
Adv. Appl. Prob. 37, 342–365 (2005)
Printed in Northern Ireland

© Applied Probability Trust 2005

STUDENT PROCESSES

C. C. HEYDE,∗ Australian National University and Columbia University

N. N. LEONENKO,∗∗ Cardiff University

Abstract

Stochastic processes with Student marginals and various types of dependence structure,
allowing for both short- and long-range dependence, are discussed in this paper.
A particular motivation is the modelling of risky asset time series.
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1. Introduction

It is now generally accepted that heavy-tailed distributions occur commonly in practice.
Their use is now widespread in communications network, risky asset, and insurance modelling.
However, the study of stationary processes having these heavy-tailed distributions as their
one-dimensional distributions, and also having a full range of possible dependence structures,
has received rather little attention. In this paper, we focus on such processes with Student t

marginals. The Student t family with ν degrees of freedom covers the range of power tail
possibilities, the spectrum including the Cauchy distribution (ν = 1) and ranging through to
the Gaussian distribution as ν → ∞.

In the field of finance, distributions of logarithmic asset returns can often be fitted extremely
well by Student t-distributions (see, for instance, Hurst et al. (1997), Hurst and Platen (1997),
Heyde (1999), Heyde and Liu (2001), Heyde and Gay (2002), and Bingham and Kiesel (2002)).
All these authors have advocated using a t-distribution with ν degrees of freedom, typically
such that 3 ≤ ν ≤ 5. This implies infinite kth moments, for k ≥ ν.

Another issue in modelling economic and financial time series is that their sample auto-
correlation functions may decay quickly, but their absolute or squared increments may have
autocorrelation functions with nonnegligible values for large lags (Heyde and Yang (1997),
Heyde (1999), Heyde and Liu (2001), Anh et al. (2002)). These ubiquitous phenomena call
for an effort to develop reasonable models that can be integrated into economic and financial
theory as well as theories of turbulence (see, for instance, Woyczyński (1998)). This approach
has a long history, certainly dating back to Mandelbrot’s work in the 1960s (see Mandelbrot
(2001a), (2001b) and references therein), in which the use of (stable or Pareto-type) heavy-tailed
distributions was advocated.

Alternatively, Barndorff-Nielsen (1998), Barndorff-Nielsen et al. (1998), Barndorff-Nielsen
and Pérez-Abreu (1999), Barndorff-Nielsen and Shephard (2001), and Barndorff-Nielsen et al.
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(2002) (see also Madan and Seneta (1990), Eberlein and Keller (1995), Bibby and Sørensen
(1997), Sørensen and Bibby (2003), and Seneta (2004)) have proposed the use of hyperbolic
distributions in financial econometrics. In fact, the symmetric scaled t-distribution can be
considered to be a limiting case of the generalized hyperbolic distribution (see Barndorff-
Nielsen (1977), (1978), Barndorff-Nielsen and Pérez-Abreu (1999), Barndorff-Nielsen and
Shephard (2001), and Sørensen and Bibby (2003) for details). However, some properties of
the t-distribution cannot be obtained from the corresponding limiting procedure. For instance,
the characteristic function of the symmetric scaled t-distribution cannot be obtained from the
expression for the characteristic function of the generalized hyperbolic distribution, as this
is based on the Laplace transform technique, which does not exist for the symmetric scaled
t-distribution (see Remark 2.3, below). Moreover, most of the hyperbolic distributions are
semiheavy tailed, while the symmetric scaled t-distribution is heavy tailed.

In this paper, we propose a number of stochastic processes with Student marginals and various
types of dependence structure that are, in the authors’ opinion, relevant for economics and
finance. Our emphasis is on processes with dependent increments, but it has been known since
the paper of Grosswald (1976) that the t-distribution is infinitely divisible; Student processes
(with independent increments) therefore exist as Lévy processes. Financial applications in this
context have recently been widely discussed in the literature (see, for instance, Cont and Tankov
(2004) and Schoutens (2003)).

We shall use the following standard notation for characteristic functions, cumulant trans-
forms, and Laplace transforms, respectively, of a random variable X:

φX(ζ ) = E{eiζX},
κX(ζ ) = log E{eiζX},

LTX(ζ ) = E{e−ζX}.

We shall also use the notation X
d= Y for equality of distributions of two random variables X

and Y , or Xt
d= Yt for equality of the finite-dimensional distributions of stochastic processes.

2. The symmetric scaled t-distribution and Student Lévy processes

In this section, we summarize some (mostly known) results from t-distribution theory that
will be needed below.

2.1. Density and characteristic functions

The symmetric scaled t-distribution T (ν, δ, µ) with ν > 0 degrees of freedom can be defined
by the probability density function (PDF)

student(x) = c(ν, δ)
1

[1 + ((x − µ)/δ)2](ν+1)/2
, x ∈ R, (2.1)

where δ > 0 is a scaling parameter, µ ∈ R is a location parameter, and

c(ν, δ) = �( 1
2 (ν + 1))

δ
√

π�( 1
2ν)

.

Remark 2.1. Note that a random variable X ∼ T (ν, δ, µ) has the representation

X
d= µ + σε, (2.2)
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where the independent random variables ε and σ 2 have the standard normal distribution N(0, 1)

and the inverse (reciprocal) gamma distribution R�( 1
2ν, 1

2δ2), respectively.
Recall that a random variable γβ,α has a gamma distribution �(β, α), β, α > 0, if its PDF

takes the form

gamma(x) = αβ

�(β)
xβ−1e−αx, x > 0, (2.3)

and a random variable rβ,α = 1/γβ,α has an inverse gamma distribution R�(β, α) if its PDF is
of the form

invgamma(x) = αβ

�(β)
x−β−1e−α/x, x > 0. (2.4)

Note that γβ,α
d= γβ,1/α, rβ,α

d= αrβ,1, E{γβ,α} = β/α, and E{γ 2
β,α} = β(β + 1)/α2.

Only moments less than β exist for R�(β, α), with E{rβ,α} = α/(β − 1), β > 1, and
var{rβ,α} = α2/[(β − 1)2(β − 2)], β > 2.

Both PDFs (2.3) and (2.4) have tails of Pareto type and they belong to the class of gener-
alized inverse Gaussian distributions (see, for instance, Section 2.2 of Barndorff-Nielsen and
Shephard (2001)). In particular, when µ = 0, δ2 = n, ν = n, and n ≥ 1 is an integer,
the gamma-distributed random variable γn/2,n/2

d= (1/n)γn/2,1/2
d= (1/n)χ2

n , where χ2
n has a

chi-squared distribution with n degrees of freedom, and the t-variable X ∼ T (n, n1/2, 0) has
the representation X

d= ε/(χ2
n/n)1/2, ε ∼ N(0, 1), which is a classical t-distribution with n

degrees of freedom.
From (2.1), it follows that both the left- and the right-hand tails of the t-distribution T (ν, δ, µ)

decrease like |x|−ν−1. The expectation exists when ν > 1, the variance when ν > 2, and the
nth moments when ν > n.

From (2.2), we obtain the characteristic function of the t-variable X ∼ T (ν, δ, µ):

φX(ζ ) = E{exp[iζX]} = eiζµ

∫ ∞

0
e−(ζ 2/2)xfσ 2(x) dx. (2.5)

Here, from (2.4),

fσ 2(x) = ( 1
2δ2)ν/2

�( 1
2ν)

x−ν/2−1e−δ2/2x, x > 0, (2.6)

is the PDF of R�( 1
2ν, 1

2δ2).
The characteristic function (2.5) can be expressed in terms of the modified Bessel function

of the third kind, Kλ(x) (see Appendix A). From (2.5), (2.6), and (A.1) we arrive at the elegant
expression

φX(ζ ) = eiζµ Kν/2(δ|ζ |)
�( 1

2ν)
(δ|ζ |)ν/221−ν/2, ζ ∈ R. (2.7)

For ζ = 0, (2.7) is interpreted in the sense of the asymptotic relation (A.2).
In particular, for ν = 1, the Bessel function K1/2 has a closed form given by (A.3) and we

arrive at the characteristic function of the symmetric Cauchy distribution.

Remark 2.2. The characteristic function of the t-distribution has been a topic of some con-
troversy and difficulty (see Dreier and Kotz (2002) for a survey of the available results and
discussion). We only note that Dreier and Kotz (2002) developed the alternative expression

φ(ζ ) = 2nnn/2

�(n)

∫ ∞

0
e−√

n(2x+|ζ |)(x(x + |ζ |))(n−1)/2 dx, ζ ∈ R,
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for the characteristic function of T (n, n1/2, 0), with integer n ≥ 1, while Jurek (2001) proved
(2.7) in the special case of the T (2ν, (2ν)1/2, 0) distribution. Thus, (2.7) is the most general
form, to the authors’ knowledge (see also Seneta (2004)).

Remark 2.3. Sørensen and Bibby (2003) have used the Laplace transform of the asymmetric
scaled t-distribution with PDF

δν

√
π2(ν−1)/2�( 1

2ν)

K(ν+1)/2(|β|√δ2 + (x − µ)2)

(
√

δ2 + (x − µ)2/|β|)(ν+1)/2
eβ(x−µ), x ∈ R, (2.8)

where ν > 0, δ > 0, β ∈ R, and µ ∈ R. By (A.2), the PDF (2.8) reduces to (2.1) when β = 0.
The Laplace transform of (2.8) is

LTX(ζ ) = eµζ (−δζ(ζ + 2β))ν/2Kν/2(−δζ(ζ + 2β))

�( 1
2ν)2ν/2−1

,

with domain −2β < ζ ≤ 0 when β > 0 and 0 ≤ ζ < −2β when β < 0. When β = 0,
the domain is the set {0}. Thus, the Laplace transform (and moment generating function) of
the symmetric scaled t-distribution T (ν, δ, µ) does not exist. Therefore, we cannot use results
from the theory of generalized hyperbolic distributions, as these are based on the Laplace
transform. Instead, for the symmetric scaled t-distribution, the characteristic function (2.7) can
be used. From (A.3), it follows that when β is positive, the left-hand tail of (2.8) decreases like
|x|−(ν/2+1)e2βx (i.e. is ‘semiheavy tailed’), while the right-hand tail decreases like |x|−(ν/2+1)

(i.e. is ‘heavy tailed’). When β is negative, the behaviour of the two tails is interchanged.
The expectation exists provided that ν > 2, and the nth moment exists provided that ν > 2n.

However, it is possible to obtain the Lévy–Khinchin representation of the characteristic
function of the symmetric t-distribution T (ν, δ, µ) directly from the results of Halgreen (1979),
by choosing α = |β| = 0, δ > 0, and λ = − 1

2ν < 0. We obtain

log φ(ζ ) = iζµ +
∫

R

(eiζx − 1 − iζx)g(x) dx,

with

g(x) = 1

|x|
∫ ∞

0

e−|x|√2y dy

π2y(J 2
ν/2(δ

√
2y) + Y 2

ν/2(δ
√

2y))
,

where Jν(x) and Yν(x) respectively denote the Bessel functions of the first and second kinds.
It is known that

x2g(x) = δ

π
+ 1 − ν

4
|x| + o(|x|) as x → 0.

We see that the Lévy measure of a t-distribution T (ν, δ, µ) has infinite mass in every
neighbourhood of the origin.

2.2. Infinite divisibility and self-decomposability

It is known that the generalized hyperbolic distributions are infinitely divisible (i.d.) and self-
decomposable (s.d.) (see Barndorff-Nielsen and Halgreen (1977), Halgreen (1979), Barndorff-
Nielsen and Shephard (2001), and the references therein). Thus, the t-distributions have to be
i.d. and s.d. An independent proof of the infinite divisibility of the t-distribution T (n, n1/2, 0),
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with integer n ≥ 1, was given by Grosswald (1976), while Jurek (2001) proved that the general
t-distribution T (ν, δ, µ) is both s.d. and i.d.

Recall (see Barndorff-Nielsen and Shephard (2001), for example) that a random variable X

is s.d. if its characteristic function φ(ζ ) has the property that, for every c ∈ (0, 1), there exists
a characteristic function φc(ζ ) such that

φ(ζ ) = φ(cζ )φc(ζ ) (2.9)

for all ζ ∈ R. In terms of random variables, property (2.9) means that, for any c ∈ (0, 1), there
exists a random variable Xc such that

X
d= cX + Xc

and X and Xc are independent.
It is known that all s.d. characteristic functions (or random variables or probability distribu-

tions) are i.d.; that is, for every n ≥ 1, there exists a characteristic function φn(ζ ), ζ ∈ R, such
that φ(ζ ) = [φn(ζ )]n, ζ ∈ R.

A stochastically continuous process L(t), t ≥ 0, with L(0) = 0 and strictly stationary and
independent increments, is called a (homogeneous) Lévy process. We may, without loss of
generality, choose a version with càdlàg paths (continuous from the right with left limits) or
with paths almost surely from the Skorokhod space of càdlàg functions (see, for example,
Bertoin (1996, p. 18) or Sato (1999)), with the strong Markov property (Bertoin (1996, p. 20)).
The law of L(t) is then determined by the law of L(1), which is i.d. The independence and
stationarity of the increments of the Lévy process mean that the cumulant transform is given by

κL(t)(ζ ) = tκL(1)(ζ ), ζ ∈ R.

Familiar special classes of Lévy process are Brownian motion and the compound Poisson
processes. For every i.d. random variable T , there exists a Lévy process such that L(1)

d= X.
All Lévy processes except for Brownian motion have jumps.

We say that X(t) has the scaling property if, for each c, 0 < c < 1, there exists a nonrandom
function M(c) such that

X(ct)
d= M(c)X(t), t ≥ 0. (2.10)

For instance, Brownian motion (a Lévy process) has the scaling property (2.10) with
M(c) = c1/2, while fractional Brownian motion, which is not a Lévy process, has the scaling
property (2.10) with M(c) = cH , 0 < H < 1. The symmetric stable Lévy process L(t), t ≥ 0,
with κL(1)(ζ ) = |ζ |α, 0 < α ≤ 2, has the scaling property (2.10) with M(c) = c1/α (see
Samorodnitsky and Taqqu (1994) or Mandelbrot (2001a), (2001b) for details).

The following theorem was proved by Jurek (2001).

Theorem 2.1. Let L(t) be a Lévy process with the strong Markov property. That is, for any
independent random variable T ≥ 0, L(t + T ) − L(T ) and L(t) have the same probability
distributions. We assume that L(t) has the scaling property (2.10). If T is s.d. and the
(nonrandom) scaling function M(c) is a homeomorphism of the unit interval, then L(T ) is s.d.

From (2.2) and Theorem 2.1, we obtain a second theorem (see Jurek (2001) for details).

Theorem 2.2. The t-distribution T (ν, δ, µ) with PDF (2.1) and characteristic function (2.9)
is s.d. (and i.d.).

https://doi.org/10.1239/aap/1118858629 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858629


Student processes 347

From Theorem 2.2, it follows that there exists a Lévy process LS(t), t ≥ 0, such that the
random variable LS(1) has the symmetric scaling t-distribution T (ν, δ, µ) with density function
(2.1) and characteristic function (2.7).

For ν > 1, E{LS(t)} = tµ, t ≥ 0, and LS(t) = tµ + L0
S(t), t ≥ 0, where E{L0

S(t)} = 0.
The PDF of the random variable L0

S(t), t ≥ 0, takes the form

f̃t (x) = 2t (1−ν/2)

√
π�t ( 1

2ν)

∫ ∞

0
cos(ζx)(δ|ζ |)νt/2Kt

ν/2(δ|ζ |) dζ, (2.11)

and it is not easy to compute except in the case t = 1, in which (2.11) reduces to (2.1) with
µ = 0. However, the asymptotic behaviour of f (x), the PDF of Ls , for x → 0 or x → ∞ is
obtainable by using Tauberian–Abelian-type results for the Fourier transforms (see, for example,
Bingham et al. (1987)) and (A.2) and (A.3).

2.3. The nonlinear Fokker–Planck equation and entropy

The importance of the t-distribution in statistical physics has been highlighted in Tsallis et al.
(1995), Tsallis and Bukman (1996), and Vignat and Bercher (2003) (also see the references
therein). An application of these results to finance has been provided by Borland (2002).

The point of departure from Gaussian maximum entropy approaches (in the sense of the
Boltzmann–Gibbs–Shannon entropy) is the feature that the entropy used is the nonextensive
(Havdra–Charvát (1967) or Tsallis) entropy for a time-dependent PDF ft (x):

Hq = − 1

1 − q

(
1 −

∫
R

f
q
t (x) dx

)
, x ∈ R, q ∈ R\{0}. (2.12)

The parameter q characterizes the nonextensivity of the entropy. In the limit q → 1, the
Havdra–Charvát or Tsallis entropy becomes the Boltzmann–Gibbs–Shannon entropy

H1 = −
∫

R

ft (x) log ft (x) dx. (2.13)

Maximizing the entropy (2.12), subject to the constraints∫
R

ft (x) dx = 1,

∫
R

(x − x̄(t))f
q
t (x) dx = 0,

∫
R

(x − x̄(t))2f
q
t (x) dx = σ 2

q (t),

for fixed q and specified functions x̄(t) and σ 2
q (t), yields

ft (x) = 1

Z(t)

1

[1 + β(t)(q − 1)(x − x̄(t))2]1/(q−1)
, x ∈ R, (2.14)

where

Z(t) = B( 1
2 , 1/(q − 1) − 1

2 )√
(q − 1)β(t)

,

B(·, ·) being the beta function.
The variance of the distribution (2.14) is

σ 2
q (t) =

⎧⎨
⎩

1

(5 − 3q)β(t)
, q < 5

3 ,

∞, q ≥ 5
3 .
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Hence, for applications of data of finite variance, the parameter q satisfies

1 ≤ q < 5
3 .

The distribution (2.14) is a time-dependent generalization of the t-distribution (2.1) with an
appropriate reparametrization.

An important property of the PDF (2.14) is that it is the solution of a nonlinear Fokker–Planck
(or Kolmogorov) equation, i.e.

∂

∂t
ft (x) = − ∂

∂x
[ft (x)F (x)] + D

2

∂2

∂x2 f
2−q
t (x), (2.15)

where D is a constant.
The PDF (2.14) solves partial differential equation (2.15) with driving term F(x) = a − bx

if the time-dependent parameters are given by

− 1

3 − q

dZ3−q(t)

dt
+ 2(2 − q)Dβ(t0)Z

2(t0) − bZ3−q(t) = 0,

β(t)

β(t0)
=

[
Z(t)

Z(t0)

]2

,
dx̄

dt
= a − bx̄,

or

β(t)(q−3)/2 = β(t0)
(q−3)/2 exp[b(q − 3)(t − t0)]

− 2Db−1(2 − q)[β(t0)Z
2(t0)](q−1)/2(exp[−b(3 − q)(t − t0)] − 1).

In the limit q → 1, the standard linear diffusion (or heat) equation is recovered and the
t-distribution (2.14) becomes Gaussian, while the Tsallis entropy becomes the Boltzmann–
Gibbs–Shannon entropy (2.13) and the constraints correspond to the Gaussian maximum
entropy principle.

The Rényi (1961) entropy (of the multidimensional PDF f (x), x ∈ R
n)

H̃α = 1

1 − α
log

∫
Rn

f α(x) dx, x ∈ R
n, α ∈ R\{0},

is also a generalization of the Boltzmann–Gibbs–Shannon entropy

H1 = −
∫

Rn

f (x) log f (x) dx

and converges to it as α → 1.
The random vector X = (X1, . . . , Xn)

	 is said to have a multidimensional Student distrib-
ution T (ν, �, µ), with mean µ ∈ R

n, scaling matrix � > 0, and ν degrees of freedom, if its
density is given by

fν(x) = (νπ)−n/2�( 1
2 (n + ν))�−1( 1

2ν)|�|−1/2

× [1 + (x − µ)	[ν�]−1(x − µ)]−(n+ν)/2, x ∈ R
n. (2.16)

The characteristic function of the Student distribution T (ν, �, µ) is of the form

φ(ζ ) = E{ei〈ζ ,X〉} = ei〈ζ ,µ〉 Kν/2(
√

νζ	�ζ )

�( 1
2ν)

(

√
νζ

	
�ζ )ν/221−ν/2, ζ ∈ R

n,
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and the Rényi entropy

H̃α = 1

1 − α
log

B( 1
2 [α(n + ν) − n], 1

2n)

Bα( 1
2ν, 1

2n)
+ 1

2 log[(νπ)n|�|] − log �( 1
2n), α >

n

n + ν
,

converges, as ν → ∞, to the Rényi entropy

log[(2π)n/2|�|1/2] − n

2(1 − α)
log α

of the multidimensional normal distribution N(µ, �).
The Student distribution T (ν, [(ν − 2)/ν]�, 0) with ν = 2/(1 − α) − n > 2 is also the

maximum Rényi entropy distribution under the constraints

E{XX	} = � and
n

n + 2
< α < 1

(see Costa et al. (2003)). It can be seen, from the nonsymmetric Bregman divergence measure,
that

0 ≤ D(f, g) = sgn(α − 1)

∫
Rn

[
1

α
f α(x) + α − 1

α
gα(x) − f (x)gα−1(x)

]
dx

(which is 0 if and only if g = f ).

3. Stationary processes of Student type

In this section, we shall introduce several classes of stationary stochastic process with
marginal symmetric scaled Student distribution T (ν, δ, µ).

3.1. Student Ornstein–Uhlenbeck-type processes

Based on the theory of non-Gaussian Ornstein–Uhlenbeck-based models (see Barndorff-
Nielsen et al. (1998), Barndorff-Nielsen and Shephard (2001), and references therein) we can
introduce the Student Ornstein–Uhlenbeck-type (OU-type) processes.

The key result is known as the random integral representation (see Jurek and Mason (1993,
Theorem 3.9.3) and the bibliographic comments there, and Barndorff-Nielsen and Shephard
(2001, Equation (12)); see also Sato (1999, Theorem 17.5)).

Theorem 3.1. The random variable X has an s.d. distribution if and only if there exists a Lévy
process Y (t) such that

E{log(1 + |Y (1)|)} < ∞ and X
d=

∫ ∞

0
e−s dY (s).

Then Y is unique in distribution. Moreover, if the cumulant transform κX(ζ ) is differentiable
for ζ �= 0 and ζκX(ζ ) → 0 for 0 �= ζ → 0, then we have

κY(1)(ζ ) = ζ
d

dζ
κX(ζ ). (3.1)

The process Y (t) is referred to as the background driving Lévy process (BDLP) for X.
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From (2.7), (3.1), and (A.1) we obtain the following expression for the cumulant transform
of the BDLP Y (t) for the t-distribution T (ν, δ, µ) with characteristic function (2.9), with
κY(1)(0) = 0:

κY(1)(ζ ) = log E{exp[iζY (1)]} = iζµ − δ|ζ |Kν/2−1(δ|ζ |)
Kν/2(δ|ζ |) , ζ ∈ R, ζ �= 0. (3.2)

Note that, for the special case of the t-distribution T (2ν, (2ν)1/2, 0), (3.2) was proved by
Jurek (2001) using a different method.

A stochastic process X(t) is said to be of OU type if it satisfies a stochastic differential
equation (SDE) of the form

dXt = −λXt dt + dY (t), (3.3)

where Y (t) is the BDLP.
From our Theorem 3.1 and Theorem 1 of Barndorff-Nielsen and Shephard (2001), by using

(3.2) we arrive at the following statement.

Theorem 3.2. There exists a stationary (in the strict sense) stochastic process Xt, t ∈ R, which
has marginal t-distribution T (ν, δ, µ) with density function (2.1) and BDLP Y (t) with cumulant
transform (3.2), such that Xt satisfies the SDE (3.3) for all λ > 0;

(i) Xt = e−λtX0 + e−λt

∫ t

0
eλs dY (λs)

=
∫ t

−∞
e−λ(t−s) dY (λs), λ > 0, t ∈ R; and (3.4)

(ii) if ν > 1 then E{Xt } = µ, and if ν > 2 then the correlation function is given by

ν(τ) = corr(Xt+τ , Xt ) = e−λ|τ |, τ ∈ R.

The stationary process Xt, t ∈ R, can be referred to as the Student OU-type process.

Remark 3.1. The higher-order cumulant functions of the stochastic process (3.4) and the
higher-order spectral densities of this process can be obtained (see Anh et al. (2002) for details).

In the same manner, the stationary autoregressive processes with marginal t-distributions can
be constructed on the basis of the self-decomposability of the t-distributions (see Theorem 2.2).
Let X0 = X be a random variable with a t-distribution T (ν, δ, µ) and define a stationary first-
order autoregressive sequence Xn, n ≥ 1, such that

Xn = cXn−1 + εn, n ≥ 1, (3.5)

where 0 < c < 1 and {εn}∞n=0 are independent, identically distributed random variables
(comprising a so-called innovation process) independent of {Xn}∞n=1. In distribution, we have

X0 = cX0 + ε1. (3.6)

Hence, if (3.5) holds for all c ∈ (0, 1), then X0 is an s.d. random variable (see (2.9)).
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In other words, the s.d. Student distribution X0 ∼ S(ν, δ, µ) can be realized as the marginal
distribution of an autoregressive sequence. In fact, written in terms of the BDLP Y (t) of X0,

ε1
d=

∫ −log c

0
e−s dY (s),

i.e. the cumulant transform of the BDLP Y (t), which is given by (3.2).
Thus, there exists a stationary (in the strict sense) solution Xn of the autoregressive equation

(3.5), with the following properties:

Xn ∼ T (ν, δ, µ), E{Xn} = µ (if ν > 1),

corr(Xn, Xn+τ ) = c|τ |, 0 < c < 1, τ = 0, ±1, . . . (if ν > 2).

Remark 3.2. It follows from Barndorff-Nielsen (1998) or Barndorff-Nielsen and Shephard
(2001) that there exists a BDLP Ỹ (t), t ≥ 0, and a stationary OU process X̃t ∼ R�( 1

2ν, 1
2δ2)

such that X̃t is a solution to an SDE similar to (3.3), with E{X̃t } = 1
2δ2/( 1

2ν − 1) when ν > 2
and

corr(X̃t , X̃t+τ ) = e−λ|τ |, τ ∈ R, when ν > 4.

The characteristic function of the R�( 1
2ν, 1

2δ2) distribution is of the form (see Witkovsky
(2002))

E{eiζ X̃t } = 2( 1
2δ)ν/2

�( 1
2ν)

(
−iζ

2

δ2

)ν/4

Kν/2

(
δ2

(
−iζ

2

δ2

)1/2)
, ζ ∈ R,

and, by (3.1), the BDLP Ỹ (t), t ≥ 0, in an SDE of type (3.3) for the R�( 1
2ν, 1

2δ2) distribution
has the cumulant function

κ
Ỹ (1)

(ζ ) = iζ

(−iζ2/δ2)1/2

Kν/2−1(δ
2(−iζ2/δ2)1/2)

Kν/2(δ2(−iζ2/δ2)1/2)
, ζ �= 0,

with κ
Ỹ (1)

(0) = 0.

Let us consider a Gaussian OU process Zt , independent of X̃t , with mean 0 and correlation
function corr(Zt , Zt+τ ) = e−λ|τ |, τ ∈ R. The stationary process X̄t = ZtX̃

1/2
t , t ∈ R, then

has a marginal Student distribution, but this process is different from the Student-type process
that was constructed in Theorem 3.2.

Remark 3.3. It follows fromAit-Sahalia (1996) and Bibby et al. (2003) that a stationary process
with PDF (2.1) and correlation function corr(Xt , Xt+τ ) = e−λ|τ |, τ ∈ R, can be obtained as a
unique Markovian weak solution, with invariant PDF (2.1), to the SDE

dXt = −λ(Xt − µ) dt +
√

2λδ2

ν − 1

[
1 +

(
Xt − µ

δ

)2]
dW(t), ν > 2,

where W(t), t ∈ R, is a standard Brownian motion. This process has continuous paths, in
contrast to the process described in Theorem 3.2.

On the other hand, the unique Markovian solution with invariant PDF R�( 1
2ν, 1

2δ2) can be
obtained in a similar way from the SDE

dX̃t = −λ

(
X̃t − δ2

ν − 2

)
dt +

√
4λ

ν − 2
X̃2

t dW(t), t ≥ 0, δ > 0, ν > 2,

whence Xt = ν+X̃tZt ∼ T (µ, δ, δ2/(ν − 2)), where Zt is a Gaussian OU process independent
of X̃t .
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Remark 3.4. Tarami and Pourahmadi (2003) have shown that if ε = (ε1, . . . , εn) follows a
Student T (ν, σ 2In, 0) distribution, where In is the n × n identity matrix, then the stationary
solution to the autoregressive equation

Xt =
p∑

k=1

ckXt−k + εt , t = 0, ±1, . . . ,

is such that, for every n ≥ 1, the vector X = (X1, . . . , Xn) has Student T (ν, �, 0) distribution
with PDF (2.16) with µ = 0, and the autocovariance matrix �n of X is given by �n =
([ν − 2]/ν)−1�, ν > 2. Note that the entries of ε = (ε1, . . . , εn) are uncorrelated but
not independent and that, when ε1, . . . , εn are independent, each with the univariate Student
distribution (2.1), the joint distribution of ε is not a multivariate Student distribution with PDF
(2.16).

In this subsection, stationary processes of Student type with discrete- or continuous-time
and short-range dependence have been constructed. In the next subsection, we shall introduce
stationary processes of Student type with long-range dependence.

3.2. Stationary Student processes with long-range dependence

In this subsection, we propose some models for strictly stationary processes with long-range
dependence and marginal t-distributions. These are based on the results of Barndorff-Nielsen
and Pérez-Abreu (1999), which use the theory of multidimensional type-G distributions (see,
for instance, Rosiński (1991)).

Any real second-order stationary process Xt, t ∈ R, which is continuous in the squared
mean and has mean µ ∈ R, is representable as

Xt = µ +
∫

R

cos(λt)v(dλ) +
∫

R

sin(λt)w(dλ), (3.7)

where v(t), t ∈ R, and w(t), t ∈ R, are mutually orthogonal zero-mean, square-integrable real
processes with orthogonal increments, and the stochastic integrals in (3.7) are defined in the
L2 sense (see, for instance, Cramér and Leadbetter (1967, p. 137)). The correlation function
of (3.7) is given by

R(τ) =
∫

R

cos(λτ)F (dλ), (3.8)

with
F(dλ) = 1

2 E{cos2(λt)v(dλ)2 + sin2(λt)w(dλ)2}. (3.9)

Let us consider a special case that corresponds to a bivariate innovation process (v(t), w(t))

of the form
(v(t), w(t)) = z(F (λ)) = [z1(F (λ)), z2(F (λ))],

where z(λ) = [z1(λ), z2(λ)] is a bivariate Lévy process such that z(1) is of type G. That
is, z(1)

d= σε, where σ > 0 and ε are independent with ε ∼ N2(0, I2) (the standard two-
dimensional normal distribution), and σ 2 follows an inverse gamma distribution R�( 1

2ν, 1
2δ2)

with ν > 4.
From Barndorff-Nielsen and Pérez-Abreu (1999), it follows that the process (3.8) is well

defined, the integrals being interpreted with respect to independently scattered random measures
(see Rajput and Rosiński (1989), Kwapien and Woyczyński (1992), or Barndorff-Nielsen
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(2001)). This process is (strictly) stationary and its marginal distribution has a characteristic
function of the form (2.5) or (2.7), that is Xt ∼ T (ν, δ, µ). Moreover, E{Xt } = µ and the
correlation function is given by (3.8), where F is an arbitrary distribution function on R.

Let us consider the special case of the distribution function

F(dλ) = fα,�(λ) dλ, λ ∈ R, 0 < α ≤ 1, � ∈ R, (3.10)

where the spectral density is

fα,�(λ) = 1
2 [fα,0(λ + �) + fα,0(λ − �)], λ ∈ R,

with

fα,0(λ) = 2(1−α)/2

√
π�( 1

2α)
K(1−α)/2(|λ|)|λ|(1−α)/2.

From (3.8)–(3.10), we find (see Anh et al. (2004) for details) that the correlation function of
the stationary Student process (3.7) takes the form

R(t) = cos(�t)

(1 + t2)α/2 , 0 < α ≤ 1, � ∈ R, t ∈ R. (3.11)

Thus, for � = 0 the spectral density (3.10) has the singular property

fα,0(0) = ∞, 0 < α ≤ 1,

while, for � �= 0, we find that

fα,�(±�) = ∞, 0 < α ≤ 1.

For any 0 < α ≤ 1 and � ∈ R,

∫ ∞

−∞
|R(t)| dt = ∞;

that is, the stationary Student process (3.7) with distribution function (3.9) exhibits long-range
dependence (see Heyde andYang (1997) and references therein for a more detailed discussion).

We summarize our results in the following theorem.

Theorem 3.3. For any ν > 4, there exists a strictly stationary process of the form (3.7) with
marginal Student distribution T (ν, δ, µ) and the correlation function (3.11) or the spectral
density (3.10).

Remark 3.5. Similar results can be obtained for correlation functions of the form

R(t) = cos(�t)

(1 + |t |β)α
, � ∈ R, 0 < αβ ≤ 1, t ∈ R.

The corresponding spectral densities can be found in Barndorff-Nielsen and Leonenko (2005).
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3.3. Stationary Student and inverse gamma processes with given dependence structure

In this subsection, we shall use some special constructions for stationary Student and inverse
gamma processes with given (monotonic) correlation function. We make use of some ideas
from Berman (1992) and Leonenko (1999, Chapter 2) (see also the references therein).

Let η0(t), η1(t), . . . , ην(t), ν ≥ 1, t ∈ R, be independent copies of a stationary Gaussian
process η(t), t ∈ R, with zero mean, unit variance, and continuous monotonic correlation
function ρη(τ) ≥ 0, τ ∈ R.

We introduce the stationary process

Xt = µ + η0(t)√
2χ2

ν (t)/ν
, t ∈ R, (3.12)

where µ ∈ R and the chi-squared process χ2
ν (t) is defined by

χ2
ν (t) = 1

2 (η2
1(t) + · · · + η2

ν(t)), t ∈ R. (3.13)

From (3.12) and (3.13), we find that the strictly stationary process (3.12) has marginal
t-distribution T (ν, ν1/2, µ).

From Berman (1992) and Leonenko (1999, pp. 109–111), we collect the following properties
of the chi-squared process (3.13).

Theorem 3.4. The strictly stationary process (3.13) has the following properties.

(i) E{χ2
ν (t)} = 1

2ν, var{χ2
ν (t)} = 1

2ν,

cov(χ2
ν (t), χ2

ν (t + τ)) = 1
2νρη(τ ), τ ∈ R.

(ii) The PDF of χ2
ν (t) is of the form

pν/2(x) = xν/2−1 e−x

�( 1
2ν)

, x > 0,

while the bivariate PDF of the random vector (χ2
ν (t), χ2

ν (t + τ)) takes the form

pν/2(x, y; γ ) =
(

xy

γ

)(ν−2)/4

e−(x+y)/(1−γ )I(ν−2)/2

×
(

2
√

xyγ

1 − γ

)
1

�( 1
2ν)(1 − γ )

, x, y > 0, (3.14)

with γ = ρ2
η(τ ), where Iλ(z) is the modified Bessel function of the first kind.

(iii) E{ek(χ
2
ν (t))} = 0, k = 1, 2, . . . , and

E{ek(χ
2
ν (t))em(χ2

ν (t + τ))} = δm
k ρ2k

η (τ ), (3.15)

where δm
k is the Kronecker symbol,

ek(u) = L
ν/2−1
k (u)

{
k! �( 1

2ν)

�( 1
2ν + k)

}1/2

,

and

L
β
k (u) = 1

k!u
−βeu dk

duk
{uβ+ke−u}

are the generalized Laguerre polynomials of index β, for k ≥ 0.
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Note that (3.15) follows from the Hille–Hardy formula (see Bateman and Erdélyi (1953,
Chapter 10)), which can be written in the form

pβ(x, y; γ ) = pβ(x)pβ(y)

[
1 +

∞∑
k=1

γ kek(x)ek(y)

]
, x, y > 0, (3.16)

with β = 1
2ν and γ = ρ2(τ ), 0 < γ < 1. This means that {ek(x)}∞k=0 is a complete orthogonal

system of functions in the Hilbert space L2((0, ∞), pν/2(x) dx) (see, e.g. Courant and Hilbert
(1953, Section II.9.4) or Leonenko (1999, pp. 103–112)). Thus, for a nonrandom function

G(x) ∈ L2((0, ∞), pν/2(x) dx),

the following expansion holds:

G(x) =
∞∑

k=1

Ckek(x), Ck =
∫ ∞

0
G(x)pν/2(x)ek(x) dx,

∞∑
k=1

C2
k =

∫ ∞

0
G2(x)pν/2(x) dx < ∞.

(3.17)

Let us consider the strictly stationary process

r(t) =
[

2

ν
χ2

ν (t)

]−1

, t ∈ R, (3.18)

whose marginal distribution is inverse gamma R�( 1
2ν, 1

2ν) since χ2
ν (t) ∼ �( 1

2ν, 1) (see
Remark 2.1).

Note that r(t) = G(χ2
ν (t)), with

G(x) = ν

2x
∈ L2((0, ∞), pν/2(x) dx), ν > 4. (3.19)

It follows, from Theorem 3.4 and (3.17)–(3.19), that

r(t) =
∞∑

k=0

Ck(ν)ek(χ
2
ν (t)), Ck(ν) = ν

2

∫ ∞

0

pν/2(x)ek(x) dx

x
, (3.20)

and ∞∑
k=0

C2
k (ν) = ν2

4

∫ ∞

0

pν/2(x)ek(x) dx

x2 < ∞, ν > 4.

From (3.15), (3.16), and (3.20), we obtain the following properties of the inverse gamma
process (3.18):

E{r(t)} = ν

ν − 2
, ν > 2, (3.21)

var{r(t)} = 2ν2

(ν − 1)2(ν − 2)
, ν > 4, (3.22)
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and

cov(r(t), r(t + τ)) =
∞∑

k=1

C2
k (ν)ρ2k

η (τ ), ν > 4.

Note that ρη(τ), τ ∈ R, is a correlation function of the Gaussian process η(t), t ∈ R, and
takes the form

ρη(τ) = cov(r(t), r(t + τ))

var{r(t)} = (ν − 1)2(ν − 2)

2ν2

∞∑
k=1

C2
k (ν)ρ2k

η (τ ), (3.23)

where ν > 4 and τ ∈ R.
On the other hand, the bivariate PDF of a random vector (r(t), r(t + τ)) is of the form

ν2

4x2y2 pν/2

(
ν

2x
,

ν

2y
; γ

)
, x > 0, y > 0, γ = ρ2

η(τ ),

where pν/2(u, w; γ ) is as defined in (3.14). If ν > 4, the correlation function ρη(τ) can be
computed directly from the integral

ρη(τ) = 1
8 (ν − 1)2(ν − 2)

∫ ∞

0

∫ ∞

0

(
x − ν

ν − 2

)(
y − ν

ν − 2

)
pν/2(ν/2x, ν/2y; γ )

x2y2 dx dy,

(3.24)
where pν/2(u, w; γ ) is as defined in (3.14) and γ = ρ2

η(τ ).
We can summarize our results in the following statement.

Theorem 3.5. For every integer ν ≥ 1, there exists a strictly stationary process (3.18) that
has marginal inverse gamma distribution R�( 1

2ν, 1
2ν) with expectation (3.21), variance (3.22),

and correlation function (3.23) or (3.24), when ν > 4.

A stochastic process (3.12) with ν ≥ 2 and µ = 0 can be considered to be a nonlinear
transformation of the vector Gaussian process (η0(t), η1(t), . . . , ην(t)) ∈ R

ν+1, t ∈ R; that is,

Xt = F(η0(t), η1(t), . . . , ην(t)), t ∈ R,

with the nonlinear function

F(u0, u1, . . . , uν) = u0√
(u2

1 + · · · + u2
ν)/ν

∈ L2(R
ν+1, φ(u) du),

φ(u) ≡ φ(u0, . . . , uν) = ϕ(u0)ϕ(u1) · · · ϕ(uν), ϕ(s) = 1√
2π

e−s2/2, s ∈ R.

It is well known that the complete orthogonal system in the Hilbert space L2(R
ν+1, φ(u) du)

takes the form

ek0,k1,...,kν (u0, . . . , uν) =
ν∏

j=0

Hkj
(uj ),

where Hν(s), s ∈ R, ν = 0, 1, 2, . . . , are Hermite polynomials (see, e.g. Courant and Hilbert
(1953, Section II.9.4) or Leonenko (1999, pp. 170–174)).

In this Hilbert space, we have

u0√
(u2

1 + · · · + u2
ν)/ν

=
∞∑

m=0

∞∑
k0+···+kν=m

Ck0,...,kν

k0! · · · kν !ek0,...,kν (u0, . . . , uν),
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where

Ck0,...,kν =
∫

Rν+1

u0√
(u2

1 + · · · + u2
ν)/ν

ek0,...,kν (u0, . . . , uν)ϕ(u0, . . . , uν) du0 · · · duν

and

∞∑
m=0

∞∑
k0+···+kν=m

C2
k0,...,kν

k0! · · · kν ! =
∫

Rν+1

(
u0√

(u2
1 + · · · + u2

ν)/ν

)2

ϕ(u0, . . . , uν) du0 · · · duν.

Thus, in a Hilbert space of random variables with finite second moments, we obtain

Xt =
∞∑

m=0

∞∑
k0+···+kν=m

Ck0,...,kν

k0! · · · kν !ek0,...,kν (η0(t), . . . , ην(t))

and, by using the orthogonality properties of Hermite polynomials, we have

E{Xt } = C0,...,0 = 0

and

cov(Xt , Xt+τ ) =
∞∑

m=1

ρm
η (τ)

∞∑
k0+···+kν=m

Ck0,...,kν

k0! · · · kν ! .

If the correlation function ρη(τ) is of the form (3.11), we obtain a stationary Student process
Xt, t ∈ R, with long-range dependence.

4. Associated self-similar processes

In order to construct an associated self-similar stochastic process, we shall use the transfor-
mation of Lamperti (1962) and the results of Barndorff-Nielsen and Pérez-Abreu (1999).

Let Xt, t ∈ R, be a strictly stationary process and define, for 0 < H < 1,

X∗
t = tH Xlog t , X∗

0 = 0, t > 0. (4.1)

Then the process X∗
t , t ≥ 0, is self-similar with exponent H , that is X∗

ct
d= cH X∗

t .

In this case, X∗
t may or may not have strictly stationary increments. For instance, if we apply

the Lamperti transformation (4.1) to the stationary Student process (3.4), or to the stationary
Student process (3.7) with covariance function (3.11), we obtain self-similar processes that do
not have strictly stationary increments.

If Xt, t ∈ R, is a stationary Student process of type (3.4), then the covariance function of
the Lamperti H-self-similar process (4.1) is of the form

cov(X∗
t , X

∗
s ) = δ2�( 1

2 (ν − 2))

2�( 1
2ν)

(ts)H
(

t

s

)λ

, λ > 0, t < s,

while, if Xt, t ∈ R, is a stationary Student process of type (3.7), with covariance function
(3.11), then the covariance function of the Lamperti Student H-self-similar process (4.1) takes
the following form, where 0 < H < 1, 0 < α ≤ 1, and � ∈ R:

cov(X∗
t , X

∗
s ) = (ts)H cos

(
� log

(
s

t

))[
1 + log2

(
s

t

)]−α/2

.
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For both processes, we have e−HtX∗
et ∼ T (ν, δ, µ) and X∗

1 = X0, where X0 ∼ T (ν, δ, µ).
Note that (see Heyde and Gay (2002)) the covariance function of the self-similar process
X∗

t , t ≥ 0, with stationary second-order increments must be of the form

cov(X∗
t , X

∗
s ) = 1

2 E{X∗(1)}2{s2H + t2H + |t − s|2H }, t, s ≥ 0.

In this case, from Proposition 7.2.10 of Samorodnitsky and Taqqu (1994), we find that, for
j = 0, 1, 2, . . . , the differenced sequence Yj = X∗

j+1 − X∗
j is second-order stationary with

covariance function

cov(Y0, Yj ) = 1
2 [|j + 1|2H − |j |2H + |j − 1|2H ] ∼ H(2H − 1)j2H−2 (4.2)

as j → ∞, with H �= 1
2 , meaning that Yj is a stationary process with long-range dependence

when H ∈ ( 1
2 , 1) (see Heyde and Yang (1997)).

Equivalently, the correlation function of the associated stationary process in (4.1) must be
of the form (see Theorems 2 and 3 of Barndorff-Nielsen and Pérez-Abreu (1999))

ρX(τ) = cosh(Hτ) − 22H−1 sinh2H ( 1
2τ) =

∫
R

cos(λτ)FH (dλ), 0 < H < 1, (4.3)

where the spectral function FH has the spectral density

fH (λ) = 1

2π

∞∑
j=0

(−1)j−1
(

2H

j

)
(j −H){(j −H)2 + λ2}−1, λ ∈ R, 0 < H < 1. (4.4)

Now, if we choose µ = 0 in (3.7) and let F = FH from (4.3), with spectral density (4.4),
we obtain the H -self-similar process

X∗
t = tH

∫
R

cos(λ log t)W1{R1(FH (dλ))} + tH
∫

R

sin(λ log t)W2{R2(FH (dλ))},

where t > 0; X∗
0 = 0; W1(t) and W2(t) are two independent standard Brownian motions; and

R1(t) and R2(t) are two independent Lévy processes independent of W1(t) and W2(t) and such
that Ri(1) ∼ R�( 1

2ν, 1
2σ 2), i = 1, 2, ν > 4.

The process e−HtX∗
et , t > 0, is strictly stationary and has the Student distribution T (ν, δ, 0).

The associated differenced sequence Yj = X∗
j+1 − X∗

j , j = 1, 2, . . . , is a second-order
stationary process with covariance function (4.2). Note that

X∗
j

d= W1(R1(1)) ∼ T (ν, δ, 0) and Yj ∼ T (ν, δ, 0), j = 0, 1, 2, . . . .

5. A risky asset model with strong dependence through fractal activity time

Heyde (1999) (see also Heyde and Liu (2001), Heyde and Gay (2002), and Barndorff-Nielsen
et al. (2002)) introduced a fractal activity time geometrical Brownian motion (FATGBM) as a
model for risky assets. We are now going to study this model in more detail.

5.1. Existence of FATGBM

The paradigmatic model in mathematical finance is the geometric Brownian motion, other-
wise known as the Black–Scholes model. In this model, the price St , at time t , of a risky asset
is

St = S0 exp[µt + σW(t)], (5.1)
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where µ, σ 2 > 0 are fixed constants and W = {W(t), t ≥ 0} is a standard Brownian motion.
Note that (5.1) is the Itô solution to the SDE

dS(t) = S(t)((µ + 1
2σ 2) dt + σ dW(t)).

Then, the one-period returns process is

Xt = log

(
St

St−1

)
= µ + σ(W(t) − W(t − 1)). (5.2)

The following economically testable properties are consequences of the formulation (5.1),
(5.2).

(i) The process {Xt } is stationary Gaussian (so it is symmetric and has zero kurtosis).

(ii) {Xt } has uncorrelated (and so independent) increments.

(iii) cov((Xt+k − µ)2, (Xt − µ)2) = 0, i.e. squared returns are independent.

(iv) cov(|Xt+k − µ|, |Xt − µ|) = 0, i.e. absolute returns are uncorrelated.

The Black–Scholes model plays a central role in financial theory. The associated arbitrage-
free asset pricing methodology has important applications and is widely used in practice.

Nonetheless, the original model has significant shortcomings. The following features of
stock returns are well documented in the financial and econometric literature (see, for example,
Heyde (1999), Heyde and Liu (2001), and references therein).

1. The returns process is uncorrelated.

2. Long-range dependence is present in the absolute and squared returns.

3. Returns have leptokurtic empirical distributions, i.e. higher-peaked and heavier-tailed
than Gaussian distributions.

Heyde (1999) described a model similar to the Black–Scholes model for the stock price,
which used geometric Brownian motion with fractal activity time (the FATGBM stock price
model). The stock price is modelled as

Pt = P0 exp[µt + σW(Tt )]. (5.3)

Here, µ and σ are constants and W is a standard Brownian motion. However, the process
T = {Tt , t ≥ 0}, assumed to be independent of W , is neither clock nor intrinsic time, but rather
an activity or market time that is not observed directly but which is strongly correlated with the
trading volume of the stock. It is supposed that T is a strictly increasing process with stationary
differences and heavy-tailed finite-dimensional distributions.

There is strong empirical evidence in support of this model (see Heyde (1999), Heyde and
Liu (2001), and Heyde and Gay (2002)), and that, to a good degree of first approximation, the
process Tct − ct is asymptotically self-similar; that is,

Tct − ct
d∼= cH (Tt − t), 0 < H < 1. (5.4)

Exact self-similarity when T is increasing is not possible, because, if (5.4) held exactly for
all t > 0 and c > 0 then, for any 0 < � < 1,

Tt+� − Tt − �
d= T� − �

d= �H (T1 − 1)
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and
P(Tt+� − Tt < 0) = P(�H T1 < �H − �) = P(T1 < 1 − �1−H ) > 0.

Now the one-period stock returns process is

Xt = µ + σ(W(Tt ) − W(Tt−1))
d= µ + σ(Tt − Tt−1)

1/2W(1), (5.5)

using the scaling law of Brownian motion.
From (5.3)–(5.5), we obtain the following features of the FATGBM stock returns process

X = {Xt } (see Heyde (1999)).

(a) Stock returns are uncorrelated, i.e.

cov(Xt+k, Xt ) = σ 2 E{[W(Tt+k) − W(Tt+k−1)][W(Tt ) − W(Tt−1)]} = 0, (5.6)

since the Brownian motion has independent increments and T is independent of W .

(b) There is long-range dependence in the absolute and squared returns: if E{τ 2
t } < ∞,

where
τt = Tt − Tt−1, (5.7)

then
cov({(Xt − µ)2, (Xt+k − µ)2}) = σ 4 cov(τt+k, τt ), (5.8)

so if the {Tt } process has long-range dependence of its increments {τt }, then the same
structure is present in the process X2

t . Similarly,

cov(|Xt − µ|, |Xt+k − µ|) = σ 2(E{|W(1)|})2 cov(τ
1/2
t , τ

1/2
t+k), E{|W(1)|} = 2/π.

(c) There are leptokurtic distributions of Xt ; in particular,

kurtosis(Xt ) = 3(1 + var τt ) > 3.

We now propose some models with properties (5.3)–(5.8), in which the process Xt has both
the above properties and the symmetric scaled t-distribution.

Suppose that we are given a Student distribution T (ν, ν1/2, µ) with the PDF (2.1), and we
wish to construct a stochastic process T = {Tt , t ≥ 0} – assumed to be independent of the
standard Brownian motion W(t) – such that properties (5.5), (5.6), and (5.8) hold, the one-
period stock returns process Xt has distribution T (ν, ν1/2, µ), and {Xt } displays long-range
dependence.

Let us consider the strictly stationary process similar to (3.18)–(3.20), i.e. r(t) = G(χ2
ν (t)),

but now with G(u) = ( 1
2ν − 1)/u, marginal [( 1

2ν − 1)/ 1
2ν]R�( 1

2ν, 1
2ν) distribution, and long-

range dependence. If ν > 4 then

C0(ν) = ( 1
2ν − 1)

∫ ∞

0
pν/2(x)

dx

x
= 1, C1(ν) = ( 1

2ν − 1)

∫ ∞

0
pν/2(x)e1(x)

dx

x
�= 0,

where the first generalized Laguerre polynomial is given explicitly by

e1(u) =
√

2

ν

(
1

2
ν − u

)
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and, hence,

e1(χ
2
ν (t)) = − 1√

2ν

ν∑
j=1

(η2
j (t) − 1),

where η1(t), . . . , ην(t) are independent copies of the stationary Gaussian process η(t) with
zero mean and covariance function ρη(τ) = (1 + τ 2)−α/2, 0 < α < 1

2 .

From Taqqu (1975) (see also Berman (1992) and Leonenko (1999)), we obtain

lim
n→∞ var

{
1

n1−α

[�nt�∑
s=1

G(χ2
ν (s)) − �nt�

]
− C1(ν)

n1−α

�nt�∑
s=1

e1(χ
2
ν (s))

}
= 0, t ≥ 0,

where
G(u) = ( 1

2ν − 1)u ∈ L2((0, ∞), pν/2(x) dx)

if ν > 4, and �·� denotes the largest integer less than or equal to its argument. Also, from the
same reference,

C1(ν)

n1−α

�nt�∑
s=1

e1(χ
2
ν (s)) = − C1(ν)√

2νn1−α

ν∑
j=1

1

n1−α

�nt�∑
s=1

(η2
j (s) − 1), t ≥ 0,

converges, as n → ∞, to the stochastic process

R∞(t) = −C1(ν)√
2ν

ν∑
j=1

Rj (t), (5.9)

in the sense of finite-dimensional distributions. Here, R1(t), . . . , Rν(t) are independent copies
of the Rosenblatt process R(t), t ≥ 0, with characteristic function (see Taqqu (1975)) of the
form

�(z1, . . . , zq) = E

{
exp

[
i

q∑
p=1

zpR(tp)

]}

= exp

[
1

2

∞∑
k=2

(2i)k

k

∑
s1,...,sk∈{1,2,...,q}

zs1zs2 · · · zsq sα(k)

]
,

where

sα(k) =
∫ ts1

0
· · ·

∫ tsq

0

dx1 · · · dxk

|x1 − x2|α|x2 − x3|α · · · |xk − x1|α , 0 < α < 1
2 .

The stochastic process (5.9) is self-similar with parameter H = 1 − α ∈ ( 1
2 , 1), i.e.

R(ct)
d= cH R(t), t ≥ 0, c > 0.

This indicates that the process

T�nt� =
�nt�∑
s=1

( 1
2ν − 1)

1
2 (η2

1(s) + · · · + η2
ν(s))

− �nt� (5.10)
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has the asymptotic self-similar property (5.4), with parameter H = 1 − α ∈ ( 1
2 , 1). That is, to

a good degree of first approximation, the process Tct − ct , c > 0, can be approximated, in the
sense of finite-dimensional distributions, by the process cH (Tt − t) and, thus, the distribution
of the random variables Tt can be approximated by the distribution of the random variables
t + tH (T1 −1), where T1 ∼ [( 1

2ν −1)/ 1
2ν]R�( 1

2ν, 1
2ν). The process (5.10) exhibits long-range

dependence. The existence of a FATGBM model follows.

5.2. Pricing formulae

The self-similarity relationship (5.4), being empirically based, provides a key to the pricing
of derivatives for the FATGBM model, which is similarly based. This is in contrast to the usual
stochastic volatility models, in which the volatility SDE has no such foundation.

A pricing formula for European call and put options was proposed by Heyde and Gay (2002).
A sketch of the reasoning follows. Suppose that, in a certain market, there is a deterministic
money market account βt = β0ert and a stock price St . In the no-arbitrage pricing regime,
the discounted stock price {St/βt } under Q, a martingale measure equivalent to that induced by
{St }, is a martingale Mt , say. Then, under Q we must have

dMt = Mt {(µ − r) dt + σ dW(Tt )}.
Since such processes can only be martingales if µ = r , we need to choose µ = r to price any
option of this stock price. Hence, the call expiring at time t is priced in the present by using
the pricing equation

S∗
t = S0 exp[(rt − 1

2σ 2Tt ) + σW(Tt )]
and the measure Q.

Denote the call price by C. Then, as with the Black–Scholes formula,

C = EQ{e−rt (S∗
t − K)+} = EQ{EQ{e−rt (S∗

t − K)+ | {Tt }}} = EQ{Pt } = E{Pt },
where

Pt = S0�

[
log[S0/K] + rt + 1

2σ 2Tt

σ
√

Tt

]
− Ke−rt�

[
log[S0/K] + rt − 1

2σ 2Tt

σ
√

Tt

]
.

Here � is the distribution function of a standard normal distribution and the expectation of Pt

is the same under the real-world measure as it is under the nonunique Q. Note that this is an
incomplete market situation but that the price calculated above is natural in the sense of being a
conditional Black–Scholes price. Indeed, Pt is the Black–Scholes price conditional on Tt , and
C is calculated by taking the expectation of Pt with respect to the real-world measure.

For pricing, Tt can be chosen to have the distribution t + tH (T1 − 1), with

T1 ∼ R�( 1
2ν, 1

2 (ν − 2)),

and W(T1) has the distribution ((ν − 2)/ν)1/2T (ν, ν1/2, 0), ν > 4, 0 < H < 1.
The put option price comes from the call–put parity relation:

put price = call price − stock price + present value of exercise price.

See Heyde and Gay (2002) for more details and some examples.
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Appendix A. Modified Bessel functions of the third kind

In this appendix, a number of results concerning the modified Bessel functions of the third
kind are collected (see Watson (1958) or Kotz et al. (2001, pp. 314–317)).

The modified Bessel function of the third kind, with index λ ∈ R, can be defined by the
integral representation

Kλ(x) = 1

2

∫ ∞

0
uλ−1 exp

[
1

2
x

(
u + 1

u

)]
du, x > 0. (A.1)

The function Kλ(x) is a continuous, positive function of λ ≥ 0 and x > 0. If λ ≥ 0 is fixed
then, throughout the x interval (0, ∞), the function Kλ(x) is positive and decreasing.

If λ is fixed then, as x → 0+,

Kλ(x) ∼ �(λ)2λ−1x−λ, λ > 0, K0(x) ∼ log(1/x). (A.2)

For λ = r + 1
2 , where r is a nonnegative integer, the Bessel function Kλ(x) has the closed

form

Kr+1/2(x) =
√

π

2x
e−x

r∑
k=0

(r + k)!
(r − k)! k! (2x)−k. (A.3)
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