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van der Pol Expansions of L-Series

David Borwein and Jonathan Borwein

Abstract. We provide concise series representations for various L-series integrals. Different techniques

are needed below and above the abscissa of absolute convergence of the underlying L-series.

1 Preliminaries

In [8] the following odd looking integral evaluation is obtained.

(1)

∫ ∞

0

(3 − 2
√

2 cos(t log 2))|ζ(1/2 + it)|2
t2 + 1/4

dt = π log 2.

This identity turns out, formally, to be a case of a rather pretty, and perhaps useful,

class of L-series evaluations given in Theorem 1 and Corollary 1 (cf. [2]). In Theorem

3 we recover (1) entirely rigorously.

Given a Dirichlet series

λ(s) :=

∞
∑

n=1

λn

ns
, s = σ + iτ , σ = ℜs > 0,

we consider the integral

ιλ(σ) :=
1

2

∫ ∞

−∞

∣

∣

∣

λ(s)

s

∣

∣

∣

2

dτ

as a function of λ. Observe that when the coefficients λn are real,

ιλ(σ) =

∫ ∞

0

∣

∣

∣

λ(s)

s

∣

∣

∣

2

dτ ,

but that this is not necessarily so when the coefficients are complex. We refer to

[3, 5, 7] for other, largely standard details.
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12 D. Borwein and J. Borwein

2 Integrals Involving s with Large Real Part

It is convenient to recall [2] that for u, a > 0,

(2)

∫ ∞

−∞

cos(at)

t2 + u2
dt =

π

u
e−au.

Theorem 1 For a(s) :=
∑∞

n=1 ann−s, b(s) :=
∑∞

n=1 bnn−s, and s = σ + i τ with

fixed σ = ℜ(s) > 0 such that both Dirichlet series are absolutely convergent, we have

(3) ιa,b(σ) :=
1

2

∫ ∞

−∞

a(s) b(s)

σ2 + τ 2
dτ =

π

2σ

∞
∑

n=1

An Bn − An−1 Bn−1

n2σ
,

where An :=
∑n

k=1 ak, Bn :=
∑n

k=1 bk, A0 := B0 := 0.

Proof Let aN (s) :=
∑N

n=1 ann−s, bN (s) :=
∑N

n=1 bnn−s. Then, in view of (2), we

have

∫ ∞

−∞

aN (s)bN(s)

σ2 + τ 2
dτ =

∫ ∞

−∞

∑

N≥n,m>0 an bmn−σ+iτ m−σ−iτ

σ2 + τ 2
dτ

=

∑

N≥n>m>0

anbm

(nm)σ

∫ ∞

−∞

cos(τ log(n/m))

σ2 + τ 2
dτ

+
∑

N≥n>m>0

ambn

(nm)σ

∫ ∞

−∞

cos(τ log(m/n))

σ2 + τ 2
dτ +

N
∑

n=1

anbn

n2σ

∫ ∞

−∞

1

σ2 + τ 2
dτ

+ i
∑

N≥m,n>0

anbm

(nm)σ

∫ ∞

−∞

sin(τ log(n/m))

σ2 + τ 2
dτ

=

∑

N≥n>m>0

anbm + ambn

(nm)σ

∫ ∞

−∞

cos
(

τ log(n/m)
)

σ2 + τ 2
dτ +

π

σ

N
∑

n=1

anbn

n2 σ

=
π

σ

∑

N≥n>m>0

anbm + ambn

(nm)σ(n/m)σ
+

π

σ

N
∑

n=1

anbn

n2 σ

=
π

σ

N
∑

n=1

anBn−1 + An−1bn + anbn

n2σ
=

π

σ

N
∑

n=1

An Bn − An−1 Bn−1

n2σ
.

Note that the imaginary part in the above evaluation vanished because we integrated

an odd function over the range −∞ < τ < ∞.
Next, we observe that

|aN (s)bN (s)| ≤
∞
∑

n=1

|anbn|
n2σ

= M < ∞,
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Expansions of L-Series 13

where M is independent of τ . Hence

∣

∣

∣

aN (s)bN (s

σ2 + τ 2

∣

∣

∣
≤ M

σ2 + τ 2
,

and (3) follows by Lebesgue’s theorem on dominated convergence on letting N → ∞.

As an immediate consequence we have:

Corollary 1 If λ(s) :=
∑∞

n=1 λnn−s with s = σ + i τ and fixed σ = ℜ(s) > 0 such

that the Dirichlet series is absolutely convergent, then

(4) ιλ(σ) :=
1

2

∫ ∞

−∞

∣

∣

∣

λ(s)

s

∣

∣

∣

2

dτ =
π

2σ

∞
∑

n=1

|Λn|2 − |Λn−1|2
n2σ

,

where Λn :=
∑n

k=1 λk, Λ0 := 0.

If, in addition, all the coefficients λn are real, then

(5) ιλ(σ) =

∫ ∞

0

∣

∣

∣

λ(s)

s

∣

∣

∣

2

dτ =
π

2σ

∞
∑

n=1

Λ
2
n − Λ

2
n−1

n2σ
.

Note that, by Dirichlet’s test [9], the final series in (5) is convergent for all σ > 0

when Λn is bounded, but we cannot automatically guarantee that it is equal to the

integral in this case, or even that the integral is finite. Simple continuation arguments

will not work. Of course, similar difficulties arise with regard to (3) and (4). This in

part motivates the first example and the following section.

It is, however, easy now to check that

〈a, b〉σ :=
1

2

∫ ∞

−∞

a(s) b(s)

σ2 + τ 2
dτ

defines an extended-value inner product on the space of Dirichlet series such that

〈α, α〉σ = ια(σ), which is typically finite for σ large enough.

In the sequel, we let Lµ(s) :=
∑∞

n=1( µ
n

)n−s denote the primitive L-function corre-

sponding to the Kronecker symbol ( µ
n

), [3]. Below, ⌊x⌋ is the integer part and ⌈x⌋ is

the truncation of x, so that

⌈x⌋ =

{

⌊x⌋ when x ≥ 0,

⌈x⌉ when x < 0.

As usual, {x} := x − ⌊x⌋ denotes the fractional part of x.
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14 D. Borwein and J. Borwein

Example 1 For the Riemann zeta function (ζ = L1), and for σ > 1, Corollary 1

applies and yields
σ

π
ιζ(σ) = ζ(2σ − 1) − 1

2
ζ(2σ),

as λn = 1 and Λn = n. By contrast it is known [6, (69)] that on the critical line

s =
1
2

+ iτ
1

2 π
ιζ

( 1

2

)

= log(
√

2 π) − 1

2
γ.

More broadly, for 0 < σ < 1, Crandall (recorded in [6]) has found that

(6) ιζ(σ) = π

∫ 1

0

∞
∑

n=0

θ2

(n + θ)1+2σ
dθ = π

∫ 1

0

θ2ζ(1 + 2σ, θ) dθ,

where

ζ(s, a) :=

∞
∑

n=0

(n + a)−s

is the Hurwitz zeta function, which is easy to compute. This devolves from van der

Pol’s representation

(7)
ζ(s)

s
= −

∫ ∞

−∞

e−σω
(

eω − ⌊eω⌋
)

e−iτω dω, s = σ + iτ with 0 < σ < 1.

One way to obtain identity (7) is to note that

∫ ∞

−∞

e−sω(eω − ⌊eω⌋) dω =

∫ ∞

0

t−s−1(t − ⌊t⌋) dt =

∞
∑

n=0

∫ n+1

n

t−s−1(t − ⌊t⌋) dt

=

∫ 1

0

θ ζ(1 + s, θ) dθ =

∞
∑

n=0

∫ 1

0

θ (θ + n)−s−1 dθ

= −1

s
lim

N→∞

(

N
∑

n=1

1

ns
− N1−s

1 − s

)

,

on integrating once by parts. Now set

σN :=

N
∑

n=1

1

ns
− N1−s

1 − s

and observe that we have shown that σN converges to some number σ∞. Further,

σ2N − 21−s σN =

2N
∑

n=1

1

ns
− 2

N
∑

n=1

1

(2n)s
=

2N
∑

n=1

(−1)n+1

ns
→ (1 − 21−s) ζ(s),

which implies that σ∞ = ζ(s), as required.
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Expansions of L-Series 15

Another way to establish (7) (kindly suggested by David Bradley) is to start with

the standard identity

ζ(s)

s
=

1

s − 1
−

∫ ∞

1

xs−1(x − ⌊x⌋) dx,

which can easily be derived under the restriction ℜs > 1 and then extended by an-

alytic continuation to the punctured half-plane {s ,ℜs > 0, s 6= 1}. This, together

with the identity

1

s − 1
= −

∫ 1

0

xs−1(x − ⌊x⌋) dx,

which is valid for ℜs < 1, yields (7) via the change of variable x = eω.

We now write (7) as a Fourier transform:

ζ(s)

s
= −Fτ

(

e−σω{eω}
)

and so obtain for 0 < σ < 1,

2ιζ(σ) =

∫ ∞

−∞

∣

∣

∣

ζ(s)

s

∣

∣

∣

2

dτ = 2π

∫ ∞

−∞

e−2σω|eω − ⌊eω⌋|2 dω,

from the L2 Plancherel theorem [9].

It follows that

∫ ∞

−∞

e−2σω|eω − ⌊eω⌋|2 dω =

∫ ∞

0

t−2σ−1|t − ⌊t⌋|2 dt

=

∞
∑

n=0

∫ n+1

n

t−2σ−1|t − ⌊t⌋|2 dt =

∞
∑

n=0

∫ 1

0

θ2 (θ + n)−2σ−1 dθ

=

∫ 1

0

θ2

∞
∑

n=0

(θ + n)−2σ−1 dθ,

as required to yield (6). Note that all terms are absolutely convergent, which legiti-

mates the operations. We have also established, inter alia, that for 0 < σ < 1,

1

2π

∫ ∞

−∞

∣

∣

∣

∫ 1

0

θζ(1 + s, θ) dθ
∣

∣

∣

2

dτ =

∫ 1

0

θ2ζ(1 + 2σ, θ) dθ.

Moreover, reversing the order of integration and summation above leads to

ιζ(σ) = π

∞
∑

n=0

∫ 1

0

θ2

(n + θ)1+2σ
dθ = − π

2σ

( 2 ζ(2σ − 1)

2σ − 1
+ ζ(2σ)

)
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16 D. Borwein and J. Borwein

which in the limit as σ → 1
2

recaptures the evaluation quoted above. Recapitulating,

we have

(8)
σ

π
ιζ(σ) =

{

− 1
2
ζ(2σ) − ζ(2σ−1)

2σ−1
0 < σ < 1,

− 1
2
ζ(2σ) + ζ(2σ − 1) 1 < σ < ∞.

There are similar formulae for s 7→ ζ(s− k) with k integral. For instance, applying

the result in (5) with ζ1 := t 7→ ζ(t + 1) yields

1

π

∫ ∞

0

|ζ(3/2 + iτ )|2
1/4 + τ 2

dτ =
1

π
ιζ1

( 1

2

)

= 2ζ(2, 1) + ζ(3) = 3 ζ(3),

on using Euler’s result (see [4]) that ζ(2, 1) :=
∑∞

n=2
1

n2

∑n−1
k=1

1
k

= ζ(3).

Example 2 For the alternating zeta function, α := s 7→ (1 − 21−s)ζ(s), we recover,

as in [7], that
σ

π
ια(σ) =

1

2
α(2σ),

as λn = (−1)n+1, Λn = (1 − (−1)n)/2 and Λ
2
n − Λ

2
n−1 = (−1)n+1/2.

Set σ := 1/2. Then

|α(1/2 + it)|2
1/4 + t2

=
|1 − 21/2−i t |2 |ζ(1/2 + i t)|2

1/4 + t2

=
(

3 − 2
√

2 cos(t ln(2))
) |ζ(1/2 + i t)|2

1/4 + t2

is precisely the integrand in (1). Thus, since α(2σ) = log 2, we see that ια(1/2) =

π log 2 is the evaluation in [7]. Note that to justify the exchange of sum and integral

implicit in (5), we should have to analyse more carefully the integrand, since 1/2 is

below the abscissa of absolute convergence of the series, and note that this would not

have been legitimate in Example 1 because of (8). This motivates the approach in the

section below on the Hurwitz zeta function.

Example 3

(a) For the Catalan zeta function (β = L−4), and for σ > 1 :

σ

π
ιβ(σ) =

1

2
β(2σ),

as λ2n = 0, λ2n+1 = (−1)n and again Λ
2
n − Λ

2
n−1 = λn.

(b) For L−3, the same pattern holds, in that σ
π ιL

−3
(σ) =

1
2

L−3(2σ), but not for

L5, L−7, and so on.

https://doi.org/10.4153/CMB-2007-002-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-002-0


Expansions of L-Series 17

(c) In general the series L±d does not lead to output which is again a primitive

L-series modulo d. For example,

σ

π
ιL5

(σ) = −
∑

5∤n

(−1)n mod 5

n2σ
, and

σ

π
ιL

−8
(σ) = L−8(2σ) − 1

2
L−4(2σ).

These are not character sums, though always the coefficients repeat modulo d.

(d) Finally, let ϑ := s 7→
(

1 + 2−s
)−1

. Then again σ
π ιϑ(σ) =

1
2
ϑ(2σ).

For each of these examples, which are discussed further in [2], the defect of Theo-

rem 1 and Corollary 1 is that, as we have seen, they only directly apply when σ is large

enough. The van der Pol approach offers a nice alternative, especially in the critical

strip.

3 van der Pol’s Approach to Hurwitz zeta

Recall that

ζ(s, a) :=

∞
∑

n=0

1

(n + a)s
, a > 0,

is initially defined for ℜs > 1 and appropriately analytically continued for ℜs < 1.

Thus, ζ(s) = ζ(s, 1). We first work out a Fourier transform representation for ζ(a, s).

Proposition 1 For 1 ≥ a > 0 and 1 > ℜs > 0, we have

(9)

∫ ∞

−∞

e−sω(eω − ⌈eω − a⌋) dω = −1

s
ζ(s, a + 1).

Proof (i) Observe that the formula uses the truncation of ew − a and not the floor,

and that the two only differ in the interval −∞ < w < log a. We have

(10)
∫ ∞

log a

e−sω{eω − a} dω =

∫ ∞

a

t−s−1(t − a − ⌊t − a⌋) dt

=

∞
∑

n=0

∫ n+1+a

n+a

t−s−1(t − a − ⌊t − a⌋) dt

=

∫ 1

0

θ ζ(1 + s, θ + a) dθ =

∞
∑

n=0

∫ 1

0

θ (θ + n + a)−s−1 dθ

= −1

s
lim

N→∞

(

N
∑

n=1

1

(n + a)s
− (N + a)1−s − a1−s

1 − s

)

= −1

s
ζ(s, a + 1) − a1−s

s(1 − s)
,

this evidently being true for ℜs > 1 and so for 0 < ℜs < 1 by analytic continuation:

both sides of (10) clearly being analytic for ℜs > 0. Incidentally, we have shown that
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18 D. Borwein and J. Borwein

(10) is valid for ℜs > 0, a > 0. The additional restriction ℜs < 1, a ≤ 1 is needed

for the next part of the proof.

It follows from (10) that

∫ ∞

−∞

e−sω(eω − ⌈eω − a⌋) dω

=

∫ ∞

log a

e−sω({eω − a} + a) dω +

∫ log a

−∞

e(1−s)ω dω

= −1

s
ζ(s, a + 1) − a1−s

s(1 − s)
+

a1−s

s
+

a1−s

1 − s
= −1

s
ζ(s, a + 1),

and this establishes (9).

(ii) Another proof of equation (10) (suggested by the David Bradley) is to proceed

from Theorem 12.2 in Apostol [1, p. 269] which states that for 0 < a ≤ 1, ℜs > 0,

N = 0, 1, 2 . . . ,

(11) ζ(s, a) :=

N
∑

n=0

1

(n + a)s
− (N + a)1−s

s − 1
− s

∫ ∞

N

{x}
(x + a)s+1

dx.

Putting N = 0 in (11) and making the change of variable x = eω − a gives equa-

tion (10).

Proposition 2 For ℜs > 0 and a ≥ 0, we have

σ(s, a) := lim
N→∞

(

N
∑

n=1

1

(n + a)s
− (N + a)1−s

1 − s

)

= ζ(s, a + 1).

Another form of the limit is

σ(s, a) = −s

∫ 1

0

tζ(1 + s, a + t) dt,

and indeed σ(s, 0) = ζ(s).

Proof The case a > 0 follows immediately from the proof of (10) in part (i) above,

and the case a = 0 was treated in the earlier proof of (7). We can also derive the case

1 ≥ a > 0 by letting N → ∞ in (11) and observing that ζ(s, a) − a−s
= ζ(s, a + 1).

Most of what follows concerns Dirichlet series having coefficients which repeat

modulo N .
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Expansions of L-Series 19

Theorem 2 Let λ(s) :=
∑∞

n=0 λnn−s, s = σ + iτ , with coefficients λn repeating

modulo N (i.e., λN+n = λn). Then for 0 < σ < 1,

(12) −
∫ ∞

−∞

e−σω
N

∑

k=1

λk

( eω

N
−

⌈ eω + N − k

N

⌋)

e−iτω dω =
λ(s)

s
.

Proof Observe first that

(13) λ(s) =

∞
∑

m=0

N
∑

k=1

λk

(mN + k)s
=

1

N s

N
∑

k=1

λkζ
(

s,
k

N

)

;

strictly this is true for σ > 1 in the first place, and the equating of the extreme terms

for σ > 0 follows by analytic continuation.

It follows from (9) that for k = 1, 2, . . . , N ,

− 1

N s

∫ ∞

−∞

e−σω
(

eω −
⌈

eω − k

N

⌋)

e−iτω dω =
1

s N s
ζ(s,

k

N
) − 1

s ks
.

We now change variables, w 7→ ω − log N , to obtain

−
∫ ∞

−∞

e−σω
( eω

N
−

⌈ eω − k

N

⌋)

e−iτω dω =
1

s N s
ζ
(

s,
k

N

)

− 1

sks
,

so that

(14) −
∫ ∞

−∞

e−σω
( eω

N
−

⌈ eω + N − k

N

⌋)

e−iτω dω =
1

s N s
ζ
(

s,
k

N

)

since
⌈ eω + N − k

N

⌋

−
⌈ eω − k

N

⌋

=

{

1 when w ≥ log k,

0 when w < log k.

Summing (14) for k = 1, 2, . . . , N , and applying (13) yields (12), as desired.

We are now in position to prove the following companion to Theorem 1, in which

we use the following notation: given a Dirichlet series λ(s) :=
∑∞

n=1 λnn−s with

coefficients repeating modulo N, we define an associated kernel

WN (λ, t) :=

N
∑

k=1

λk

⌈

t +
N − k

N

⌋

.

Theorem 3 Suppose that the coefficients of the two Dirichlet series

a(s) :=

∞
∑

n=1

ann−s b(s) :=

∞
∑

n=1

bnn−s
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20 D. Borwein and J. Borwein

repeat modulo N, that An :=
∑n

k=1 ak, Bn :=
∑n

k=1 bk, A0 := B0 := 0, and that

ιa,b(σ) :=
1

2

∫ ∞

−∞

a(s) b(s)

σ2 + τ 2
dτ

with s = σ + iτ . Suppose further that AN = BN = 0. Then for 0 < σ < 1,

(15) ιa,b(σ) =
π

N2σ

∫ 1

0

ζ(2σ + 1, t) WN(a, t) WN(b, t) dt.

Moreover, for all σ > 0,

(16) ιa,b(σ) =
π

2σ

∞
∑

n=1

AnBn − An−1Bn−1

n2σ
.

Proof Suppose first that 1 > σ > 0. Since AN = BN = 0, it follows from Theorem 2

that

a(s)

s
=

∫ ∞

−∞

e−σω
N

∑

k=1

ak

⌈ eω + N − k

N

⌋

e−iτω dω,

with a corresponding formula for b(s)/s. Hence, by the L2 Plancherel theorem [9],

(17)

∫ ∞

−∞

a(s)b(s)

σ2 + τ 2
dτ

= 2π

∫ ∞

−∞

e−2σω
(

N
∑

k=1

ak

⌈ eω + N − k

N

⌋)(

N
∑

k=1

bk

⌈ eω + N − k

N

⌋)

dω

= 2π
N

∑

n=0

∫ N

0

1

(Nn + u)2σ+1

(

N
∑

k=1

ak

⌈ u

N
+

N − k

N

⌋)

×
(

N
∑

k=1

bk

⌈ u

N
+

N − k

N

⌋)

du

=
2π

N2σ

∫ 1

0

ζ(2σ + 1, t)
(

N
∑

k=1

ak

⌈

t +
N − k

N

⌋)

×
(

N
∑

k=1

bk

⌈

t +
N − k

N

⌋

)

dt

=
2π

N2σ

∫ 1

0

ζ(2σ + 1, t) WN (a, t)WN (b, t) dt.

This establishes (15). We now denote the characteristic function of the interval

(k/N, (k + 1)/N) by χk and observe that since AN = BN = 0, we can use summation
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by parts to re-express the kernels as follows:

WN(a, t) =

N−1
∑

k=1

Akχk(t), WN (b, t) =

N−1
∑

k=1

Bkχk(t).

Thus,

WN(a, t)WN (b, t) =

N−1
∑

k=1

AkBkχk(t).

Consequently, by (15),

∫ ∞

−∞

a(s)b(s)

σ2 + τ 2
dτ =

2π

N2σ

N−1
∑

k=1

AkBk

∫ k+1

N

k

N

ζ(2σ + 1, t) dt

=
π

σ

∞
∑

n=0

N−1
∑

k=1

AkBk

( 1

(Nn + k)2σ
− 1

(Nn + k + 1)2σ

)

=
π

σ

∞
∑

n=0

N
∑

k=1

AkBk − Ak−1Bk−1

(Nn + k)2σ
=

π

σ

∞
∑

m=1

AmBm − Am−1Bm−1

m2σ
,

and this shows that (16) holds when 0 < σ < 1.

By Theorem 1, (16) also holds when σ > 1, since the Dirichlet series defining a(s)

and b(s) are absolutely convergent in this range. Further, since AnBn − An−1Bn−1

is bounded, by Dirichlet’s test the series in (16) is absolutely convergent and thus

continuous as a function of σ for σ > 0. Finally, it is easy to show by means of

partial summation that a(s) and b(s) are analytic in the disk {s , |s − 1| < 1
4
}, and

hence bounded therein by a constant M, say. It follows by Lebesgue’s theorem on

dominated convergence that ιa,b(σ) is continuous for 3
4

< σ < 5
4
, and hence that

(16) holds for all σ > 0.

As an immediate consequence we have the following companion to Corollary 1.

Corollary 2 Suppose that the coefficients of the Dirichlet series λ(s) :=
∑∞

n=1 λnn−s

repeat modulo N, and that Λn :=
∑n

k=1 λk, Λ0 := 0. Suppose further that ΛN = 0.

Then for s = σ + iτ with σ > 0 we have

ιλ(σ) :=
1

2

∫ ∞

−∞

∣

∣

∣

λ(s)

s

∣

∣

∣

2

dτ =
π

2σ

∞
∑

n=1

|Λn|2 − |Λn−1|2
n2σ

,

where Λn :=
∑

n

k=1 λk, Λ0 := 0. If, in addition, all the coefficients λn are real, then

ιλ(2σ) =

∫ ∞

0

∣

∣

∣

λ(s)

s

∣

∣

∣

2

dτ =
π

σ

∞
∑

n=1

Λ
2
n − Λ

2
n−1

n2σ
.
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Note that for N = 2, λ1 = 1 = −λ2 we reobtain from Corollary 2, a rigorous

form of the original evaluation [8].

Example 4 Recall, as in [4], that

ζ(u, v) :=

∞
∑

n=2

(−1)n

nu

n−1
∑

k=1

1

kv
,

while

ζ(u, v) :=

∞
∑

n=2

1

nu

n−1
∑

k=1

(−1)k

kv
, ζ(u, v) :=

∞
∑

n=2

(−1)n

nu

n−1
∑

k=1

(−1)k

kv
.

The same approach as in Example 1 applied to (5) and (16) produces

1

π

∫ ∞

0

α(3/2 + iτ ) α(3/2 + iτ )

1/4 + τ 2
dτ = 2 ζ(2, 1) + ζ(3) = 3ζ(2) log 2 − 9

4
ζ(3),

and

1

2π

∫ ∞

−∞

α(3/2 + iτ ) ζ(3/2 + iτ )

1/4 + τ 2
dτ = ζ(2, 1) + ζ(2, 1) + α(3)

=
9

8
ζ(2) log 2 − 3

4
ζ(3),

as companions to

1

π

∫ ∞

0

ζ(3/2 + iτ )ζ(3/2 + iτ )

1/4 + τ 2
dτ = 3 ζ(3),

since, by techniques discussed in [4, 5],

ζ(2, 1) =
1

8
ζ(3), ζ(2, 1) = ζ(3)− 3

2
ζ(2) log 2, ζ(2, 1) =

3

2
ζ(2) log 2− 13

8
ζ(3).

4 Final Remarks

Many other similar results obtain. For example:

∫ ∞

−∞

e−2σω{max(eω − a, 0)}2 dω =

∞
∑

n=0

∫ n+1+a

n+a

t−2σ−1|{t − a}|2 dt

=

∞
∑

n=0

∫ 1

0

θ2(θ + n + a)−2σ−1 dθ

=

∫ 1

0

θ2 ζ(1 + 2σ, θ + a) dθ.
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While (4) and (16) give an effective way of evaluating the integral, directly evalu-

ating the integral numerically to high precision presents a greater challenge. This is

largely because of the severe oscillations of the integrand. The issue appears to lie in

estimating the integrand well and so is intrinsically non-trivial.
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