BIPLANAR SURFACES OF ORDER THREE

TIBOR BISZTRICZKY

0. Introduction. A surface of order three, F, in the real projective threespace P^{3} is met by every line, not in F, in at most three points. F is biplanar if it contains exactly one non-differentiable point ν and the set of tangents of F at ν is the union of two distinct planes, say τ_{1} and τ_{2}. In the present paper, we classify and describe those biplanar F which contain the line $\tau_{1} \cap \tau_{2}$.

We describe a surface by determining the tangent plane sections of the surface at the differentiable points. This approach was introduced in [1] and it is based upon A. Marchaud's definition of "surfaces of order three" in [4].

We denote the planes, lines and points of P^{3} by the letters $\alpha, \beta, \ldots ; L$, M, \ldots and p, q, \ldots respectively. For a collection of flats α, L, p, \ldots; $\langle\alpha, L, p, \ldots\rangle$ denotes the flat of P^{3} spanned by them. For a set \mathscr{M} in $P^{3},\langle\mathscr{M}\rangle$ is the flat of P^{3} spanned by the points of \mathscr{M}.

1. Surfaces of order three.

1.1. A surface of order three F in P^{3}, is a compact and connected set such that every intersection of F with a plane is a curve of order $\leqq 3$ and there is a plane β such that $\beta \cap F$ is a curve of order three which does not contain any lines.

Plane curves are defined by means of parameter curves. A parameter curve C is a continuous map from a line $M=\left\{m, m^{\prime}, \ldots\right\}$ into a plane α. A line T is the tangent of C at $m \in M$ if $T=\lim \left\langle C(m), C\left(m^{\prime}\right)\right\rangle$ as $m^{\prime} \neq m$ tends to m. C is differentiable if the tangent T of C at m exists for every $m \in M$ and $|T \cap C(M)|<\infty . C$ is degenerate if C is injective and $C(M)$ is a line. C is totally degenerate if $C(M)$ is a point (isolated).

Let C be differentiable, $C(M) \subset \alpha$. Then $p \in C(M)$ is simple if $p=C(m)$ has a unique solution $m \in M$. We introduce (cf. [6]) the characteristic ($\left.a_{0}(m), a_{1}(m)\right)$ of $C(m), a_{i}(m)=1$ or 2 , and say that L meets C at m with multiplicity $a_{0}(m)+a_{1}(m)\left[a_{0}(m)\right]$ if $C(m) \in L \subset \alpha$ and L is (is not) the tangent of C at m. C is of order n if n is the supremum of the number of points of M, counting multiplicities, mapped into collinear points by C.

If C is of order two (three), we denote $C(M)$ by $S^{1}\left[F_{*}{ }^{1}\right]$. Every point of an S^{1} is simple and an $F_{*}{ }^{1}$ contains at most one point q (double point) such that $q=C(m)=C\left(m^{\prime}\right), \quad m \neq m^{\prime}$. A simple point of an $F_{*}{ }^{1}$ is an ordinary, inflection or cusp point if it has the characteristic $(1,1),(1,2)$ or $(2,1)$ respectively; cf. [3] and [1]. A degenerate C is considered to have order one and an isolated point is counted with multiplicity two.

A (plane) curve Γ is the union of a finite collection of sets $C_{\lambda}(M)$ where the C_{λ} 's are parameter curves. A line T is a tangent of Γ at p if T is the tangent of some C_{λ} at $m, \quad p=C_{\lambda}(m) \subset C_{\lambda}(M) \subset \Gamma$. The order of Γ is the supremum of the number of points of Γ, counting multiplicities on each C_{λ}, lying on any line not in Γ.

Let Γ be of order $n, n \leqq 3$. If $n=1$, then Γ is a straight line. If $n=2$, then Γ is an S^{1} or an isolated point or a pair of distinct lines. If $n=3$, then Γ is (i) an $F_{*}{ }^{1}$ or (ii) the disjoint union of an $F_{*}{ }^{1}$ and either an S^{1} or an isolated point or (iii) the union of a line and a curve Γ^{\prime} of order two.

We denote a Γ of order three satisfying (i) or (ii) by F^{1}. Then there is an $F_{*}{ }^{1} \subseteq F^{1}$.
1.2. Let F be a surface of order three. Let α be a plane through $p, \quad p \in F$. Then p is regular in $F[\alpha \cap F]$ if there is a line N in $P^{3}[\alpha]$ such that $p \in N$ and $|N \cap F|=3$. Otherwise, p is irregular in $F[\alpha \cap F]$. We note that there is at most one point ν irregular in $\alpha \cap F$ if $\alpha \cap F$ is an F^{1} and such a ν is a cusp, double point or isolated point of $\alpha \cap F$. Finally,

$$
l(p, \alpha)=|\{L \subset \alpha \mid \quad p \in L \subset F\}| \leqq l(\alpha)=|\{L \subset \alpha \mid \quad L \subset F\}| \leqq 3
$$

If F is non-ruled, that is, F is not generated by lines, then $l(F)=\mid\left\{L \subset P^{3} \mid\right.$ $L \subset F\} \mid<\infty$ and F contains at most four irregular points.

Let $p \in F$. A line T is a tangent of F at p if T is a tangent of $\alpha \cap F$ at p for some α through p. Let $\tau(p)$ be the set of tangents of F at p. Then p is differentiable if p is regular in $\alpha \cap F$ and $\tau(p)$ is a plane $\pi(p)$; otherwise, p is singular.

Henceforth, we assume that every regular p in F is differentiable and $\pi(p)$ depends continuously on p.

Let p be a regular in F. Then $p \in T \subset \pi(p)$ implies that $T \subset F$ or $|T \cap F| \leqq 2$. Thus, $l(p)=\left|\left\{L \subset P^{3} \mid \quad p \in L \subset F\right\}\right|=l(p, \pi(p))$ and p is irregular in $\pi(p) \cap F$. If $l(p)=0$, then p is an isolated point, cusp or double point of $\pi(p) \cap F$ and we call p elliptic, parabolic or hyperbolic respectively.

Let ν be irregular in F. If $l(F)<\infty$, then $\nu \in T \subset \tau(\nu)$ if and only if either $\nu \in T \subset F$ or $T \cap F=\{\nu\}$. Moreover, $\tau(\nu)$ is a plane or the union of two distinct planes or a cone of order two with the vertex $\nu ; c f$. [5].

Let \mathscr{F} be a closed connected subset of S^{1} or $F_{*}{ }^{1}$. If the end points of F are distinct (equal), then F is a subarc (subcurve). We note that a subarc of $F_{*}{ }^{1}$, containing only ordinary points in its interior, is of order two.

Let $p \in F$ be regular. Let $\mathscr{F}(p)$ be the set of all subarcs \mathscr{F} of order two in F such that $p \in \mathscr{F} \not \subset \pi(p)$. Let $\left\{\mathscr{F}, \mathscr{F}^{\prime}\right\} \subset \mathscr{F}(p)$. Then \mathscr{F} and \mathscr{F}^{\prime} are p-compatible if there is a $\beta \subset P^{3} \backslash\{p\}$ and an open neighbourhood $u(p)$ of p in P^{3} such that $u(p) \cap\left(\mathscr{F} \cup \mathscr{F}^{\prime}\right)$ is contained in a closed half-space of P^{3} bounded by $\pi(p)$ and β. Otherwise \mathscr{F} and \mathscr{F} ' are p-incompatible.

A pair of subarcs \mathscr{F}_{1} and F_{2} are compatible [incompatible] if there is a $p \in \mathscr{F}_{1} \cap \mathscr{F}_{2}$ such that $\left\{\mathscr{F}_{1}, \mathscr{F}_{2}\right\} \subset \mathscr{F}(p)$ and \mathscr{F}_{1} and \mathscr{F}_{2} are p-compatible [p-incompatible].

We consider a subcurve as an element of $\mathscr{F}(p)$ if it contains a subarc \mathscr{F} such that $p \in \mathscr{F} \subset \mathscr{F}(p)$. In this sense, we say that a subcurve is compatible or incompatible with an element of $\mathscr{F}(p)$.
1.3. For proofs of the following results, we refer to [1] and [2].

1. If p is regular in F and isolated in $\alpha \cap F$, then p is elliptic and $\alpha=\pi(p)$.
2. Let p be regular in $F, l(p)=0$. Then (i) p is elliptic if and only if \mathscr{F} and \mathscr{F}^{\prime} are compatible for $\left\{\mathscr{F}, \mathscr{F}^{\prime}\right\} \subset \mathscr{F}(p)$ and (ii) p is hyperbolic if and only if there exist incompatible \mathscr{F} and \mathscr{F}^{\prime} in $\mathscr{F}(p)$ such that $p \in \operatorname{int}(F) \cap$ $\operatorname{int}\left(F^{\prime}\right)$.
3. Let $\mathscr{F}^{\prime} \subset F$ such that $\mathscr{F}^{\prime} \in \mathscr{F}(p)$ for each $p \in \mathscr{F}^{\prime}$. Let L be a line such that $L \not \subset\left\langle\mathscr{F}^{\prime}\right\rangle$ and for each $p \in \mathscr{F}^{\prime}$, there is an $\mathscr{F} p \in \mathscr{F}(p)$ with $L \subset\langle\mathscr{F} p\rangle$. If $\mathscr{F} p$ depends continuously on p, then \mathscr{F}^{\prime} and $\mathscr{F} p$ are either compatible for all $p \in \mathscr{F}{ }^{\prime}$ or incompatible for all $p \in \mathscr{F}^{\prime}$.
4. Let $p_{\lambda}\left[\alpha_{\lambda}\right]$ be a sequence of points (planes) converging to $p(\alpha) ; p_{\lambda} \in \alpha_{\lambda}$ for each λ.
(a) If $\alpha \cap F$ is not of order two or $\alpha \cap F$ does not contain an isolated point, then $\lim \left(\alpha_{\lambda} \cap F\right)=\alpha \cap F$.
(b) If p_{λ} is a cusp (isolated point) of $\alpha_{\lambda} \cap F$ for each λ, then $l(p)=0$ implies that p is a cusp (isolated point or cusp) of $\alpha \cap F$ and $\alpha \cap F=L \cup S^{1}$ implies that $L \cap S^{1}=\{p\}$.
5. Let $\gamma \cap F=L \cup L^{\prime}$ such that $\gamma=\pi(p)$ for $p \in L \backslash L^{\prime} ; \quad L \neq L^{\prime}$. Let $\alpha_{\lambda}\left[\beta_{\lambda}\right]$ be a sequence of planes through $L\left[L^{\prime}\right]$ converging to $\gamma ; \gamma \neq \beta_{\lambda}$ for each λ. Then $\lim \left(\alpha_{\lambda} \cap F\right)=\gamma \cap F$ and there is a subsequence $\beta_{\lambda}{ }^{\prime}$ of β_{λ} such that either $\lim \left(\beta_{\lambda}{ }^{\prime} \cap F\right)=L \cup L^{\prime}$ or $\lim \beta_{\lambda}{ }^{\prime} \cap F=L^{\prime}$. (We shall simply say that $\lim \left(\beta_{\lambda} \cap F\right)$ is either $L \cup L^{\prime}$ or L^{\prime}.)
6. Let $\gamma \cap F$ be of order two. Then $\gamma \cap F=L \cup L^{\prime}, \quad L \neq L^{\prime}$, and either $L^{\prime} \subset \pi(p)$ for every regular $p \in L$ (in short, $L^{\prime} \subset \pi(L)$) or $L \subset \pi(q)$ for every regular $q \in L^{\prime} \quad\left(L \subset \pi\left(L^{\prime}\right)\right)$.

2. Biplanar surfaces.

2.0. Let F be a surface of order three. A point $\nu \in F$ is a binode if ν is irregular in F and $\tau(\nu)$ is the union of two distinct planes, say τ_{1} and $\tau_{2} . F$ is biplanar if F is non-ruled and contains a binode ν as its only irregular point.
We wish to examine those biplanar F which contain the line $\tau_{1} \cap \tau_{2}$. Unless stated otherwise, we assume that F is biplanar with the binode ν where $\tau(\nu)=\tau_{1} \cup \tau_{2}$ and $\tau_{1} \cap \tau_{2} \subset F$. Since $\nu \in T \subset \tau(\nu)$ if and only if $\nu \in T \subset F$ or $T \cap F=\{\nu\}, \quad l(\nu) \leqq l\left(\nu, \tau_{1}\right)+l\left(\nu, \tau_{2}\right) \leqq 6$. Then $M_{0}=\tau_{1} \cap \tau_{2} \subset F$ implies that $1 \leqq l(\nu) \leqq 5$.

Lemma 2.1. Let $\nu \in \beta$ such that $\beta \cap \tau_{i}$ is a line $N_{i} ; \quad i=1,2$.

1. If $M_{0}=N_{1}=N_{2}$, then either $\beta \cap F$ consists of M_{0} and an S^{1} such that $M_{0} \cap S^{1}=\{\nu\}$ or $\beta \cap F=M_{0} \cup L$ where $\nu \notin L$ and $L \subset \pi\left(M_{0}\right)$.
2. If $l(\nu, \beta)=0$, then ν is the double point of $\beta \cap F$.
3. If $N_{i} \subset F$ and $N_{j} \cap F=\{\nu\}$, then $\beta \cap F$ consists of N_{i} and an S^{1} such that $\left|N_{i} \cap S^{1}\right|=2$ and $\nu \in N_{i} \cap S^{1} ; \quad\{i, j\}=\{1,2\}$.
4. If $l(\nu, \beta)=2$, then $\beta \cap F=N_{1} \cup N_{2} \cup L_{12}$ where $\nu \notin L_{12}$.

Proof. We note that $\nu \in \pi(p)$ if and only if $\langle\nu, p\rangle \subset F$ for $p \in F \backslash\{\nu\}$ and $\nu \in L \not \subset \tau_{1} \cup \tau_{2}$ implies that $|L \cap F|=2$. The lemma now follows by listing all possible ($\beta \cap F$)'s.

Lemma 2.2. 1. For $\left\{p, p^{\prime}\right\} \subset M_{0} \backslash\{\nu\}, \pi(p)=\pi\left(p^{\prime}\right)$.
2. If $l\left(\tau_{i}\right)=2$ for $i=1$ or 2 , then $\tau_{i}=\pi(p)$ for $p \in M_{0} \backslash\{\nu\}$.
3. If $l(\nu) \geqq 3$, then $l\left(\tau_{i}\right)=3$ for $i=1$ or 2 .

Proof. By 2.1.1, we may assume that $\pi(p)$ is τ_{1} or τ_{2} for $p \in M_{0} \backslash\{\nu\}$. As $\pi(p)$ depends continuously on $p, 1$ follows.

Let $l\left(\tau_{i}\right)=2$ and put $\tau_{i} \cap F=M_{0} \cup M_{i} ; \quad\{i, j\}=\{1,2\}$. By 1.3.6, either $M_{i} \subset \pi\left(M_{0}\right)$ or $M_{0} \subset \pi\left(M_{i}\right)$. Let $N_{j} \subset \tau_{j}$ such that $N_{j} \cap F=\{\nu\}$. By 2.1.3, $\left\langle M_{i}, N_{j}\right\rangle \cap F=M_{i} \cup S^{1}$ where $M_{i} \cap S^{1}=\left\{\nu, p_{i}\right\}, \quad \nu \neq p_{i}$. Then $\pi\left(p_{i}\right)=$ $\left\langle M_{i}, N_{j}\right\rangle \neq \tau_{i}$ and $M_{i} \subset \pi\left(M_{0}\right)$.

Clearly, 2 implies 3.
Theorem 2.3. Let F be biplanar with the binode $\nu, \tau_{1} \cap \tau_{2} \subset F$. Then F is one of the following types: (1) $l(F)=l(\nu)=1$; (2) $l(F)=2$ and $l(\nu)=1$; (3) $l(F)=l(\nu)=2$; (4) $l(F)=l(\nu)=3 ; \quad$ (5) $l(F)=4$ and $l(\nu)=3$;
(6) $l(F)=6$ and $l(\nu)=4 ;(7) l(F)=10$ and $l(\nu)=5$.

Proof. Apply 2.1 and 2.2 with each $l(\nu), \quad 1 \leqq l(\nu) \leqq 5$.
2.4. It is easy to check that if F is biplanar with the binode ν and one of the types listed in 2.3, then $\tau_{1} \cap \tau_{2} \subset F$.

Let $\nu \in \beta$ such that $l(\nu, \beta)=0$. By 2.1.2, ν is the double point of $\beta \cap F$; that is, $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$ where $\mathscr{L} \cap\left(\mathscr{F}_{1} \cup \mathscr{F}_{2}\right)=\{\nu\}, \mathscr{F}_{1} \cap \mathscr{F}_{2}$ $=\left\{\nu, p_{\beta}\right\} \quad\left(p_{\beta}\right.$ is the inflection point of $\left.\beta \cap F\right)$ and \mathscr{L} is the loop of $\beta \cap F$. We note that \mathscr{L} is a subcurve of order two and $\left\{\mathscr{F}_{1}, \mathscr{F}_{2}\right\} \subset \mathscr{F}\left(p_{\beta}\right)$. We will always assume that $\lim \langle\nu, r\rangle \subset \tau_{i}$ as r tends to ν in $F_{i} \backslash\{\nu\} ; \quad i=1,2$.

In the following sections, we examine the surfaces listed in 2.3 by determining the existence and distribution of the elliptic, parabolic and hyperbolic points. By way of preparation, we have the following definitions and results.
2.5. Let $S^{1} \subset F, \alpha=\left\langle S^{1}\right\rangle$. We denote by int S^{1}, the open disk of α bounded by S^{1}, and we put ext $S^{1}=\alpha \backslash \mathrm{Cl}\left(\right.$ int $\left.S^{1}\right)$.

Let $L \subset F$ and $r \in F \backslash L$ such that $\langle L, r\rangle \cap F$ consists of L and S^{1}. We denote this S^{1} by $S^{1}(L, r)$.

Let $I(E)$ be the set of parabolic (elliptic) points of F. From 1.3.4, E is open
and $\{r \in \operatorname{bd}(E) \mid l(r)=0\} \subseteq I$. In each of the surfaces we examine, it will be immediate that $E=\emptyset$ if and only if $I=\emptyset$.

Theorem 2.6. Let F be a surface of order three. Let G be an open region in F such that $\alpha_{0} \cap \bar{G}=\emptyset$ for some $\alpha_{0}, \quad \operatorname{bd}(F \backslash G)=\operatorname{bd}(G), \quad\langle\operatorname{bd}(G)\rangle$ is a plane and r is regular in F with $l(r)=0$ for each $r \in G$. Then $G \cap E \neq \emptyset$.

Proof. We note that any line in a plane $\left\langle F_{*}{ }^{1}\right\rangle$ meets $F_{*}{ }^{1}$ and thus, any line in P^{3} meets F.

Let $r \in G$ and put $L=\alpha_{0} \cap\langle\operatorname{bd}(G)\rangle$. Then $L \cap \bar{G}=\emptyset$ implies that $L \cap(F \backslash \bar{G}) \neq \emptyset$ and $\langle L, r\rangle \cap G$ is an S^{1} or an isolated point of $\langle L, r\rangle \cap F$. Obviously, $\alpha_{0} \cap \bar{G}=\emptyset$ implies that there is an $r_{0} \in G$ such that $\left\langle L, r_{0}\right\rangle$ $\cap G=\left\{r_{0}\right\}$. Then $r_{0} \in E$ with $\pi\left(r_{0}\right)=\left\langle L, r_{0}\right\rangle$ by 1.3.1.

3. F with one line.

3.0. Let F be biplanar with the binode $\nu, \quad l(F)=1$. Then $M_{0}=\tau_{1} \cap \tau_{2} \subset F$ and $\tau_{i} \cap F=M_{0} ; \quad i=1,2$. By 2.1.1, $\left\langle M_{0}, r\right\rangle \cap F=M_{0} \cup S^{1}\left(M_{0}, r\right)$ with $M_{0} \cap S^{1}\left(M_{0}, r\right)=\{\nu\}$ for $r \in \mathscr{F} \backslash M_{0}$. We note that $S^{1}\left(M_{0}, r\right) \in F(r) ; c f .1 .2$.

Let $\beta \cap M_{0}=\{\nu\}$. Then ν is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$. We fix a point $\bar{r} \in L \backslash\{\nu\}$ and let \mathscr{P}_{1} and \mathscr{P}_{2} be the open half-spaces of P^{3} determined by τ_{1} and τ_{2}. Put $F_{i}=\mathscr{P}_{i} \cap F$ and assume that $\bar{r} \in F_{1}$. Then $\beta \cap \bar{F}_{1}=\mathscr{L}, \quad \beta \cap \bar{F}_{2}=\mathscr{F}_{1} \cup \mathscr{F}_{2}$ and

$$
F_{1} \cup F_{2}=\{r \in F \mid l(r)=0\} .
$$

We fix a point $\bar{p} \in M_{0} \backslash\{\nu\}$ and choose $T \subset \tau_{1}$ such that $\bar{p} \in T \neq M_{0}$. Then $\beta_{t}=\langle\nu, \bar{r}, t\rangle$ is a plane for $t \in T\left(\beta=\beta_{t^{\prime}}\right.$, say $)$,

$$
\begin{aligned}
& \beta_{\bar{p}} \cap F=M_{0} \cup S^{1}\left(M_{0}, \bar{r}\right) \subset \bar{F}_{1} \text { and } \quad \beta_{t} \cap F=\mathscr{L}^{t} \cup \mathscr{F}_{1}^{t} \cup \mathscr{F}_{2}^{t} \\
& t \neq \bar{p}
\end{aligned}
$$

Lemma 3.1. $\mathscr{L}^{t} \subset \bar{F}_{1}$ for all $t \in T \backslash\{\bar{p}\}$.
Proof. Let $T(i)=\left\{t \in T \mid L^{t} \subset \bar{F}_{i}\right\}, \quad i=1,2$. Let t tend to $\bar{t} \neq \bar{p}$ in $T(i)$. Then $\beta_{t} \cap \bar{F}_{i}=\mathscr{L}^{t}$ converges to $\beta_{\bar{t}} \cap \bar{F}_{i}$, which is $L^{\bar{t}}$ or $F_{1}{ }^{\overline{ }} \cup F_{2}{ }^{\bar{t}}$. Since $\lim \mathscr{L}^{t}$ cannot be a curve of order three, we obtain that

$$
\mathscr{L}^{\bar{t}}=\lim L^{t}=\lim \beta_{t} \cap \bar{F}_{i}=\beta_{\bar{t}} \cap \bar{F}_{i} .
$$

Thus $\bar{t} \in T(i)$ and $T(i)$ is closed. Then $T \backslash\{\bar{p}\}=T(1) \cup T(2)$ and $t^{\prime} \in T(1)$ imply that $T(2)=\emptyset$.

Corollary. As $t \neq \bar{p}$ tends to $\bar{p}, \lim \mathscr{L}^{t}=S^{1}\left(M_{0}, \bar{r}\right)$ and $\lim F_{1}{ }^{t} \cup F_{2}{ }^{t}=$ M_{0}. In particular, $\bar{F}_{2}=F_{2} \cup M_{0}$.

Theorem 3.2. $\bar{F}_{1}=F_{1} \cup\{\nu\}$ and every point of F_{1} is elliptic.
Proof. Let $p_{\lambda} \in F_{1}$ tend to $p \in M_{0}$ such that $\alpha_{\lambda}=\left\langle\nu, \bar{r}, p_{\lambda}\right\rangle$ is a plane for each p_{λ}. Let α be a limit plane of α_{λ}. Then $\{\nu, \bar{r}, p\} \subset \bar{F}_{1}$ and by $3.1, \alpha \cap \bar{F}_{1}$ is either $S^{1}\left(M_{0}, \bar{r}\right)$ or a loop \mathscr{L}^{t}. Thus $\alpha \cap \bar{F}_{1}=\left(\alpha \cap F_{1}\right) \cup\{\nu\}$ and $p=\nu$.

Let $r \in F_{1}$. Since $\bar{F}_{1} \cap \bar{F}_{2}=\{\nu\}$ and $\pi(r) \cap M_{0} \neq\{\nu\}, \quad \pi(r) \cap F$ is not connected and r must be elliptic.

Corollary. 1. Let $\beta \cap M_{0}=\{\nu\}$. Then $\beta \cap \bar{F}_{1}$ is the loop of $\beta \cap F$.
2. Let $r \in F_{2}$. Then $\pi(r) \cap \bar{F}_{1}=\emptyset$.

Proof. Clearly, 1 implies 2 and $\beta \cap \bar{F}_{1}$ or $\beta \cap \bar{F}_{2}$ is the loop of $\beta \cap F$. Since $F_{1} \subseteq E, \quad \beta \cap F_{1}$ does not contain any inflection points.
3.3. Let $\beta \cap M_{0}=\{\nu\}$. Then $\beta \cap \bar{F}_{2}=\mathscr{F}_{1} \cup \mathscr{F}_{2}$ where $\mathscr{F}_{1} \cap \mathscr{F}_{2}=$ $\left\{\nu, p_{\beta}\right\}$. Since p_{β} is the inflection point of $\beta \cap F, \mathscr{F}_{1}$ and \mathscr{F}_{2} are incompatible. We may assume that $S^{1}\left(M_{0}, p_{\beta}\right)$ and $\mathscr{F}_{1}\left[\mathscr{F}_{2}\right]$ are compatible [incompatible]. Then 1.3.3 (with $L=M_{0}$) yields that $S^{1}\left(M_{0}, r\right)$ and $\mathscr{F}_{1}\left[\mathscr{F}_{2}\right]$ are compatible [incompatible] for all $r \in F_{1}\left[F_{2}\right] ; \quad r \neq \nu$.

Let $p \in M_{0} \backslash\{\nu\}$. Let $u(p)$ be an open neighbourhood of p in \bar{F}_{2} such that
(1) $u(p)=u_{1}(p) \cup\left(u(p) \cap M_{0}\right) \cup u_{2}(p)$
where $u_{1}(p)$ and $u_{2}(p)$ are open disjoint regions not meeting M_{0}.
Let $p^{\prime} \in u_{i}(p)$ be arbitrarily close to $p ;\{i, j\}=\{1,2\}$. Then p^{\prime} is arbitrarily close to p in some $\alpha \cap \bar{F}_{2}$ where $\left\langle p, p^{\prime}\right\rangle \subset \alpha ; \quad M_{0} \not \subset \alpha$. Since $\pi(p)$ is τ_{1} or τ_{2}, $(\pi(p) \cap \alpha) \cap F=\{p\}$ yields that p is an inflection point of $\alpha \cap F$. Thus $\left|\left\langle p, p^{\prime}\right\rangle \cap u(p)\right|=3$ and $\left\langle p, p^{\prime}\right\rangle \cap u_{j}(p) \neq \emptyset$.

Lemma 3.4. Under the hypotheses of 3.3 , let r_{λ} be a sequence in $\mathscr{F}_{1} \backslash\{\nu\}$ $\left[\mathscr{F}_{2} \backslash\{\nu\}\right]$ converging to ν. Then $S^{1}\left(M_{0}, r_{\lambda}\right)$ converges to $\nu\left[M_{0}\right]$.

Proof. Since $\left\langle M_{0}, r_{\lambda}\right\rangle$ tends to τ_{1} or $\tau_{2},\{\nu\} \subseteq \lim S^{1}\left(M_{0}, r_{\lambda}\right) \subseteq M_{0}$.
Let r_{λ} tend to ν in \mathscr{F}_{2} and let $\mathscr{F}_{2, \lambda}$ be the subarc of \mathscr{F}_{2} with the end points ν and r_{λ}. Then $\mathscr{F}_{2, \lambda}$ converges to ν and, from $3.3, \mathscr{F}_{2, \lambda}$ and $S^{1}\left(M_{0}, r_{\lambda}\right)$ are incompatible for each r_{λ}. From $1.2, \mathscr{F}_{2, \lambda}$ and $S^{1}\left(M_{0}, r_{\lambda}\right)$ are contained in different closed half-spaces bounded by τ_{2} and $\pi\left(r_{\lambda}\right)$. Then r_{λ} close to ν and $\mathscr{F}_{2, \lambda}$ arbitrarily small imply that $S^{1}\left(M_{0}, r_{\lambda}\right)$ is arbitrarily large. Clearly, $S^{1}\left(M_{0}, r_{\lambda}\right)$ converges to M_{0}.

Let $p \in M_{0} \backslash\{\nu\}$ and let $u(p)$ satisfy 3.3 (1). Then $p \in \lim S^{1}\left(M_{0}, r_{\lambda}\right)$ implies that $p \in \lim \left(u(p) \cap S^{1}\left(M_{0}, r_{\lambda}\right)\right)$. In fact, 3.3. yields that

$$
p \in \lim \left(u_{i}(p) \cap S^{1}\left(M_{0}, r_{\lambda}\right)\right) ; \quad i=1,2 .
$$

Obviously, there is a $u^{\prime}(p) \subseteq u(p)$ satisfying 3.3 (1) such that for $p^{\prime} \in$ $u^{\prime}(p) \backslash M_{0}, p^{\prime} \in S^{1}\left(M_{0}, r_{\lambda}\right)$ for some $r_{\lambda} \in \mathscr{F}_{2}$. Then $u^{\prime}(p) \cap S^{1}\left(M_{0}, r_{\lambda}{ }^{\prime}\right)=\emptyset$ for $r_{\lambda}^{\prime} \in \operatorname{int}\left(\mathscr{F}_{1}\right)$ and the lemma follows.
3.5. Let $r \in F_{2}$. In view of $3.4, S^{1}\left(M_{0}, r\right)$ is the boundary of an open region $F_{2}\left(M_{0}, r\right) \subset F_{2}$ such that $M_{0} \cap F_{2}\left(M_{0}, r\right)=\emptyset$. Then $\lim S^{1}\left(M_{0}, r\right)=\{\nu\}$ implies that $\lim \mathrm{Cl}\left(F_{2}\left(M_{0}, r\right)\right)=\{\nu\}$. Clearly, $F_{2}\left(M_{0}, r\right)$ satisfies 2.6 and thus contains elliptic points. Hence, $F_{2} \cap E \neq \emptyset$ with $\nu \in \mathrm{Cl}\left(F_{2} \cap E\right)$.

From 3.3, 1.3.2 and 1.3.3, F_{2} also contains hyperbolic and parabolic points. We note that $\tau_{2}=\pi(p)$ for $p \in M_{0} \backslash\{\nu\}$ from 3.4.

Figure 1
Theorem 3.6. Let F be biplanar with the binode $\nu, l(F)=1$. Then $F=$ $\bar{F}_{1} \cup \bar{F}_{2}$ where $\bar{F}_{1} \cap \bar{F}_{2}=\{\nu\}$, every point of F_{1} is elliptic and F_{2} is described in 3.0 and 3.5.

We refer to Figure 1 for a representation of F. The surface in P^{3} defined by $x_{1}{ }^{3}+x_{2}{ }^{3}+x_{0}{ }^{2} x_{2}+x_{1} x_{2} x_{3}=0$ satisfies 3.6 with $\nu \equiv(0,0,0,1)$.
4. F with two lines; $l(\nu)=1$.
4.0. Let F be biplanar with the binode $\nu ; l(F)=l(\nu)+1=2$. Let L_{0} and $M_{0}=\tau_{1} \cap \tau_{2}$ be the lines of F. Then $L_{0} \cap M_{0}$ is a point $p_{0} \neq \nu,\left\langle L_{0}, M_{0}\right\rangle$ $\cap F=L_{0} \cup M_{0}$ and $\tau_{i} \cap F=M_{0} ; i=1,2$. By 2.1.1, $L_{0} \subset \pi\left(M_{0}\right)$.

Let $r \in F, l(r)=0$. Then $M_{0} \cap S^{1}\left(M_{0}, r\right)=\{\nu\}$ and if $L_{0} \not \subset \pi(r), \mid L_{0} \cap$ $S^{1}\left(L_{0}, r\right) \mid \leqq 2$.

Let \mathscr{P}_{1} and \mathscr{P}_{2} be the open half-spaces of P^{3} determined by τ_{1} and τ_{2}. We assume $L_{0} \subset \overline{\mathscr{P}}_{2}$ and put $F_{i}=\mathscr{P}_{i} \cap F$. Then (cf. Figure 2) $L_{0} \subset \bar{F}_{2}$.

Lemma 4.1. 1. Let $q \in L_{0}$. Then $\pi(q) \cap F_{1}=\emptyset$.
2. Let $\beta \cap M_{0}=\{\nu\}$. Then $\beta \cap \bar{F}_{1}$ is the loop of $\beta \cap F$.

Proof. Since $\pi\left(p_{0}\right)=\left\langle L_{0}, M_{0}\right\rangle \subset \bar{P}_{2}$, we take $q \neq p_{0}$. Then $L \subset \pi(q) \neq$ $\pi\left(p_{0}\right)$ implies that $\pi(q) \cap F$ is connected and $\left(\pi(q) \cap \tau_{i}\right) \cap F=\left\{p_{0}\right\} ; i=$ 1,2 . Thus $L_{0} \subset \bar{F}_{2}$ yields that $\pi(q) \cap F \subset \bar{F}_{2}$.

Clearly, ν is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$ and \mathscr{L} is either $\beta \cap \bar{F}_{1}$ or $\beta \cap \bar{F}_{2}$. Since $\pi(r) \cap\left(\mathscr{F}_{1} \cap \mathscr{F}_{2}\right) \neq \emptyset$ for $r \in L \backslash\{\nu\}$, 1 . implies 2 .

Figure 2
Theorem 4.2. $\bar{F}_{1}=F_{1} \cup\{\nu\}$ and every point of F_{1} is elliptic.
Proof. Fix $\bar{r} \in F_{1}$ and apply 4.1 as in the proof of 3.2.
Lemma 4.3. Let r_{λ} be a convergent sequence in $F \backslash\left(M_{0} \cup L_{0}\right)$. If $\lim \left\langle M_{0}, r\right\rangle=$ $\left\langle M_{0}, L_{0}\right\rangle\left[\tau_{i}\right]$, then $\lim S^{1}\left(M_{0}, r_{\lambda}\right)=M_{0} \cup L_{0}[\nu] ; \quad i=1,2$.

Proof. Since $L_{0} \subset \pi\left(M_{0}\right), \lim \left\langle M_{0}, r_{\lambda}\right\rangle=\left\langle M_{0}, L_{0}\right\rangle$ and 1.3 .5 imply that $\lim \left(M_{0} \cup S^{1}\left(M_{0}, r_{\lambda}\right)\right)=M_{0} \cup L_{0}$. It is easy to check that in fact $\lim S^{1}\left(M_{0}, r_{\lambda}\right)=M_{0} \cup L_{0}$.

Let $p \in M_{0} \backslash\left\{\nu, p_{0}\right\}$ and let $u(p) \subset \bar{F}_{2}$ satisfy 3.3 (1). Then (cf. the proof of 3.4) $u(p) \cap S^{1}\left(M_{0}, r_{\lambda}\right)=\emptyset$ for all $\left\langle M_{0}, r_{\lambda}\right\rangle$ sufficiently close to $\left\langle M_{0}, L_{0}\right\rangle$ by the preceding and the lemma follows.
4.4. From 4.1, there is an $r_{1} \in F_{1}$ such that $\left\langle L_{0}, r_{1}\right\rangle \cap F=L_{0} \cup\left\{r_{1}\right\}$. Thus there is an α_{0} through L_{0}, sufficiently close to $\left\langle L_{0}, r_{1}\right\rangle$, such that $\alpha_{0} \cap F=L_{0}$. Then α_{0} and τ_{1} or τ_{2} decompose \bar{F}_{2} into two open disjoint regions, say F_{21} and F_{22}, such that

$$
\begin{aligned}
& \bar{F}_{2}=\bar{F}_{21} \cup \bar{F}_{22}, \quad \vec{F}_{21} \cap \bar{F}_{22}=M_{0} \cup L_{0} \quad \text { and } \\
& F_{1} \cup F_{21} \cup F_{22}=\{r \in F \mid l(r)=0\} .
\end{aligned}
$$

Let $r \in F_{2 i}$. Then $\alpha_{0} \cap \bar{F}_{2}=L_{0}$ implies that $S^{1}\left(M_{0}, r\right) \subset \bar{F}_{2 i}$ and 4.3 implies that $S^{1}\left(M_{0}, r\right)$ is the boundary of an open region $F_{2 i}\left(M_{0}, r\right) \subset F_{2 i}$ such that $\mathrm{Cl}\left(F_{2 i}\left(M_{0}, r\right)\right)$ tends to ν as $S^{1}\left(M_{0}, r\right)$ tends to ν. Clearly, $F_{2 i}\left(M_{0}, r\right)$ satisfies 2.6 and thus $F_{2 i} \cap E \neq \emptyset$ with $\nu \in \mathrm{Cl}\left(F_{2 i} \cap E\right) ; \quad i=1,2$.

The surface in P^{3} defined by $x_{1}{ }^{3}+x_{2}{ }^{3}+x_{0}{ }^{2}\left(x_{0}+x_{2}\right)+x_{1} x_{2} x_{3}=0$ satisfies 4.0 with $\nu \equiv(0,0,0,1), \quad M_{0} \equiv x_{1}=x_{2}=0$ and $L_{0} \equiv x_{1}+x_{2}=x_{3}=0$.

Theorem 4.5. Let F be biplanar with the binode ν and the lines $M_{0}=\tau_{1} \cap \tau_{2}$ and $L_{0} ; \quad l(F)=l(\nu)+1=2$. Then $F=\bar{F}_{1} \cup \bar{F}_{21} \cup \bar{F}_{22}$ where $\bar{F}_{1}=$ $F_{1} \cup\{\nu\}, \quad \bar{F}_{2 i}=F_{2 i} \cup L_{0} \cup M_{0}$, every point of F_{1} is elliptic and F_{21} and F_{22} are described in 4.4.
5. F with two lines; $l(\nu)=2$.
5.0. Let F be biplanar with the binode $\nu ; l(F)=l(\nu)=2$. Let $M_{0}=\tau_{1} \cap \tau_{2}$ and M_{1} be the lines of F. Since $M_{0} \cap M_{1}=\{\nu\}$, we assume that $\tau_{2} \cap F=$ $M_{0} \cup M_{1}$. Then $\tau_{1} \cap F=M_{0}$ and $M_{1} \subset \pi\left(M_{0}\right)$.

Let $r \in F, l(r)=0$. Then $M_{0} \cap S^{1}\left(M_{0}, r\right)=\{\nu\}$ and $\left|M_{1} \cap S^{1}\left(M_{1}, r\right)\right|=2$ by 2.1. If $M_{1} \cap S^{1}\left(M_{1}, r\right)=\{\nu, q\}$, then $\pi(q)=\left\langle M_{1}, r\right\rangle$. Clearly, $\pi(q) \neq \pi\left(q^{\prime}\right)$ for $q \neq q^{\prime}$ in $M_{1} \backslash\{\nu\}$.

Lemma 5.1. Let r_{λ} be a convergent sequence in $F \backslash\left(M_{0} \cup M_{1}\right)$.

1. If $\lim \left\langle M_{0}, r_{\lambda}\right\rangle=\tau_{2}\left[\tau_{1}\right]$, then $\lim S^{1}\left(M_{0}, r_{\lambda}\right)=M_{0} \cup M_{1}[\nu]$.
2. If $\lim \left\langle M_{1}, r_{\lambda}\right\rangle=\tau_{2}$, then $\lim S^{1}\left(M_{1}, r_{\lambda}\right)$ is either M_{0} or ν.

Proof. Since $M_{1} \subset \pi\left(M_{0}\right), 1$ follows as in the proof of 4.3 . If $\lim \left\langle M_{1}\right.$, $\left.r_{\lambda}\right\rangle=\tau_{2}$, then $\lim \left(M_{1} \cup S^{1}\left(M_{1}, r_{\lambda}\right)\right)=M_{1} \cup \lim S^{1}\left(M_{1}, r_{\lambda}\right)$ is either $M_{0} \cup$ M_{1} or M_{1} by 1.3.5. Since $\tau_{2} \neq \pi(q)$ for $q \in M_{1} \backslash\{\nu\}$, we obtain that

$$
\lim \left(M_{1} \cap S^{1}\left(M_{1}, r_{\lambda}\right)\right)=\{\nu\} \quad \text { and } \quad M_{1} \not \subset \lim S^{1}\left(M_{1}, r_{\lambda}\right) .
$$

Thus $M_{1} \cap \lim S^{1}\left(M_{1}, r_{\lambda}\right)=\{\nu\}$ and 2 follows.
5.2. Let $\beta \cap\left(M_{0} \cup M_{1}\right)=\{\nu\}$. Then ν is the double point of $\beta \cap F=\mathscr{L} \cup$ $\mathscr{F}_{1} \cup \mathscr{F}_{2}$ and (cf. 3.3) $S^{1}\left(M_{0}, r\right)$ is compatible (incompatible) with $\mathscr{F}_{i}\left[\mathscr{F}_{j}\right]$ for all $r \in \mathscr{F}_{i}\left[\mathscr{F}_{j}\right] ; \quad r \neq \nu,\{i, j\}=\{1,2\}$. Similarly, $S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are either compatible for all $r \in L \backslash\{\nu\}$ or incompatible for all $r \in L \backslash\{\nu\}$.

Then (cf. the proof of 3.4) 5.1.1 implies that $S^{1}\left(M_{0}, r\right)$ and $\mathscr{F}_{1}\left[\mathscr{F}_{2}\right]$ are compatible [incompatible] for all $r \in F_{1}\left[F_{2}\right], \quad r \neq \nu$, and $S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are compatible for all $r \in \mathscr{L} \backslash\{\nu\}$.
5.3. Let \mathscr{P}_{0} and \mathscr{P}_{1} be the open half-spaces of P^{3} determined by τ_{1} and τ_{2}. Let $F_{i}=P_{i} \cap F, \quad i=1,2$. Then $F_{1} \cup F_{2}=\{r \in F \mid l(r)=0\}$.

Since $r \in F_{i}$ implies that $S^{1}\left(M_{0}, r\right) \subset \bar{F}_{i}, \quad \operatorname{bd}\left(F_{i}\right)=M_{0} \cup M_{1}$ by 5.1; $i=1,2$.

Let $\beta \cap\left(M_{0} \cup M_{1}\right)=\{\nu\}$. Then $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$ and $\beta \cap \bar{F}_{i}$ is \mathscr{L} or $\mathscr{F}_{1} \cup \mathscr{F}_{2}$. In either case, there is $r_{\lambda} \in \beta \cap F_{i}$ tending to ν such that
$\lim \left\langle M_{0}, r_{\lambda}\right\rangle=\tau_{1}$ and $\lim S^{1}\left(M_{0}, r_{\lambda}\right)=\{\nu\}$. Thus $S^{1}\left(M_{0}, r_{\lambda}\right)$ is the boundary of an open region $F_{i}\left(M_{0}, r_{\lambda}\right) \subset F_{i}$ such that $\mathrm{Cl}\left(F_{i}\left(M_{0}, r_{\lambda}\right)\right)$ tends to ν as $S^{1}\left(M_{0}, r_{\lambda}\right)$ tends to ν. Clearly, $F\left(M_{0}, r_{\lambda}\right)$ satisfies 2.6 for each r_{λ} and $\nu \in \mathrm{Cl}\left(F_{i} \cap\right.$ $E) ; \quad i=1,2$.

The surface in P^{3} defined by $x_{2}{ }^{3}+x_{0}{ }^{2} x_{2}+x_{0} x_{1}{ }^{2}+x_{1} x_{2} x_{3}=0$ satisfies 5.0 with $M_{0} \equiv x_{1}=x_{2}=0$ and $M_{1} \equiv x_{0}=x_{2}=0$. We observe in Figure 3 that F has a 'fold' in the neighbourhood of M_{1} due to $\left|M_{1} \cap S^{1}\left(M_{1}, r\right)\right|=2$ for $r \in F \backslash\left(M_{0} \cup M_{1}\right)$ and the existence of loops (of $\beta \cap F$ where $l(\nu, \beta)=0$) in \bar{F}_{1} and \bar{F}_{2}. Clearly, both F_{1} and F_{2} contain hyperbolic and parabolic points.

Figure 3

Theorem 5.4. Let F be biplanar with the binode ν and the lines M_{1} and $M_{0}=\tau_{0} \cap \tau_{2} ; \quad l(F)=l(\nu)=2$. Then $F=\bar{F}_{1} \cup \bar{F}_{2}$ where $\bar{F}_{1} \cap \bar{F}_{2}=$ $M_{0} \cup M_{1}$ and $\nu \in \mathrm{Cl}\left(F_{i} \cap E\right) ; \quad i=1,2$.

6. F with three lines.

6.0. Let F be biplanar with the binode $\nu ; \quad l(F)=l(\nu)=3$. Let $M_{0}=$ $\tau_{1} \cap \tau_{2}, M_{1}$ and M_{2} be the lines of $F .2 .2 .3$, we may assume that $\tau_{1} \cap F=$ $M_{0} \cup M_{1} \cup M_{2}$ and $\tau_{2} \cap F=M_{0}$. Then $\tau_{2}=\pi(p)$ for all $p \in M_{0} \backslash\{\nu\}$ by 2.1.1. Let $r \in F, l(r)=0$. Then $M_{0} \cap S^{1}\left(M_{0}, r\right)=\{\nu\}$ and $\left|M_{i} \cap S^{1}\left(M_{i}, r\right)\right|$ $=2 ; \quad i=1,2$.

Lemma 6.1. Let r_{λ} be a convergent sequence in $F \backslash \tau_{1}$.

1. If $\lim \left\langle M_{i}, r_{\lambda}\right\rangle=\tau_{1}$, then $\lim S^{1}\left(M_{i}, r_{\lambda}\right)=M_{j} \cup M_{k} ;\{i, j, k\}=\{1,2,3\}$.
2. If $\lim \left\langle M_{0}, r_{\lambda}\right\rangle=\tau_{2}$, then $\lim S^{1}\left(M_{0}, r_{\lambda}\right)$ is either M_{0} or ν.

Proof. cf. 1.3.4 and the proof of 3.4.
6.2. Let ν be the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$. As in the previous sections; $S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are either compatible for ail $r \in \mathscr{L} \backslash\{\nu\}$ or incompatible for all $r \in L \backslash\{\nu\}$ and $S^{1}\left(M_{0}, r\right)$ and $\mathscr{F}_{i}\left[\mathscr{F}_{j}\right]$ are compatible [incompatible] for all $r \in \mathscr{F}_{i}\left[\mathscr{F}_{j}\right] ; \quad r \neq \nu,\{i, j\}=\{1,2\}$.

Let \mathscr{H}_{0} and \mathscr{H}_{1} be the closed half-planes of τ_{1} determined by M_{1} and M_{2}. We assume that $M_{0} \subset \mathscr{H}_{0}$. If r_{λ} is a sequence in $F \backslash \tau_{1}$ such that $\lim \left\langle M_{0}\right.$, $\left.r_{\lambda}\right\rangle=\tau_{1}$, then 6.1.1 and 2.1.1 imply that

$$
\lim \mathrm{Cl}\left(\operatorname{int} S^{1}\left(M_{0}, r_{\lambda}\right)\right)=H_{1}
$$

Lemma 6.3. Let $\nu \in \beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}, \quad l(\nu, \beta)=0$. If $\beta \cap \tau_{1} \subset$ $\mathscr{H}_{0}\left[\mathscr{H}_{1}\right]$, then $S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are compatible [incompatible] for all $r \in L \backslash\{\nu\}$, $S^{1}\left(M_{0}, r\right)$ and \mathscr{F}_{1} are compatible [incompatible] for all $r \in F_{1} \backslash\{\nu\}$.

Proof. There are $r_{\lambda} \neq \nu$ in $\mathscr{L}\left[\mathscr{F}_{1}\right]$ tending to ν such that $\beta \cap \tau_{1}=\lim \left\langle\nu_{1} r_{\lambda}\right\rangle$. Clearly,

$$
\beta \cap \tau_{1} \subset \mathscr{H}_{1}=\lim \mathrm{Cl}\left(\operatorname{int} S^{1}\left(M_{0}, r_{\lambda}\right)\right)
$$

if and only if $S^{1}\left(M_{0}, r_{\lambda}\right)$ and $\mathscr{L}\left[\mathscr{F}_{1}\right]$ are incompatible for all r_{λ} close to ν. Now apply 6.2.
6.4. Let \mathscr{P}_{1} and \mathscr{P}_{2} be the open half-spaces determined by τ_{1} and τ_{2}. Let $F_{i}=\mathscr{P}_{i} \cap F$ and fix a β^{*} such that $\nu \in \beta^{*} \cap F=\mathscr{L}^{*} \cup \mathscr{F}_{1}{ }^{*} \cup \mathscr{F}_{2}{ }^{*}$, $l\left(\nu, \beta^{*}\right)=0$ and $\beta^{*} \cap \tau_{1} \subset \mathscr{H}_{1}$. We assume that $\beta^{*} \cap \bar{F}_{1}=\mathscr{L}^{*}$ and $\beta^{*} \cap \bar{F}_{2}=$ $\mathscr{F}{ }_{1}{ }^{*} \cup \mathscr{F}{ }_{2}{ }^{*}$.

Lemma 6.5. $\operatorname{bd}\left(F_{1}\right)=M_{0} \cup M_{1} \cup M_{2}$ and $\operatorname{bd}\left(F_{2}\right)=M_{1} \cup M_{2}$.
Proof. Clearly, $M_{1} \cup M_{2} \subset \bar{F}_{1} \cap \bar{F}_{2}$ by 6.1.1.
Let $r \in F_{1}$. Then $S^{1}\left(M_{0}, r\right)$ meets $L^{*} \backslash\{\nu\}$ at an $r^{*}, \quad S^{1}\left(M_{0}, r\right)=S^{1}\left(M_{0}\right.$, $\left.r^{*}\right)$ and $\mathrm{S}^{1}\left(M_{0}, r^{*}\right)$ and \mathscr{L}^{*} are incompatible. If $r^{*} \in L^{*} \backslash\{\nu\}$ tends to ν such that
$\lim \left\langle M_{0}, r^{*}\right\rangle=\tau_{2}$, then (cf. the proof of 3.4) $\lim \mathrm{S}^{1}\left(M_{0}, r^{*}\right)=M_{0}$ by 6.1.2 and 6.3. Thus $\operatorname{bd}\left(F_{1}\right)=M_{0} \cup M_{1} \cup M_{2}$.

By a similar argument, $r^{*} \in \operatorname{int}\left(F_{2}{ }^{*}\right) \subset F_{2}$ tending to ν implies that $\lim S^{1}\left(M_{0}, r^{*}\right)=\{\nu\}$ and thus $\operatorname{bd}\left(F_{2}\right)=M_{1} \cup M_{2}$.

Theorem 6.6. Every point of F_{1} is hyperbolic.
Proof. Let $r^{\prime} \in F_{1}$. Then $S^{1}\left(M_{0}, r^{\prime}\right)=\mathrm{S}^{1}\left(M_{0}, r^{*}\right)$ for some $r^{*} \in \mathscr{L}^{*}$.
Put $\beta^{*} \cap \mathscr{H}_{1}=N^{*}$. Clearly, ν is the double point of $\left\langle N^{*}, r\right\rangle \cap F=$ $L_{r} \cup F_{1, r} \cup F_{2, r}$ for each $r \in S^{1}\left(M_{0}, r^{\prime}\right), \quad r \neq \nu$. If $r \in S^{1}\left(M_{0}, r^{\prime}\right)$ tends to $\bar{r} \neq \nu$, then $\lim \mathscr{L}_{\bar{r}}=\mathscr{L}_{r}$ and $\lim \mathscr{F}_{1, r} \cup F_{2, \bar{r}}=F_{1, r} \cup F_{2, \bar{r}} ;$ cf. the proof of 3.1. Thus

$$
\widetilde{S}=\left\{r \in S^{1}\left(M_{0}, r^{\prime}\right) \mid r \neq \nu \quad \text { and } \quad r \in L_{r}\right\}
$$

is open and closed in $S^{1}\left(M_{0}, r^{\prime}\right) \backslash\{\nu\}$, a connected set. Since $r^{*} \in \widetilde{S}, \tilde{S}=$ $S^{1}\left(M_{0}, r^{\prime}\right) \backslash\{\nu\}$ and $r^{\prime} \in L_{r^{\prime}} \subset\left\langle N^{*}, r^{\prime}\right\rangle \cap F$ where $N^{*} \subset \mathscr{H}_{1}$. By 6.3 and 1.3.2, r^{\prime} is hyperbolic.
6.7. Let r^{*} tend to $\nu \operatorname{in} \operatorname{int}\left(\mathscr{F}_{2}{ }^{*}\right)$. Then $\lim S^{1}\left(M_{0}, r^{*}\right)=\{\nu\}$ and $S^{1}\left(M_{0}\right.$, $\left.r^{*}\right)$ is the boundary of an open region $F_{2}\left(M_{0}, r^{*}\right) \subset F_{2}$ such that $\mathrm{Cl}\left(F_{2}\left(M_{0}\right.\right.$, $\left.r^{*}\right)$) tends to ν. Clearly, $F_{2}\left(M_{0}, r^{*}\right)$ satisfies 2.6 for each r^{*} and $\nu \in \mathrm{Cl}\left(F_{2} \cap E\right)$. By 6.3 and 1.3.2, F_{2} also contains hyperbolic points.

The surface in P^{3} defined by $x_{1}{ }^{3}-x_{2}{ }^{3}+x_{0}{ }^{2} x_{2}+x_{1} x_{2} x_{3}=0$ satisfies 6.0 with $M_{0} \equiv x_{1}=x_{2}=0, \quad M_{1} \equiv x_{1}=x_{0}+x_{2}=0 \quad$ and $\quad M_{2} \equiv x_{1}=x_{0}-$ $x_{2}=0$. In Figure 4, we observe that the loops of $\beta \cap F(l(\nu, \beta)=0$ and $B \cap \tau_{1} \subset \mathscr{H}_{1}$) form the boundary of a hole in F.

Theorem 6.8. Let F be biplanar with the binode ν and the lines M_{1}, M_{2} and $M_{0}=\tau_{1} \cap \tau_{2} ; \quad l(F)=l(\nu)=3$. Then $F=\bar{F}_{1} \cup \bar{F}_{2}$ where $\operatorname{bd}(F)=M_{0} \cup$ $M_{1} \cup M_{2}, \operatorname{bd}\left(F_{2}\right)=M_{1} \cup M_{2}$, every point of F_{1} is hyperbolic and $\nu \in \mathrm{Cl}$ $\left(F_{2} \cap E\right)$.

7. F with four lines.

7.0. Let F be biplanar with the binode $\nu ; l(F)=l(\nu)+1=4$. Let $M_{0}=\tau_{1} \cap \tau_{2}, \quad M_{1}$ and M_{2} be the lines of F through ν and let $L_{0} \subset F$ with $\nu \notin L_{0}$. By 2.2.3, we may assume that $\tau_{1} \cap F=M_{0} \cup M_{1} \cup M_{2}$ and $\tau_{2} \cap F$ $=M_{0}$. Then L_{0} meets M_{0} at $p_{0} \neq \nu, \quad L_{0} \cap\left(M_{1} \cup M_{2}\right)=\emptyset,\left\langle L_{0}, M_{0}\right\rangle$ $\cap F=L_{0} \cup M_{0}$ and $L_{0} \subset \pi\left(M_{0}\right)$.

Let $r \in F, \quad l(r)=0$. Then $M_{0} \cap S^{1}\left(M_{0}, r\right)=\{\nu\},\left|L_{0} \cap S^{1}\left(L_{0}, r\right)\right| \leqq 2$ and $\left|M_{i} \cap S^{1}\left(M_{i}, r\right)\right|=2 ; \quad i=1,2$. Let r_{λ} be a convergent sequence in $F \backslash\left(\tau_{1} \cup L_{0}\right)$.

1. If $\lim \left\langle M_{i}, r_{\lambda}\right\rangle=\tau_{1}$, then $\lim S^{1}\left(M_{i}, r_{\lambda}\right)=M_{j} \cup M_{k} ; \quad\{i, j, k\}=$ $\{0,1,2\}$.
2. If $\lim \left\langle M_{0}, r_{\lambda}\right\rangle=\left\langle M_{0}, L_{0}\right\rangle\left[\tau_{2}\right]$, then $\lim S^{1}\left(M_{0}, r_{\lambda}\right)=M_{0} \cup L_{0}[\nu]$.
3. If $\lim \left\langle L_{0}, r_{\lambda}\right\rangle=\left\langle M_{0}, L_{0}\right\rangle$, then $\lim S^{1}\left(L_{0}, r_{\lambda}\right)$ is either M_{0} or ν.

Figure 4
7.1. Let ν be the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$. Let $r \in \mathscr{L} \backslash\{\nu\}$ tend to ν such that $\lim \left\langle M_{0}, r\right\rangle=\tau_{2}$. Then $\lim S^{1}\left(M_{0}, r\right)=\{\nu\}$ and (cf. the proof of 3.4) $S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are compatible for r sufficiently close to ν. Similarly, $S^{1}\left(M_{0}, r\right)$ and \mathscr{F}_{2} are compatible for r sufficiently close to ν in $F_{2} \backslash\{\nu\}$.

By 1.3.3, $L_{0} \cap \mathscr{L}=\emptyset$ implies that $S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are compatible for all $r \in L \backslash\{\nu\}$ and $L_{0} \cap\left(\mathscr{F}_{1} \cup \mathscr{F}_{2}\right)=\emptyset$ implies that $S^{1}\left(M_{0}, r\right)$ and $\mathscr{F}_{2}\left[\mathscr{F}_{1}\right]$ are compatible [incompatible] for all $r \in \mathscr{F}_{2}\left[\mathscr{F}_{1}\right], \quad r \neq \nu$.

Let \mathscr{H}_{0} and \mathscr{H}_{1} be the closed half-planes of τ_{1} determined by M_{1} and M_{2}, $M_{0} \subset \mathscr{H}_{0}$.

Lemma 7.2. Let $\nu \in \beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}, \quad l(\nu, \beta)=0$. Then $L_{0} \cap$ $\mathscr{L} \neq \emptyset$ if and only if $\beta \cap \tau_{1} \subset \mathscr{H}_{1}$.

Proof. If r_{λ} is a sequence in $F \backslash \tau_{1}$ such that $\lim \left\langle M_{0}, r_{\lambda}\right\rangle=\tau_{1}$, then \lim $\mathrm{Cl}\left(\right.$ int $\left.S^{1}\left(M_{0}, r_{\lambda}\right)\right)=\mathscr{H}_{1}$. Now apply 7.1 and compare the proof of 6.3.
7.3. Let \mathscr{P}_{1} and \mathscr{P}_{2} be the open half-spaces determined by τ_{1} and τ_{2}, $L_{0} \subset \overline{\mathscr{P}}_{1}$. Then $\left\langle M_{0}, L_{0}\right\rangle$ is the common boundary of two open quarter-spaces of \bar{P}_{1}, say P_{11} and P_{12}. We assume that $\tau_{1} \subset \overline{\mathscr{P}}_{1 i} ; \quad i=1,2$.

Let $F_{1 i}=\mathscr{P}_{1 i} \cap F \quad$ and $\quad F_{2}=\mathscr{P}_{2} \cap F$. Then

$$
F_{11} \cup F_{12} \cup F_{2}=\{r \in F \mid l(r)=0\} .
$$

Fix a β^{*} such that $\nu \in \beta^{*} \cap F=\mathscr{L}^{*} \cup \mathscr{F}_{1}{ }^{*} \cup \mathscr{F}_{{ }^{2}}{ }^{*}, \quad l\left(\nu, \beta^{*}\right)=0$ and $\beta^{*} \cap \tau_{1} \subset \mathscr{H}_{1}$. Then L_{0} meets \mathscr{L}^{*} at a point $l_{0} \neq \nu, \quad \beta^{*} \cap\left(\bar{F}_{11} \cup \bar{F}_{12}\right)=\mathscr{L}^{*}$ and $\beta \cap \bar{F}_{2}=\mathscr{F}_{1}{ }^{*} \cup \mathscr{F}_{2}{ }^{*}$. Let $B \cap \bar{F}_{1 i}=\mathscr{L}_{i}{ }^{*}$. Then $\mathscr{L}_{1}{ }^{*}$ and $\mathscr{L}_{2}{ }^{*}$ are the subarcs of \mathscr{L}^{*}, with the end points ν and l_{0} and $\mathscr{L}_{1}{ }^{*} \cap \mathscr{L}_{2}{ }^{*}=\left\{\nu, l_{0}\right\}$. If r^{*} tends to ν in $L_{i}{ }^{*} \backslash\{\nu\}$, then $\lim \left\langle M_{0}, r^{*}\right\rangle=\tau_{i} ; \quad i=1,2$. From 7.1 and the proof of 6.3, $S^{1}\left(M_{0}, r^{*}\right)$ and $\mathscr{L}_{1}^{*}\left[\mathscr{L}_{2}^{*}\right]$ are incompatible [compatible] for all $r \in$ $\operatorname{int}\left(\mathscr{L}_{1}{ }^{*}\right)\left[\operatorname{int}\left(\mathscr{L}_{2}{ }^{*}\right)\right]$.

Lemma 7.4. $\operatorname{bd}\left(F_{11}\right)=L_{0} \cup M_{0} \cup M_{1} \cup M_{2}, \operatorname{bd}\left(F_{12}\right)=L_{0} \cup M_{0}$ and $\operatorname{bd}\left(F_{2}\right)=M_{1} \cup M_{2}$.

Proof. If $r \in F_{11}$, then $S^{1}\left(M_{0}, r\right)=S^{1}\left(M_{0}, r^{*}\right)$ for some $r^{*} \in \operatorname{int}\left(\mathscr{L}_{1}{ }^{*}\right)$. If $r^{*} \in \operatorname{int}\left(\mathscr{L}_{1}{ }^{*}\right)$ tends to $l_{0}[\nu]$, then $\lim S^{1}\left(M_{0}, r^{*}\right)=M_{0} \cup L_{0}\left[M_{1} \cup M_{2}\right]$ from 7.0. Thus $\operatorname{bd}\left(F_{11}\right)=L_{0} \cup M_{0} \cup M_{1} \cup M_{2}$.

By similar arguments, we obtain the other two boundaries.
Theorem 7.5. Let F be a biplanar surface satisfying 7.0. Then

$$
F=\bar{F}_{11} \cup \bar{F}_{12} \cup \bar{F}_{2}
$$

where every point of F_{11} is hyperbolic, $\nu \in \mathrm{Cl}\left(F_{12} \cap E\right)$ and $\nu \in \mathrm{Cl}\left(F_{2} \cap E\right)$.
Proof. cf. 6.6 and 6.7.
We observe in Figure 5 that the loops of $\beta \cap F(l(\nu, \beta)=0$ and $\beta \cap$ $\tau_{1} \subset \mathscr{H}_{1}$) again form the boundary of a hole. The surface in P^{3} defined by $x_{1}{ }^{3}+x_{2}{ }^{3}+x_{0}{ }^{2}\left(x_{1}-x_{2}\right)+x_{1} x_{2} x_{3}=0$ satisfy 7.0 with $M_{0} \equiv x_{1}=x_{2}=0$, $M_{1} \equiv x_{1}=x_{0}+x_{2}=0, \quad M_{2} \equiv x_{1}=x_{0}-x_{2}=0 \quad$ and $\quad L_{0} \equiv x_{1}-x_{2}=$ $x_{3}+2 x_{1}=0$.

8. F with six lines.

8.0. Let F be biplanar with the binode $\nu ; l(F)=l(\nu)+2=6$. Let $M_{i}, 0 \leqq i \leqq 3$, be the lines of F through $\nu, \quad M_{0}=\tau_{1} \cap \tau_{2}$. We assume that $\tau_{1} \cap F=M_{0} \cup M_{1} \cup M_{2}$. Then $\tau_{2} \cap F=M_{0} \cup M_{3}$ and $M_{3} \subset \pi\left(M_{0}\right)$.

By 2.1.4, $\left\langle M_{3}, M_{j}\right\rangle \cap F$ contains a third line $L_{j}, j=1,2$. Clearly, $L_{1} \cap L_{2}=\emptyset$ and $\nu \notin L_{1} \cup L_{2}$. Let $L_{j} \cap M_{j}$ be the point $q_{j j}$ and $L_{j} \cap M_{3}$ be the point $q_{j 3}$.

Let $r \in F, \quad l(r)=0$. Then $M_{0} \cap S^{1}\left(M_{0}, r\right)=\{\nu\},\left|M_{i} \cap S^{1}\left(M_{i}, r\right)\right|=2$ for $i=1,2,3$ and $\left|L_{j} \cap S^{1}\left(L_{j}, r\right)\right| \leqq 2$ for $j=1,2$. Let r_{λ} be a convergent sequence in $F, \quad l\left(r_{\lambda}\right)=0$ for each r_{λ}. Since $M_{3} \subset \pi\left(M_{0}\right), \quad \lim \left\langle M_{0}, r_{\lambda}\right\rangle=\tau_{2}$ implies that $\lim S^{1}\left(M_{0}, r_{\lambda}\right)=M_{0} \cup M_{3}$ and $\lim \left\langle M_{3}, r_{\lambda}\right\rangle=\tau_{2}$ implies that

Figure 5
$\lim S^{1}\left(M_{3}, r_{\lambda}\right)$ is either M_{0} or ν. The limits of the plane sections through the other lines of F are immediate.

Let ν be the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$. Since $M_{0} \cap$ $\left(L_{1} \cup L_{2}\right)=\emptyset, S^{1}\left(M_{0}, r\right)$ exists for $r \in(\beta \cap F) \backslash\{\nu\}$. Let \mathscr{H}_{0} and \mathscr{H}_{1} be the closed half-planes of τ_{1} determined by M_{1} and $M_{2}, \quad M_{0} \subset \mathscr{H}_{0}$. We observe that 6.2 and 6.3 are true for this F. Arguing as in the proof of 6.3 , we obtain

Lemma 8.1. Let $\alpha=\langle M, \bar{r}\rangle$ where $\bar{r} \in F, \quad l(\bar{r})=0$. If $\alpha \cap \tau_{1} \subset \mathscr{H}_{0}\left[\mathscr{H}_{1}\right]$, then $S^{1}\left(M_{0}, r\right)$ and $S^{1}\left(M_{3}, \bar{r}\right)$ are compatible [incompatible] for all $r \in S^{1}\left(M_{3}, \bar{r}\right) \backslash M_{3}$.
8.2. Let \mathscr{P}_{0} and \mathscr{P}_{1} be the open half-spaces determined by $\left\langle M_{2}, M_{1}\right\rangle$ and $\left\langle M_{3}, M_{2}\right\rangle, \quad M_{0} \subset \overline{\mathscr{P}}_{0}$. Then $\overline{\mathscr{P}}_{j} \cap \tau_{1}=\mathscr{H}_{j}(j=0,1)$ and τ_{2} is the common
boundary of two open quarter-spaces of $\overline{\mathscr{P}}_{0}$, say \mathscr{P}_{01} and \mathscr{P}_{02}. We assume that $\left\langle M_{i}, L_{i}\right\rangle \subset \bar{P}_{0 i}, \quad i=1,2$.

Let r_{λ} be a convergent sequence such that $l\left(r_{\lambda}\right)=0$ for each r_{λ} and $\lim \left\langle M_{3}\right.$, $\left.r_{\lambda}\right\rangle=\tau_{2}$. We assume that $\lim S^{1}\left(M_{3}, r_{\lambda}\right)=M_{0}[\nu]$ as $\left\langle M_{3}, r_{\lambda}\right\rangle$ tends to τ_{2} in $\overline{\mathscr{P}}_{02}\left[\overline{\mathscr{P}}_{01}\right]$.

Let $F_{1}=\mathscr{P}_{1} \cap F, \quad F_{01}=\mathscr{P}_{01} \cap F \quad$ and $\quad F_{02}=\mathscr{P}_{02} \cap F$. Clearly;

$$
F_{1} \cup F_{01} \cup F_{02}=\{r \in F \mid l(r)=0\},
$$

$M_{1} \cup M_{2} \cup L_{1} \cup L_{2} \subset \operatorname{bd}\left(F_{1}\right), \quad M_{1} \cup L_{1} \subset \operatorname{bd}\left(F_{01}\right)$ and $M_{0} \cup M_{2} \cup L_{2} \subset$ $\operatorname{bd}\left(F_{02}\right)$.

Lemma 8.3 Let ν be the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}, \beta \cap \tau_{1}$ $\subset \mathscr{H}_{1}$. Then $\mathscr{L} \cap \mathscr{P}_{01}=\emptyset$ and $\left(\mathscr{F}_{1} \cup \mathscr{F}_{2}\right) \cap \mathscr{P}_{02}=\emptyset$.
Proof. Since $\beta \cap \tau_{1} \subset \mathscr{H}_{1}, \mathscr{L} \cap \mathscr{P}_{1} \neq \emptyset$ and either $\mathscr{L} \cap \mathscr{P}_{01}=\emptyset$ or $\mathscr{L} \cap \mathscr{P}_{02}=\emptyset$. By 6.3, $S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are incompatible for all $r \in L \backslash\{\nu\}$.

Let $r_{\lambda} \in \mathscr{L} \backslash \overline{\mathscr{P}}_{1}$ tend to ν. For each $r_{\lambda},\left\langle M_{3}, r_{\lambda}\right\rangle \subset \overline{\mathscr{P}}_{0},\left\langle M_{3}, r_{\lambda}\right\rangle \cap \tau_{1} \subset \mathscr{H}_{0}$ and thus $S^{1}\left(M_{3}, r_{\lambda}\right)$ and \mathscr{L} are incompatible by 8.1 and the preceding. Then $S^{1}\left(M_{3}, r_{\lambda}\right)$ converges to M_{0} (cf. 8.0 and 3.4) and $\mathscr{L} \subset \mathscr{P}_{1} \cup \mathscr{P}_{02}$ from 8.2. Thus, $\mathscr{L} \cap \mathscr{P}_{01}=\emptyset$ and $\left(\mathscr{F}_{1} \cup \mathscr{F}_{2}\right) \cap \mathscr{P}_{02}=\emptyset$.

Theorem 8.4. Every point of $F_{1} \cup F_{02}$ is hyperbolic.
Proof. Let $r \in F_{1}$. Then $\left\langle M_{3}, r\right\rangle \subset \overline{\mathscr{P}}_{1}$ and $\left\langle M_{3}, r\right\rangle \cap \tau_{1} \subset \mathscr{H}_{1}$. By 8.1 and 1.3.2, r is hyperbolic.

Let $r \in F_{02}$ and choose $N \subset \mathscr{H}_{1}$ such that $N \cap F=\{\nu\}$. Then ν is the double point of $\langle N, r\rangle \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$. By 8.3, 6.3 and 1.3.2, r is hyperbolic.
8.5. The points ν, q_{13} and q_{23} are mutually distinct. Let $M_{3}{ }^{*}$ be the closed segment of M_{3}, with the end points ν and q_{13}, such that $q_{23} \notin M_{3}{ }^{*}$. Let Δ_{0} and Δ_{1} be the triangles determined by M_{1}, L_{1} and $M_{3}{ }^{*}$. Then ν, q_{11} and q_{13} are the vertices of Δ_{0} and Δ_{1}.

Let $r \in F_{01}$ and put $M_{3} \cap S^{1}\left(M_{3}, r\right)=\left\{\nu, q_{r}\right\}$. As $S^{1}\left(M_{3}, r\right)$ tends to $M_{1} \cup$ $L_{1}[\nu], \quad q_{r} \neq \nu$ tends to $q_{13}[\nu]$ and thus $\bar{F}_{01} \cap M_{3}$ is either $M_{3}{ }^{*}$ or $\mathrm{Cl}\left(M_{3} \backslash M_{3}{ }^{*}\right)$. Since $\left\langle M_{2}, L_{2}\right\rangle \not \subset \bar{F}_{01}, \quad q_{23} \notin \bar{F}_{01} \cap M_{3}$ and in particular

$$
\operatorname{bd}\left(F_{01}\right)=L_{1} \cup M_{1} \cup M_{3}^{*}=\Delta_{0} \cup \Delta_{1} .
$$

As $\left|M_{3} \cap S^{1}\left(M_{3}, r\right)\right|=2$, this implies $S^{1}\left(M_{3}, r\right) \cap F_{01}$ is the union of two open disjoint sets. It is immediate that

$$
F_{01}=G_{0} \cup G_{1}
$$

where G_{0} and G_{1} are open disjoint regions such that $S^{1}\left(M_{3}, r\right) \cap G_{0}$ and $S^{1}\left(M_{3}, r\right) \cap G_{1}$ are the maximal connected subsets of $S^{1}\left(M_{3}, r\right) \cap F_{01}$. Obviously, $\operatorname{bd}\left(G_{0}\right)$ is either Δ_{0} or Δ_{1}. We assume that $\operatorname{bd}\left(G_{0}\right)=\Delta_{0}$, then $\operatorname{bd}\left(G_{1}\right)=\Delta_{1}$ and $\bar{G}_{0} \cap \bar{G}_{1}=M_{3}^{*} \cup\left\{q_{11}\right\}$.

From 8.2, there is a sequence r_{λ} in F_{01} such that $\lim S^{1}\left(M_{3}, r_{\lambda}\right) \cap \bar{G}_{j}=\{\nu\}$; $j=0$, 1. Clearly, $S^{1}\left(M_{3} r_{\lambda}\right) \cap \bar{G}_{j}$ is the boundary of an open region $G_{j}\left(M_{3}\right.$,

Figure 6
$\left.r_{\lambda}\right) \subset G_{j}$ such that $\mathrm{Cl}\left(G_{j}\left(M_{3}, r_{\lambda}\right)\right)$ tends to ν and $G_{j}\left(M_{3}, r_{\lambda}\right)$ satisfies 2.6 for each r_{λ}. Thus $\nu \in \operatorname{Cl}\left(G_{j} \cap E\right) ; \quad j=0,1$.

We observe in Figure 6 that there are two holes in this surface. Also, there is an $r^{\prime} \in F_{1}$ such that $L_{1} \cap S^{1}\left(L_{1}, r^{\prime}\right)=\emptyset$ and for any $r \in F$ with $l(r)=0$, $\left|L_{2} \cap S^{1}\left(L_{2}, r\right)\right|=2$ with $q_{22} \in \operatorname{int} S^{1}\left(L_{2}, r\right)$.

The surface in P^{3} defined by $x_{1} x_{2} x_{3}+x_{0}{ }^{2} x_{2}+x_{0} x_{1}{ }^{2}-x_{2}{ }^{3}=0$ satisfies 8.0 with $M_{0} \equiv x_{1}=x_{2}=0, \quad M_{1} \equiv x_{1}=x_{0}+x_{2}=0, \quad M_{2} \equiv x_{1}=x_{0}-x_{2}=0$, $M_{3} \equiv x_{0}=x_{2}=0, \quad L_{1} \equiv x_{0}+x_{2}=x_{3}-x_{1}=0 \quad$ and $\quad L_{2} \equiv x_{0}-x_{2}=x_{1}+$ $x_{3}=0$.

Theorem 8.6. Let F be a biplanar surface satisfying 8.0. Then

$$
F=\bar{F}_{1} \cup \bar{F}_{02} \cup \bar{G}_{0} \cup \bar{G}_{1}
$$

where every point of $F_{1} \cup F_{02}$ is hyperbolic and $\nu \in \mathrm{Cl}\left(G_{j} \cap E\right) ; \quad j=0,1$.

9. F with ten lines.

9.0. Let F be biplanar with the binode $\nu ; \quad l(F)=l(\nu)+5=10$. Let M_{i}, $0 \leqq i \leqq 4$, be the lines of F with $M_{0}=\tau_{1} \cap \tau_{2}, \quad \tau_{1} \cap F=M_{0} \cup M_{1} \cup M_{2}$ and $\tau_{2} \cap F=M_{0} \cup M_{3} \cup M_{4}$. By 2.1.1, there is an $L_{0} \subset F$ such that $L_{0} \cap M_{0}$ is a point $p_{0} \neq \nu, \quad\left\langle M_{0}, L_{0}\right\rangle \cap F=M_{0} \cup L_{0}$ and $L_{0} \subset \pi\left(M_{0}\right)$.

By 2.1.4, $\left\langle M_{i}, M_{j}\right\rangle \cap F$ contains a third line $L_{i j} ; \quad i \in\{1,2\}$ and $j \in\{3,4\}$. Clearly $M_{0} \cap L_{i j}=\emptyset, \quad L_{0} \cap L_{i j}$ is a point $l_{i j}$ and $L_{i j} \cap L_{k l}=\emptyset$ when $\{i, j\} \cap\{k, l\} \neq \emptyset$. Since $L_{0} \subset \pi\left(M_{0}\right)$ and $L_{24} \cap M_{2} \neq \emptyset, 1.3 .6$ implies that $l\left(\left\langle L_{0}, L_{24}\right\rangle\right)=3$ and $L_{24} \cap\left(L_{14} \cap L_{23}\right)=\emptyset$ implies that $L_{13} \subset\left\langle L_{0}, L_{24}\right\rangle$. Similarly, $L_{14} \subset\left\langle L_{0}, L_{23}\right\rangle$.

Let $r \in F, \quad l(r)=0$. Then $M_{0} \cap S^{1}\left(M_{0}, r\right)=\{\nu\}, \quad\left|M_{k} \cap S^{1}\left(M_{k}, r\right)\right|=2$ for $k=1,2,3,4,\left|L_{0} \cap S^{1}\left(L_{0}, r\right)\right| \leqq 2$ and $\left|L_{i j} \cap S^{1}\left(L_{i j}, r\right)\right| \leqq 2$ for $i \in\{1,2\}$ and $j \in\{3,4\}$. Let r_{λ} be a convergent sequence in $F, l\left(r_{\lambda}\right)=0$ for each r_{λ}.

1. If $\lim \left\langle M_{0}, r_{\lambda}\right\rangle=\tau_{1}\left[\tau_{2}\right]$, then $\lim S^{1}\left(M_{0}, r_{\lambda}\right)=M_{1} \cup M_{2}\left[M_{3} \cup M_{4}\right]$.
2. If $\lim \left\langle M_{0}, r_{\lambda}\right\rangle=\left\langle M_{0}, L_{0}\right\rangle$, then $\lim S^{1}\left(M_{0}, r_{\lambda}\right)=M_{0} \cup L_{0}$.
3. If $\lim \left\langle L_{0}, r_{\lambda}\right\rangle=\left\langle M_{0}, L_{0}\right\rangle$, then $\lim S^{1}\left(L_{0}, r_{\lambda}\right)$ is either M_{0} or ν.
9.1. Let ν be the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$. Let \mathscr{H}_{10} and $\mathscr{H}_{11}\left[\mathscr{H}_{20}\right.$ and $\left.\mathscr{H}_{21}\right]$ be the closed half-planes of $\tau_{1}\left[\tau_{2}\right]$ determined by M_{1}, $M_{2}\left[M_{3}, M_{4}\right]$. We assume that $M_{0}=\mathscr{H}_{10} \cap \mathscr{H}_{20}$. As in sections 6 and 7 , we obtain the following:
4. If $\beta \cap \tau_{1} \subset \mathscr{H}_{i 1}\left[\mathscr{H}_{i 0}\right]$ for $i=1,2$ then $L_{0} \cap \mathscr{L}=\emptyset, \quad S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are incompatible [compatible] for all $r \in L \backslash\{\nu\}$ and $S^{1}\left(M_{0}, r\right)$ and $F_{k}(k=1,2)$ are incompatible [compatible] for r sufficiently close to ν in $F_{k} \backslash\{\nu\}$.
5. Let $\{i, j\}=\{1,2\}$. If $\beta \cap \tau_{i} \subset H_{i 0}$ and $\beta \cap \tau_{j} \subset H_{j i}$, then L_{0} meets \mathscr{L} at a point l. Let \mathscr{L}_{1} and \mathscr{L}_{2} be the subarcs of \mathscr{L} such that

$$
\mathscr{L}=\mathscr{L}_{1} \cup \mathscr{L}_{2}, \quad \mathscr{L}_{1} \cap \mathscr{L}_{2}=\{\nu, l\}
$$

and $\lim \left\langle M_{0}, r\right\rangle=\tau_{1}\left[\tau_{2}\right]$ as $r \neq \nu$ tends to ν in $\mathscr{L}_{1}\left[\mathscr{L}_{2}\right]$. Then $S^{1}\left(M_{0}, r\right)$ and $\mathscr{L}_{i}\left[\mathscr{L}_{j}\right]$ are compatible [incompatible] for all $r \in \operatorname{int}\left(L_{i}\right)\left[\operatorname{int}\left(L_{j}\right)\right]$.
9.2. Since $L_{0} \cap M_{1}=\emptyset, 9.0 .3$ clearly implies that

$$
\tilde{M}_{1}=\left\{m \in M_{1} \mid m \in \pi(l) \text { for some } l \in L_{0}\right\}
$$

is a proper closed segment of M_{1} with the end points ν and (say) m_{0}. Since $\pi(l)$ depends continuously on $l \in L_{0}$, it is easy to check that $m \in \pi(l)$ for exactly two $l \in L_{0}$ for each $m \in \operatorname{int}\left(\tilde{M}_{1}\right)$. Let $l_{0} \in L_{0}$ such that $\pi\left(l_{0}\right)=\left\langle L_{0}, m_{0}\right\rangle$.

As $\left\langle L_{0}, L_{14}\right\rangle \neq\left\langle L_{0}, L_{24}\right\rangle$, we may assume that $\pi\left(l_{0}\right) \neq\left\langle L_{0}, L_{14}, L_{23}\right\rangle$. Then $\left\langle L_{14}, L_{23}\right\rangle \cap \operatorname{int}\left(\widetilde{M}_{1}\right) \neq \emptyset, \quad l_{14} \neq l_{23}$ and $p_{0} \in \hat{L}_{0}$, the closed segment of L_{0} bounded by l_{14} and l_{23} which contains l_{0}.

Without loss of generality, we may assume that $\left\{l_{24}, l_{13}\right\} \subset \hat{L}_{0}$. Then l_{0} is contained in the closed segment $L_{0}{ }^{*}$ of \hat{L}_{0} bounded by l_{24} and l_{13}. If $L_{0}{ }^{*}=\left\{l_{0}\right\}$, then $\pi\left(l_{0}\right)=\left\langle L_{24}, L_{13}\right\rangle$ and L_{0}, L_{24} and L_{13} are concurrent. If $L_{0}{ }^{*} \neq\left\{l_{0}\right\}$, then there is an $r_{0} \in F$ such that $l\left(r_{0}\right)=0$ and $L_{0} \cap S^{1}\left(L_{0}, r_{0}\right)=\left\{l_{0}\right\}$.
9.3. Let \mathscr{P}_{0} and \mathscr{P}_{1} be the closed half-spaces of P^{3} determined by $\left\langle M_{1}, M_{3}\right\rangle$ and $\left\langle M_{2}, M_{4}\right\rangle, \quad M_{0} \subset \mathscr{P}_{0}$. Then $p_{0} \in \mathscr{P}_{1}$ and 9.2 imply that

$$
\begin{aligned}
& \mathscr{P}_{1} \cap L_{0}=L_{0}{ }^{*}, \quad L_{23} \cap L_{14} \subset \mathscr{P}_{1} \text { and } \quad \mathscr{P}_{i} \cap \tau_{j}=\mathscr{H}_{j 1}, \\
& i \in\{0,1\} \text { and } j \in\{1,2\} .
\end{aligned}
$$

If $L_{0}{ }^{*} \neq\left\{l_{0}\right\}$, let G_{1} be the closed triangular region of $\mathscr{P}_{1} \cap F$, bounded by $L_{0}{ }^{*}$ and segments of L_{13} and L_{24}, which does not contain ν. If $L_{0}{ }^{*}=\left\{l_{0}\right\}$, let $G_{1}=\left\{l_{0}\right\}$. We put $F_{1}=\mathrm{Cl}\left(\left(P_{1} \cap F\right) \backslash G_{1}\right)$. Then

$$
\mathscr{P}_{1} \cap F=F_{1} \cup G_{1} .
$$

Theorem 9.4. 1. If $r \in F_{1}$ such that $l(r)=0$, then r is hyperbolic.
2. If $G_{1} \neq\left\{l_{0}\right\}$, then $G_{1} \cap E \neq \emptyset$.

Proof. Let $\beta=\left\langle\nu, l^{*}, r_{1}\right\rangle$ where $L_{13} \cap L_{24}=\left\{l^{*}\right\}$ and $r_{1} \in F_{1}, l\left(r_{1}\right)=0$. Then ν is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}$ and $\beta \cap \tau_{i} \subset \mathscr{H}_{11}$, $i=1,2$. By 9.1.1, $S^{1}\left(M_{0}, r\right)$ and \mathscr{L} are compatible for all $r \in \mathscr{L} \backslash\{\nu\}$.

If $L_{0}{ }^{*}=\left\{l_{0}\right\}$, then $l^{*}=l_{0}$ and $\pi\left(l_{0}\right) \cap F=L_{0} \cup L_{13} \cup L_{24}$ imply that l^{*} is the inflection point of $\beta \cap F$. If $L_{0}{ }^{*} \neq\left\{l_{0}\right\}$, put $\beta \cap L_{0}{ }^{*}=\left\{l^{\prime}\right\}$. Then $\beta \cap$ $\left(F_{1} \cap G_{1}\right)=\left\{l^{*}, l^{\prime}\right\}, \quad l^{\prime} \in \pi\left(l^{*}\right)$ and $\nu \notin G_{1}$ imply that the inflection point of $\beta \cap F$ is contained in G_{1}. In either case, 9.1.1 clearly implies that $S^{1}\left(M_{0}, r\right)$ and \mathscr{F}_{k} are incompatible for all $r \in \operatorname{int}\left(F_{1} \cap \mathscr{F}_{k}\right) ; \quad k=1,2$. By 1.3.2, $r_{1} \in F_{1} \cap\left(\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}\right)$ is hyperbolic.

From 9.3, it is immediate that a non-empty int $\left(G_{1}\right)$ satisfies 2.6 .
9.5. Let $\mathscr{P}_{0}{ }^{\prime}$ and $\mathscr{P}_{1}{ }^{\prime}$ be the closed half-spaces of P^{3} determined by τ_{1} and τ_{2}, $L_{0} \subset \mathscr{P}_{0}{ }^{\prime}$. Then $L_{14} \cap L_{23} \subset \mathscr{P}_{1}{ }^{\prime}$ and $\left\{l^{*}\right\}=L_{13} \cap L_{24} \subset \mathscr{P}_{0}{ }^{\prime}$. We now examine $\operatorname{int}\left(P_{0} \cap P_{i}{ }^{\prime}\right) \cap F$.

Let $\beta=\left\langle\nu, l^{*}, r\right\rangle, \quad r \in \operatorname{int}\left(P_{0} \cap P_{1}{ }^{\prime}\right) \cap F$. Then $\beta \subset P_{0}, \quad \nu$ is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1} \cup \mathscr{F}_{2}, \quad \beta \cap \tau_{i} \subset \mathscr{H}_{i 0}(i=1,2)$ and $L_{0} \cap \mathscr{L}$ $=\emptyset$. Thus $L_{0} \subset \mathscr{P}_{0}{ }^{\prime}$ implies that $\beta \cap \operatorname{int}\left(\mathscr{P}_{1}{ }^{\prime}\right) \cap F=L \backslash\{\nu\}$. Finally, $L_{14} \cap L_{23} \subset \mathscr{P}_{1} \cap \mathscr{P}_{1}^{\prime}$ yields that

$$
\left(L_{14} \cup L_{23}\right) \cap \operatorname{int}\left(\mathscr{P}_{0} \cap \mathscr{P}_{1}^{\prime}\right)=\emptyset
$$

and $l(r)=0$.
Let $p \in M_{0} \backslash\{\nu\}$. Since $L_{0} \subset \mathscr{P}_{0}^{\prime} \cap F$ and $L_{0} \subset \pi(p)$, there is an open neighbourhood $u(p)$ of p in F such that $u(p) \subset \mathscr{P}_{0}{ }^{\prime}$. Hence,

$$
M_{0} \cap \mathrm{Cl}\left(\operatorname{int}\left(\mathscr{P}_{0} \cap \mathscr{P}_{1}^{\prime}\right) \cap F\right)=\{\nu\}
$$

Obviously, $\operatorname{int}\left(\mathscr{P}_{0} \cap \mathscr{P}_{0}{ }^{\prime}\right)$ is disconnected and $\operatorname{int}\left(\mathscr{P}_{0} \cap \mathscr{P}_{1}{ }^{\prime}\right) \cap F$ consists of two maximal open disjoint regions, say G_{0} and $G_{0}{ }^{\prime}$. By the preceding, we may assume that

$$
\operatorname{bd}\left(G_{0}\right) \subseteq M_{1} \cup M_{3} \cup L_{13} \quad \text { and } \quad \operatorname{bd}\left(G_{0}{ }^{\prime}\right) \subseteq M_{2} \cup M_{4} \cup L_{24}
$$

Then

$$
\operatorname{int}\left(\mathscr{P}_{0} \cap \mathscr{P}_{1}{ }^{\prime}\right) \cap F=G_{0} \cup G_{0}{ }^{\prime} \quad \text { where } \quad \bar{G}_{0} \cap \bar{G}_{0}{ }^{\prime}=\{\nu\} .
$$

Let $\beta_{\lambda} \neq\left\langle M_{1}, M_{3}\right\rangle$ converge to $\left\langle M_{1}, M_{3}\right\rangle$ in \mathscr{P}_{0}. Then $\beta_{\lambda} \cap G_{0}{ }^{\prime}=\emptyset$ and $\beta_{\lambda} \cap \bar{G}_{0}$ is the loop of $\beta_{\lambda} \cap F$ for β_{λ} sufficiently close to $\left\langle M_{1}, M_{3}\right\rangle$. Thus $\lim \left(\beta_{\lambda} \cap \bar{G}_{0}\right)$ is a curve of order $\leqq 2$. It is easy to check that $\lim \left(\beta_{\lambda} \cap \bar{G}_{0}\right)$ is a triangle in $\left\langle M_{1}, M_{3}\right\rangle \cap \mathscr{P}_{1}^{\prime} \cap F$ bounded by segments of M_{1}, M_{3} and L_{13}.

Thus G_{0} and (similarly) $G_{0}{ }^{\prime}$ are bounded triangular regions in F. Clearly, each region satisfies 2.6 and thus contains elliptic points. From 9.0 and 1.3.4, each region also contains hyperbolic and parabolic points.
9.6. Let $\mathscr{P}_{1}{ }^{*}$ and $\mathscr{P}_{2}{ }^{*}$ be the closed quarter-spaces of $\mathscr{P}_{0}{ }^{\prime}$ determined by $\left\langle M_{0}, L_{0}\right)$. We assume that $\tau_{i} \subset \mathscr{P}_{i}^{*}$ and put $F_{0 i}=\left(\mathscr{P}_{i}{ }^{*} \cap \mathscr{P}_{0}\right) \cap F$; $i=1,2$. Then
(1) $\left(\mathscr{P}_{0} \cap \mathscr{P}_{0}{ }^{\prime}\right) \cap F=F_{01} \cup F_{02}$,
(2) $\mathscr{P}_{0} \cap F=F_{01} \cup F_{02} \cup G_{0} \cup G_{0}{ }^{\prime}$ and
(3) $F=F_{01} \cup F_{02} \cup F_{1} \cup G_{0} \cup G_{0}{ }^{\prime} \cup G_{1}$.

Theorem 9.7. If $r \in F_{01} \cup F_{02}$ such that $l(r)=0$, then r is hyperbolic.
Proof. We recall that \mathscr{P}_{1} is a closed half-space bounded by $\left\langle M_{1}, M_{3}\right\rangle$ and $\left\langle M_{3}, M_{4}\right\rangle$ such that $\mathscr{P}_{1} \cap\left\langle M_{1}, M_{2}\right\rangle=\mathscr{H}_{11}$ and $P_{1} \cap\left\langle M_{3}, M_{4}\right\rangle=\mathscr{H}_{21}$. It is easy to check that $p \in \mathscr{P}_{1}$ if and only if $\left\langle M_{i}, p\right\rangle \cap H_{21} \neq\{\nu\}$ for $i=1,2$ or $\left\langle M_{j}, p\right\rangle \cap \mathscr{H}_{11} \neq\{\nu\}$ for $j=3,4$.

Let $r \in F_{01} \quad l(r)=0$. Since $r \notin \mathscr{P}_{1}$, we may assume that $\left\langle M_{1}, r\right\rangle \cap \mathscr{H}_{21}$ $=\{\nu\}$. Then there is an $N_{1} \subset \mathscr{H}_{11}$ arbitrarily close to M_{1}, such that $N_{1} \cap F$ $=\{\nu\}$ and $\left\langle N_{1}, r\right\rangle \cap \mathscr{H}_{21}=\{\nu\}$. Then $\left\langle N_{1}, r\right\rangle \cap \mathscr{H}_{20}$ is a line $N_{2} ; \quad N_{2} \cap F$ $=\{\nu\}$.
Let $\beta=\left\langle N_{1}, N_{2}\right\rangle$. By 2.1.2, ν is the double point of $\beta \cap F=\mathscr{L} \cup \mathscr{F}_{1}$ $\cup \mathscr{F}_{2}$. By 9.1.2, $L_{0} \cap \mathscr{L} \neq \emptyset$ and therefore $\mathscr{L}=\mathscr{L}_{1} \cup \mathscr{L}_{2}, \quad\left(\beta \cap \mathscr{P}_{1}{ }^{\prime}\right)$ $\cap F=\mathscr{F}_{1} \cup \mathscr{F}_{2}$ and

$$
\left(\beta \cap \mathscr{P}_{0}{ }^{\prime}\right) \cap F=\left[\beta \cap\left(\mathscr{P}_{1} * \cup \mathscr{P}_{2}{ }^{*}\right)\right] \cap F=\mathscr{L}_{1} \cup \mathscr{L}_{2} .
$$

Clearly, $\left(\beta \cap \mathscr{P}_{1}{ }^{*}\right) \cap F=\mathscr{L}_{1}$ and $\left(\beta \cap \mathscr{P}_{2}{ }^{*}\right) \cap F=\mathscr{L}_{2}$. As $r \in \beta \cap F_{01}$ $\subset \beta \cap \mathscr{P}_{1}{ }^{*} \cap F=\mathscr{L}_{1}, \quad S^{1}\left(M_{0}, r\right)$ and \mathscr{L}_{1} are incompatible by 9.1.2 and r is hyperbolic by 1.3.2.

By a similar argument, we prove the theorem for the points of F_{02}.
In Figure 7, we represent the lines of F with $L_{0}{ }^{*} \neq\left\{l_{0}\right\}$ and in Figure 8, we represent F with $L_{0}{ }^{*}=\left\{l_{0}\right\}$. We observe that there are two holes in this surface, $\left|L_{14} \cap S^{1}\left(L_{14}, r\right)\right|=\left|L_{23} \cap S^{1}\left(L_{23}, r\right)\right|=2$ for any $r \in F$ with

Figure 7
$l(r)=0$ and there are points r^{\prime} and $r^{\prime \prime}$ in F such that $L_{24} \cap S^{1}\left(L_{24}, r^{\prime}\right)=L_{13} \cap$ $S^{1}\left(L_{13}, r^{\prime \prime}\right)=\emptyset$.

The surface in P^{3} defined by $x_{1} x_{2} x_{3}=\left(x_{1}+x_{2}\right)\left(x_{1}{ }^{2}+x_{2}{ }^{2}-x_{0}{ }^{2}\right)$ satisfies 9.0 with $M_{0} \equiv x_{1}=x_{2}=0, \quad M_{1} \equiv x_{1}=x_{0}-x_{2}=0, \quad M_{2} \equiv x_{1}=x_{0}+x_{2}$ $=0, \quad M_{3} \equiv x_{2}=x_{0}-x_{1}=0, \quad M_{4} \equiv x_{2}=x_{0}+x_{1}=0, \quad L_{0} \equiv x_{3}=x_{1}+$ $x_{2}=0, \quad L_{14} \equiv x_{3}-2\left(x_{1}+x_{2}\right)=x_{0}+x_{1}-x_{2}=0, \quad L_{23} \equiv x_{3}-2\left(x_{1}+\right.$ $\left.x_{2}\right)=x_{0}-x_{1}+x_{2}=0, \quad L_{13} \equiv x_{3}+2\left(x_{1}+x_{2}\right)=x_{0}-x_{1}-x_{2}=0$, $L_{24} \equiv x_{3}+2\left(x_{1}+x_{2}\right)=x_{0}+x_{1}+x_{2}=0$ and $L_{0}{ }^{*}=\left\{l_{0}\right\} \equiv(0,1,-1,0)$.

Theorem 9.8. Let F be a biplanar surface satisfying 9.0. Then

$$
F=F_{01} \cup F_{02} \cup F_{1} \cup G_{0} \cup G_{0}{ }^{\prime} \cup G_{1}
$$

Figure 8
where every $r \in F_{01} \cup F_{02} \cup F_{1}$ with $l(r)=0$ is hyperbolic and $G_{0}, G_{0}{ }^{\prime}$ and G_{1} are described in 9.3 through 9.5.

References

1. T. Bisztriczky, Surfaces of order three with a peak, I. J. of Geometry, 11/1 (1978), 55-83.
2. - Uniplanar surfaces of order three, to appear.
3. O. Haupt and H. Künneth, Geometrische ordnungen (Springer-Verlag, Berlin, 1967).
4. A. Marchaud, Sur les surfaces du troisième ordre de la Géométrie finie, J. Math. Pur. Appl. 18 (1939), 323-362.
5. Sur les propriétés différentielles du premier ordre des surfaces simples de Jordan et quelques applications, Ann. Ec. Norm. Sup. 63 (1947), 81-108.
6. P. Scherk, Über differenzierbare kurven und bögen I. zum begriff der charakteristik, Časopis Pěst. Mat. 66 (1937), 165-171.

University of Calgary, Calgary, Alberta

