amin(X, 2 \ n - u ) ^ \ 1/p 

(w-X^^dwldu) 

< M lim sup x 1 - k " ( 1 / p ) ( f \\n - u)-™ lA^iuttiK - it)™} du 

< M lim Ar k - ( 1 / P ) ( f " {A^Xut du) 

and so (13) holds by using (11). If p = 1 then we take 1/q to mean 0 and use 
the inequality 

r 2k - w ç2k —w 

I " {Xn-u)-k\Aik-1\u)\du^{w-knr-k\ " (A„ - uT" l A ^ - ^ u ) ! du 

instead of Holder's inequality in the above. 
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To prove (14), since An < w <min(X, 2An) and 2 A n - w < u < A n we have 

( w - u r ^ O v - A j - 1 

and putting this in the inner integral in (14) gives 

(17) 

I** (A„ -uY^iw-ur'A^Xu) du\<M(w-AJ-1 

x f n (kn-uY^lA^Xu^du. 
J2kn-xv 

If p > 1, choose T] > 0 so that (1 - k - rj) > - (1/q) i.e. 0 < TJ < (2 - (1/p)) - k and 
apply Holder's inequality to (17) to get 

f n (An - uy~k |A(k-1}(w)| du < ( f n (An - u)™ |A (k-1}(u)|p du) 

x ( f " (An - u)(1-k-^ du) 

(K-u^lA^-^iu^du 

\ I/P 

Hence the LHS of (14) becomes 
rmin(X, 2A. ) 

G«min(X, 2\ n) 

x j f " (An - uTp |A (k_1)(u)|p du] dw) 

= M lim sup x 1 - k - ( 1 / p ) ( f " (A„ - u)vp |A(fc_1)(u)|p 

n->»X>A„ ^4nax(0 ,2 \ „ -X) amin(X, 2Xn) -| \ 1/p 

( w - A j - ^ ^ d w f d u l 
< M l i m sup x1- f c- ( 1 / p )( I " ( A „ - M r p \A(k~l)(u)\p{(kn-uT™}du 

n^-co X > \ „ V Jm ax(0, 2X„-X) 

<MlimAi~ f c - ( 1 / p ) ( f " |A<k_1)(«)lp <*u) 

1/P 

and so (14) holds by using (1)). If p = 1 then simple modifications to the above 
(similar to those given in the proof of (13)) give the result in this case also. 
Thus the theorem is completely proved. 

In contrast to Theorem 1 we have the following 

PROPOSITION, (i) If k> 1 then 3A such that o[R, A, k\ does not have AK. 
(ii) If K p <o° and k ^ 2 - ( 1 / p ) then 3A such that o[R, A, k\ does not have 

AK. 
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Proof. If An = (n +1) then strong Riesz summability is equivalent to strong 
Cesàro summability and so (i) and (ii) follow from Theorems 9 and 10 of [8]. 

I can add in this connection that Professor B. Kuttner has recently shown me 
a proof that, under the 'high indices' condition on À i.e. for n > l , An+1>cAn 

where c is a fixed constant strictly greater than 1, then o[R, A, k]p = c0 if 
fc>l-(l/p), where c0 is the space of convergent to zero sequences. Thus 
o[R, A, k]p has AK in this case for all fc> 1 —(1/p). 

4. As a first application we have the following limitation condition. 

THEOREM 2. Let l < p < œ and l - ( l / p ) < k < 2 - ( l / p ) . If sn -> / [R, A, k\ 
then 

(18) S „ - J = O(A:T 1 + ( 1 / P ) ) 

where 

A ^ n + 1 
An=Â—=r 

A n + 1 A n 

and this result is best possible in the sense that given any unbounded sequence 
{0n}, 3se[R, A, fc]p such that 6n(sn -l)£ o(A^1 + ( 1 / p )). 

Proof. If sn-*l [R, A, fc]p then s - /8eo | \R , A, k\ where 8 is the constant 
sequence of all l 's. Thus by Theorem 1 above and Corollary 1(b) to Theorem 3 
of [5] the best possible limitation condition (in the sense described above) is 
sn — l = o(||8n||-1). Using the equivalnt norm given by (2), 

1181! = max( sup X ^ ^ W f (w - kjk~1)p dw) \ 

sup X1-k~ (1 /p ) 

Now 

\ 1/P / A \ k - i + d / p ) 

sup sup x 1 - k " ( 1 / p ) ( fX(w-An) ( k-1 ) pdwY / P = M sup ( l - ^ Y 

= M ! n + 1 
X _ \ \ k - l + ( l / p ) 

^ n + 1 

and similarly 

I (w-An)
(k-1)pdw =M[nl1 n) 

• - - „ _ L ' \ A n + 1 / x>\, 
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Thus if fc = l, ||8n||i = MAj /p, which gives (18). If fc^l then 

sup x^-^Mf Kw-Kf-'-iw-K+^-^dw) 

/ fX I f ̂  |P \ 1 / P 

= M s u p x 1 - ^ 1 7 ^ ! (w-u ) f c - 2 du dw 

< M sup x ^ - ^ M (w-u) ( k ~ 2 ) p dw du 

by Minkowski's inequality (if p > 1), 

<M sup x ^ - ^ ^ f n+1(An+1-W)k-2+(1/p)dW 
x>x n + 1 Jxn 

<MAn- (k"1+(1 /p ) ) . 

Hence, another use of Minkowski's inequality (if p > l ) shows that ||8n||i lies 
between two positive constant multiples of A~(k-1+(1/p)) and so (18) follows. 

As a final application we give the following convergence factor result. 

THEOREM 3. Let l < p < o o and l - ( l / p ) < f c < 2 - ( l / p ) . Then JZ 
convergent for all se o[R, A, k]p i/ and on/y if 

(19) sn = ^ ( l - y ) " ' a W d r - j * ( l - ^ y ^ a W * 

where a satisfies X n = o M i ( ^ p ) < 0 ° ami 

(20) A ^ p M 

'esssup |to(t)| i/ p = 1 
2 n < t < 2 n + 1 

(2-4 ito(t)iqdty/q if p > i 

Proof. If SGO[JR, À, fc]p then by Theorem 1 s = X^ = 0 s n 8 n and so for every 
continuous linear functional feo[R, A, k ] p , /(s) = Xn=o sn/(8n). 

Conversely, if Xn=o snen is convergent for every seo[\R, A, fc]p then s ^ 
Xn=o s„en defines a continuous linear functional on o[R, A, k]p. Moreover, from 
the definition of o[R, A, fc]p there is an isometry from o[R, A, k\ on to a closed 
subspace of Wp, where Wp is defined as in [1]. Using the representation of W* 
obtained in [1] and the Hahn-Banach theorem, we see that feo[R, A, k]p if 
and only if 

/(s)= f R^-Vfàait) dt 
Jo 

where a satisfies Zn=oMt(«> p)<°° for Mn(a, p) defined as in (20). 
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«8",=r"(i-T)"»«d'+r.{(i-7)*^(i-¥),"}««'i' 
and (9) will follow if we show 

JK^ 

I> a(t)dt 

exists. Now convergence at infinity of this integral follows since the con
vergence of Xn=o Mn(a, p) implies that Jo \ct(t)\ dt <o° and convergence at An (in 
the case k < 1) follows by an application of Holder's inequality if p > 1 and an 
easy estimate if p = 1 (using (20)). Hence the result. 

COROLLARY. Let l < p < o o and l - ( l / p ) < f c < 2 - ( l / p ) . Then (19) is a 
necessary and sufficient condition for Yn=o snen t° be convergent for all sequences 
s summable [R, A, fc]p. 

Proof. If sn -» l'[R, A, fe]p then (5 - Z'8) e o[R, A, k\ and so the result will 
follow immediately from Theorem 3 provided we show 

(21) lim [ ( l - — ) 1<*(t)dt = 0 

(since then Xn=o £n will converge). If k = 1 then (21) is clear. If fc>l then 
Lebesgue's dominated convergence theorem proves (21). If l - ( l / p ) < k < l , 
p > 1, An G [2m, 2m+1) then for I > m + 1 

\ l/q 

and so 

r2'+i / x \ k - i I / f2I+1 / A \ ( k - D p \ i / p / r 2 l + l \ i 

I (^f) a(t)dHl H) dt) (L | a ( H 
( £ |o(0|qdt)1/q 

°° / r 2'+1 \ i / i 

<M X 2,/p |«(0lqA 
l = m+2 -̂fe1 ' 

•M2llv[ 

t(t)dt 

as n —» 00. Similarly 

J
" r 2 - + 2 / \ \ k - i 

I ( 1 - - ) « (0* = M2m/l '(L |a(o|q* 
l /q 

0 

as n —» 00. If p = 1 then an easier estimate gives the same result, and so (21) is 
proved and hence the result. 
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