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Abstract. We consider the CMB bispectrum signal induced by structure formation through
the correlation between the Integrated Sachs-Wolfe and the weak lensing effect. We investigate
how the bispectrum knowledge can improve our knowledge of the most important cosmological
parameters, focusing on the dark energy ones. The bispectrum signal arises at intermediate red-
shifts, being null at present and infinity, and is characterized by a large scale regime (dominated
by linear dynamics of cosmological perturbation) and a small scale one (dominated by density
perturbations in a non-linear regime); on the other hand, the effect induced by dark energy
on the power spectrum is mostly geometrical and imprinted at redshift close to the present.
Because of this, the knowledge of power spectrum and bispectrum yield two complementary
informations at very different cosmological epochs, particularly suitable to extract informations
about the onset of the cosmic acceleration and dark energy properties that provide it. In order
to quantify how much the bispectrum can help the power spectrum in constraining the dark
energy parameters, we choose a fiducial model on a three-dimensional space including the fol-
lowing dark energy parameters: dark energy density ΩV ; dark energy equation of state today
w0 and dark energy equation of state in the past w∞ (w∞ −w0 is related to the first derivative
of equation of state). Then we simulate a likelihood analysis showing how contour levels become
narrower when bispectrum is included. Preliminary results suggest a consistent improvement on
the estimation of dark energy abundance and on dynamical properties of the equation of state.
This indicates that the knowledge of the bispectrum in future high resolution and high sensi-
tivity CMB observations could yield a substantial improvement with respect to the traditional
analysis based on the power spectrum only.

1. Introduction
The combination of several independent cosmological datasets, namely type Ia super-

novae (Riess et al. 1998, Perlmutter et al. 1999), CMB (Spergel et al. 2003) and large
scale structure (see e.g. Dodelson et al. 2002) indicate that the universe is presently ac-
celerating. The dark energy responsible for the acceleration appears to be a fraction of
about 73% of the cosmic energy density today. The main properties of the dark energy
are described in terms of its equation of state w = p/ρ, i.e. the ratio between pressure
and energy density; its value, for a pure cosmological constant, is -1. A current experi-
ments indicate that the present value of w should be in the range w0 < −0.78 (Spergel
et al. 2003). The cosmological constant as an explanation to cosmic acceleration has two
well-known problems: the coincidence problem (why cosmological constant density and
matter density are comparable today?) and the fine tuning problem (i.e. why cosmo-
logical constant is 123 orders of magnitude less than Planck scale?). To solve the latter
problem, a dynamical scalar field, known as Quintessence (Peebles & Ratra 2003), has
been introduced as a minimal extension of the cosmological constant; the dark energy
equation of state gets dynamical alleviating the fine tuning problem. In most models the
dark energy equation of state can be easily parameterized with only two parameters: w0

and its first derivative with respect to the scale factor (Linder 2003). The next challenge
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in cosmology is to constrain the time evolution of w; this can be done with future SNIa
observations and future CMB experiments like Planck (Balbi et al. 2003). As we shall see
in the next section, the CMB power spectrum alone is limited to constrain dark energy.
Here we study the improvement which might be achieved by taking into account the
non-Gaussian distortion induced by the correlation between weak lensing and Integrated
Sachs-Wolfe effect (ISW). Such signal is suitable studied in the higher order statistic of
CMB anisotropies. We choose here the CMB bispectrum as an estimator of third order
statistics (see e. g. Giovi, Baccigalupi & Perrotta 2003). The weak lensing effect on CMB
anisotropies has been studied (see e. g. Komatsu & Spergel 2001 and references therein)
and the third order statistics, the bispectrum, has been used to constrain the effective
dark energy equation of state by Verde & Spergel (2002).

2. Removing the distance degeneracy with CMB bispectrum
The main problem of the CMB power spectrum in studying the dark energy is the

degeneracy that affects the distance of last scattering surface with respect the dark energy
abundance and, in particular, its equation of state. Its variation produces a change to the
distance at last scattering surface (see e. g. Baccigalupi et al. 2002); unfortunately such
distance is degenerate with respect the main dark energy parameters. This can be easily
understood writing the formula of the comoving distance to the last scattering surface
(we restrict our analysis to the flat case and we neglect the radiation contribution):

r(zlss) =
c

H0

∫ zlss

0

dz√
Ω0M (1 + z)3 + ΩV ef(z)

. (2.1)

In the previous equation c is the speed of light, H0 is the Hubble constant today, zlss is
the redshift of last scattering surface, Ω0M is the matter density today, ΩV = 1 − Ω0M

(because we consider only the flat case) is the dark energy density and f(z) depends on
the equation of state of dark energy w(z) and is defined as

f(z) = 3
∫ z′

0

dz′
1 + w(z′)

1 + z′
. (2.2)

Analyzing eq. (2.1) and (2.2), we can see that the time dependence on equation of state
is washed out by two redshift integrations. In most models the dark energy equation of
state can be parameterized with the following relation (Linder 2003)

w(z) = w0 + (w∞ − w0)
z

1 + z
, (2.3)

where w0 and w∞ are respectively its present and the asymptotic values. The difference
(w∞ − w0) represents the time-variation of dark energy equation of state.

Several different combinations of these dark energy parameters can produce the same
comoving distance to the last scattering surface; for example a comoving distance of
about 13900 Mpc can be obtained from these three sets of dark energy parameters:
(ΩV = 0.73, w0 = −1, w∞ = −1); (ΩV = 0.735, w0 = −0.93, w∞ = −0.89) and (ΩV =
0.74, w0 = −1, w∞ = −0.59). The net effect of this distance degeneracy is reflected in the
CMB power spectrum; different cosmological models with the same rzlss

, will produce
very similar power spectra (see figure 1, right panel). Together with degeneracy in the
projection effect, there is another physical motivation for which the CMB power spectrum
is limited in its capability to constrain the dark energy: the power spectrum is mostly
injected at decoupling, and at that time the dark energy density was negligible with
respect to the matter density and couldn’t produce remarkable signatures in the CMB.
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Figure 1. CMB power spectra (left panel) and absolute value of equilateral bispectra (right
panel) for models with same comoving distance of last scattering surface but different val-
ues of dark energy parameters. Solid line: (ΩV = 0.73, w0 = −1, w∞ = −1). Dashed line:
(ΩV = 0.735, w0 = −0.93, w∞ = −0.89). Dotted line: (ΩV = 0.74, w0 = −1, w∞ = −0.59). No-
tice that the three models are fully degenerate with the power spectrum while the degeneracy
is removed with the equilateral bispectrum.

A way to include the CMB sensitivity on the dark energy is to consider the signatures
in the CMB produced by the correlation between the Integrated Sachs-Wolfe effect and
the weak lensing on the CMB. The ISW takes into account the Rees-Sciama effect that
arises when the non linear growth of structures is included. The ISW effect affects the
CMB photons with a reddening; the photon acquires a blueshift when it falls down
into the potential well of growing structures and it acquires a redshift when it climbs
out, but these two contributions are not balanced because the perturbations change in
time. The gravitational lensing effect is the well-known deflection of light due to the
gravitational potential of clump of matter. Both effects arise at the epoch of structure
formation, thus we can try to exploit them to alleviate the distance degeneracy. The
correlation between ISW and weak lensing induce a non vanishing power in the CMB
higher order statistics, which we study it considering the CMB bispectrum. The latter is
the harmonic transform of three point correlation function and it is null, within cosmic
variance, if the CMB anisotropies are Gaussian. Since the ISW and the weak lensing are
produced by the same physical entity (growing perturbations in the matter distribution),
these secondary anisotropies are correlated and induce a non-vanishing bispectrum with
exceeds the cosmic variance.

3. Integrated Sachs-Wolfe and weak lensing induced CMB
bispectrum

When we consider the ISW and weak lensing effect, the CMB anisotropies in a direction
n̂ in the sky can be decomposed as

Θ(n̂ + �α) � Θ(n̂) + �∇Θ · �α (3.1)

where Θ includes the primordial and ISW anisotropy contributions, and the last term is
the contribution from the weak lensing re-mapping; �α is the deflection angle. Following
Verde & Spergel (2002) and expanding eq. (3.1) in spherical harmonics, from the general
bispectrum definition bm1m2m3

l1l2l3
= al1m1al2m2al3m3 , we can build the quantity

Bl1l2l3 =
∑

m1m2m3

(
l1 l2 l3
m1 m2 m3

)
bm1m2m3
l1l2l3
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Table 1. Position and shift of multipole l0 of bispectrum zero-crossing varying the main
cosmological parameters.

Parameters Lower Higher ∆l0

−1 � w0 � −0.8 418 482 +66
0.60 � ΩV � 0.86 324 >1000 >+676

0.020 � Ωbh
2 � 0.028 404 420 +16

0.64 � h � 0.80 492 360 -132
0.80 � ns � 1.12 446 388 -58

�
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)
4π

(
l1 l2 l3
0 0 0

)
· (3.2)

· l1(l1 + 1) − l2(l2 + 1) + l3(l3 + 1)
2

CP
l1 Q(l3) + 5P. ,

where 5P. indicates the permutations over the three multipoles, the parenthesis are the
Wigner’s 3J symbols, CP

l is the primordial CMB power spectrum, and

Q(l) ≡< (alens
lm )∗aISW

lm >� 2
∫ zlss

0

dz
r(zlss) − r(z)
r(zlss)r3(z)

[
∂PΨ(k, z)

∂z

]
k= l

r (z )

, (3.3)

is the correlation between lensing and ISW. In eq. (3.3) PΨ(k, z) is the gravitational
potential power spectrum; to evaluate the non linear contribution to density power spec-
trum we have used the existing semi-analytical approach (Ma et al. 1999).

The asymptotic redshift behavior of the integrand of eq. (3.3), for z → 0 and z → ∞,
is vanishing (Giovi, Baccigalupi & Perrotta 2003); in fact, fixing the multipole, at low
redshift the gravitational potential power spectrum probes infinite wavenumbers where
the power is vanishing, while at high redshift the gravitational potential is constant since
the universe approach the standard CDM. Therefore, the bispectrum signal is acquired
at intermediate redshifts only, and is expected to reflect the cosmological expansion rate
at that epoch. The dark energy domination occurs approximately at the same time, and
therefore the bispectrum can be used as a tool to investigate the dark energy properties
and to alleviate the distance degeneracy (Giovi, Baccigalupi & Perrotta 2003). This can
be seen clearly in figure 1 where we compare the CMB power spectrum with the equi-
lateral bispectrum (l1 = l2 = l3) for three dark energy models with the same comoving
distance at last scattering surface: the degeneracy is removed at the bispectrum level; we
describe in the next section the shape of bispectrum curves.

4. Bispectrum features and likelihood analysis
The bispectrum has some peculiar features that can be used to discriminate between

different cosmological models. Plotting the absolute value of bispectrum we have a cusp,
for which the bispectrum is vanishing, and its position depends on cosmological model
(see right panel in figure 1). The position of this zero-crossing point is the value of the
multipole l0 for which the integrand of Q(l) is null as shown Verde & Spergel (2002):
the positive contribution (due to linear growth) balances exactly the negative one (due
to non linear growth). Another relevant feature that must be taken into account is the
amplitude of the bispectrum in the linear part (l < l0): different cosmological models
produce different amplitudes in the linear regime. The linear power affect l0: the higher
is the power in the linear regime (l < l0), the higher is the value of l0. In table 1 we
analyze the variation of l0 with respect to the main cosmological parameters: dark energy
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Figure 2. Likelihoods confidence levels at 68% (innermost contours) and 95%(outermost con-
tours) for power spectrum only (dashed line) and for power spectrum and bispectrum (solid
line). From left to right: marginalization over w∞, marginalization over w0, marginalization
over ΩV . The filled dot is our fiducial model.

equation of state today w0, dark energy density ΩV , baryons energy density Ωbh
2, Hubble

constant h and spectral index of primordial fluctuations ns. The values of l0 and its shift
are evaluated when we vary each parameter, fixing the others to a reference model.
At first sight l0 is more sensitive to parameters which affect geometrically distances
(ΩV , h), with the exception of w0 at least in the interval considered. Unfortunately the
bispectrum is much more noisy than the CMB power spectrum already at the level of
cosmic variance, since it is a higher order effect. We can increase the signal to noise ratio
including all triangles configurations in l-space (i.e. considering all possible multipoles
triplets) in our analysis. We have tested the improvement that the bispectrum can bring
to the power spectrum alone building a three-dimensional likelihood on dark energy
parameters (ΩV , w0, w∞) and choosing a fiducial model for an ideal (cosmic variance
limited) experiment. In figure 2 we show our results marginalizing each time over one
dark energy parameter; as we can see in all cases the contours of the joint likelihoods are
narrower than the contours of the power spectrum likelihoods alone. This first, and very
preliminary result, is encouraging: a gain is expected on the estimation of dark energy
equation of state at the beginning of structure formation.

5. Conclusions
We have discussed how to alleviate the distance degeneracy in the CMB power spec-

trum using the ISW and weak lensing induced CMB bispectrum; we have shown some
preliminary results about the sensitivity of the bispectrum with respect to the main
cosmological parameters. We have simulated a joint likelihood of power spectrum and
bispectrum, limited to only dark energy parameters and fixing a fiducial cosmological
model. Our preliminary results indicate that adding the bispectrum likelihood to the
power spectrum one, the contour levels are narrower and a gain in the estimation of
dynamics of dark energy equation of state is expected. Further study is needed to assess
the magnitude of this improvement.

Future precision cosmology data from high resolution experiments like Planck and fu-
ture measures of tridimensional matter power spectrum with Ly-α forest (Viel, Heahnelt
& Springel 2004) and cosmic shear (Bacon et al. 2004) will help in the use of the bispec-
trum since they will allow on a better knowledge of the matter power spectrum affecting
the bispectrum signal.
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