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(Received 15 August 2007)

Abstract

We define the notion of minor for weighted graphs. We prove that with this minor relation, the set of
weighted graphs is directed. We also prove that, given any two weights on a connected graph with the
same total weight, we can transform one into the other using a sequence of edge subdivisions and edge
contractions.
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1. Introduction

The notion of minor is a central one in graph theory. Of course, the study of minor-
closed classes of graphs culminated with the proof by Robertson and Seymour [2] of
Wagner’s conjecture. For an excellent survey, see Lovász’s paper [1].

In this paper we define the notion of minor for weighted graphs. Since, given
any connected network, it is not desirable to disconnect it, we shall work only with
connected graphs. And since, when defining a weight, one has to choose a unit, we
can restrict ourselves to graphs of total weight 1. This is the same as identifying two
weights if one of them is a multiple of the other. The two operations used to define
a minor, for weighted graphs, are the two standard ones: edge contraction and edge
deletion. One has to define what happens to the flow through a deleted or contracted
edge. The definition that we adopt here is, we think, the most natural one. Namely, the
flow is distributed proportionally to the adjacent edges. It can be seen easily that with
this definition, Wagner’s conjecture does not hold.

Our first theorem states that with this minor relation, the set of weighted graphs is
directed. This is not obvious since a subgraph is no longer a minor. In fact, we prove
that for any two weighted graphs, we can find another one which has them both as
minors and subgraphs.

In the second part of the paper we show that, given any two weights on a connected
graph with the same total weight, we can transform one into the other using a sequence
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of edge subdivisions and edge contractions. However, in general, we cannot perform
all the edge subdivisions at the beginning and then the edge contractions. All proofs
are constructive.

2. Results

In what follows we shall work with simple (without loops or multiple edges),
undirected and connected graphs. By a ‘weighted graph’ we mean a pair (G, c) where
G is a graph, whose set of vertices and edges will be denoted by V (G) and E(G)

respectively, and c : E(G) → (0, ∞) is the weight function. If H is a subgraph of G,
we denote by c(H) the total weight of H , that is, c(H) =

∑
e∈E(H) c(e). If A is a

vertex of G, we denote by c(A) the sum of the weights of all edges at A.

DEFINITION 1. Given two weighted graphs (G1, c1) and (G2, c2), we say that
they are equivalent and we write (G1, c1) ∼ (G2, c2), if (G1, [1/(c1(G1))]c1) and
(G2, [1/(c2(G2))]c2) are isomorphic. We denote by [(G, c)] the equivalence class
of (G, c).

DEFINITION 2. For a weighted graph (G, c) we define the following two operations.
(1) Deleting an edge. This operation is allowed only if the resulting graph is

connected, that is, the edge is not a bridge. The weight of the deleted edge is
redistributed proportionally to the adjacent edges. This means that if the deleted edge
is e and its adjacent edges are e1, e2, . . . , ek , then their new weights will be

ce(e j ) = c(e j ) +
c(e)c(e j )

c(e1) + c(e2) + · · · + c(ek)
.

The weight of an edge not adjacent to e remains unchanged. The resulted graph is
denoted by (G − e, ce).

(2) Contracting an edge e. The new weights are defined as follows:

(a) the weight of an edge not adjacent to the one that is contracted remains
unchanged;

(b) the weight of the contracted edge is redistributed proportionally to the adjacent
edges;

(c) if the contraction gives rise to multiple edges, they are identified and their
weights are added together.

If e is the edge that is contracted the resulting graph is denoted by (G/e, c/e).
A weighted graph (G1, c1) is called a minor of (G, c) if (G1, c1) can be obtained

from (G, c) after a sequence of edge deletions or contractions.

REMARKS.

(1) If (G, c) is a weighted graph and e is an edge which is not a bridge then
ce(G − e) = c(G).

(2) If (G, c) is a weighted graph and e is an edge then c/e(G/e) = c(G).
(3) If G is a graph, e is an edge and c and c̃ are two weight functions such that

(G, c) ∼ (G, c̃) then (G − e, ce) ∼ (G − e, c̃e) and (G/e, c/e) ∼ (G/e, c̃/e).
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This last property allows us to define the notion of minor for ∼-equivalence classes.
The subgraph relation for equivalence classes is obviously well defined.

DEFINITION 3.

(a) Given two weighted graphs (G1, c1) and (G2, c2), we say that [(G1, c1)] is a
minor of [(G2, c2)] if (G1, c1) is equivalent to a minor of (G2, c2).

(b) Given two weighted graphs (G1, c1) and (G2, c2), we say that [(G1, c1)] is a
subgraph of [(G2, c2)] if (G1, c1) is equivalent to a subgraph of (G2, c2).

OTHER REMARKS.

(4) The minor relation is an order relation on the set of equivalence classes of
weighted graphs.

(5) The minor relation is not a well-quasi-ordering on the set of equivalence classes
of weighted graphs: for example, let G = K3, denote by A, B, C the vertices of
G, and for k ∈ N∗ define ck : E(G) → (0, ∞) by ck({A, B}) = ck({A, C}) = 1,
ck({B, C}) = k. Then {[(G, ck)]} is an infinite antichain.

(6) The equivalence class of a weighted subgraph is not necessarily a minor of the
equivalence class of the weighted graph. For example, if (G, c) and (G1, c1) are
the graphs below then [(G1, c1)] is a subgraph of [(G, c)] but not a minor.

(7) If (G, c) is a weighted graph, e is an edge which is not a bridge and e1 and e2
are edges adjacent to e then ce(e1)/(ce(e2)) = c(e1)/(c(e2)).

(8) If (G, c) is a weighted graph, e is an edge which will not produce multiple edges
by contraction and e1 and e2 are edges adjacent to e then

c/e(e1)/(c/e(e2)) = c(e1)/(c(e2)).

PROPOSITION 1. Suppose that (G, c) is a weighted graph. Let Ĝ be the
cone on G, that is, V (Ĝ) = V (G) ∪ {X} where X 6∈ V (G) and E(Ĝ) = E(G)

∪
⋃

A∈V (G){{A, X}}. Then there exists ĉ : E(Ĝ) → (0, ∞) a weight function for Ĝ
such that:

(a) [(G, c)] is a subgraph of [(Ĝ, ĉ)];
(b) [(G, c)] is a minor of [(Ĝ, ĉ)];
(c) ĉ(Ĝ) = 9̂c(G).

https://doi.org/10.1017/S0004972708000397 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000397
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PROOF. Assume that the vertices of G are A1, A2, . . . , An . We define the graphs
G1, G2, . . . , Gn as follows. For 1 ≤ j ≤ n: V (G j ) = V (Ĝ) = {X, A1, . . . , An} and
E(G j ) = E(G) ∪ {{X, A1}, . . . , {X, A j }}. Hence Gn = Ĝ. For j = 1, 2, . . . , n we
shall define inductively the weight c j on G j such that G is a minor of G1 and G j is a
minor of G j+1 for j = 1, 2, . . . , n − 1. We define first c1:

(i) we set c1({X, A1}) = (2/3)c(A1);
(ii) if e is an edge of G such that A1 is not an end of e, we set c1(e) = c(e);
(iii) if A1 is an end of e, we set c1(e) = (1/3)c(e).

Contracting the edge {X, A1} of G1, one obtains the graph G. The weight of an
edge e which is not an edge at A1 remains unchanged, that is, its weight is c1(e) = c(e)
and the weight of an edge e at A1 will be

c1(e) +
c1(e)c1({X, A1})

c1(A1) − c1({X, A1})
=

1
3

c(e) +
(1/3)c(e)(2/3)c(A1)

c(A1) − (2/3)c(A1)

=
1
3

c(e) +
2
3

c(e) = c(e).

This means that (G, c) is a minor of (G1, c1).
We assume now that we have defined the weights c1, . . . , c j and we shall

define c j+1:

(i) c j+1({X, A j+1}) = (2/3)(c j (A j+1 + c j (X));
(ii) if the edge e is not adjacent to {X, A j+1} then c j+1(e) = c j (e);
(iii) if e is adjacent to {X, A j+1} then c j+1(e) = (1/3)c j (e).

A computation similar to the one above shows that deleting {X, A j+1} one obtains
(G j , c j ), that is, (G j , c j ) is a minor of (G j+1, c j+1).

We set ĉ = cn . It follows that [(G, c)] is a minor of [(Ĝ, ĉ)].
It remains to note that when we define c j , the weight of an edge of G which is

not an edge at A j remains constant and the weight of an edge at A j is multiplied by
1/3. Since an edge has two vertices, its weight in Gn will be 1/9 of its initial weight.
In other words, for each e ∈ E(G), ĉ(e) = (1/9)c(e). This means that [(G, c)] is a
subgraph of [(Ĝ, ĉ)]. At the same time ĉ(Ĝ) = c(G), hence ĉ(Ĝ) = 9̂c(G). 2

THEOREM 2. For any two connected weighted graphs (G1, c1) and (G2, c2) there
exists a connected weighted graph (G, c) such that [(G1, c1)] and [(G2, c2)] are both
minors and subgraphs of [(G, c)].

PROOF. Multiplying each weight by a constant (which will not change their
equivalence class), we can assume that c1(G1) = c2(G2) = 9. Let us assume that
V (G1) = {A1, . . . , As} and V (G2) = {B1, . . . , Bp}. We consider the cones on G1
and G2, V (Ĝ1) = {X1, A1, . . . , As} and V (Ĝ2) = {X2, B1, . . . , Bp}, respectively.
We define the weights ĉ1 and ĉ2 on Ĝ1 and Ĝ2 as in the previous proposition. Hence
ĉ1(G1) = ĉ2(G2) = 1, ĉ1(Ĝ1) = ĉ2(Ĝ2) = 9. Consider the graph G given by:
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(i) V (G) = V (Ĝ1) ∪ V (Ĝ2);
(ii) E(G) = E(Ĝ1) ∪ E(Ĝ2) ∪ {{X1, X2}}.

We define a weight c on G as follows:

(i) if e1 ∈ E(G1), we set c(e1) := ĉ1(e1), and if e2 ∈ E(G2), c(e2) := ĉ2(e2);
(ii) c({X1, Ai }) := (1/8)̂c1({X1, Ai }) and c({X2, B j }) := (1/8)̂c2({X2, B j });
(iii) c({X1, X2}) := 5.

Note that c(Ĝ1) = c(Ĝ2) = 2 and hence c(G) = 9. It is clear that [(G1, c1)] and
[(G2, c2)] are subgraphs of [(G, c)]. It remains to be checked that they are also minors.
We shall show this only for G1, the proof for G2 being obviously the same.

We contract one by one all edges of Ĝ2. This will have no effect on the weight
of Ĝ1. As the total weight remains unchanged, at the end of the process, the weight of
{X1, X2} will be 5 + c(Ĝ2) = 7. Then, if we contract the edge {X1, X2} we obtain Ĝ1.
The weight of an edge of G1 does not change. Since the sum of the weights of
all edges adjacent to {X1, X2} is (1/8)̂c1(X1) = 1, the weight of an edge {X1, A j }

will be

c({X1, A j }) +
c({X1, A j })c({X1, X2})

1
=

1
8

c1({X1, A j }) +
(1/8)c1({X1, A j }) · 7

1
= c1({X1, A j }).

Therefore, contracting {X1, X2}, we obtain exactly (Ĝ1, ĉ1). In other words,
(Ĝ1, ĉ1) is a minor of (G, c). As (G1, c1) is a minor of (Ĝ1, ĉ1), it follows that
(G1, c1) is a minor of (G, c). 2

Next we shall introduce another operation for weighted graphs. As before (see
Definition 2), this operation is a familiar one for (non-weighted) graphs.

(3) Subdividing an edge by a new node. This means that given a weighted
graph (G, c), an edge {A, B} of G and a number k ∈ (0, 1), we define the weighted
graph (G A,B,k, cA,B,k) by: V (G A,B,k) = V (G) ∪ {X} where X 6∈ V (G), E(G A,B,k)

= (E(G) \ {{A, B}}) ∪ {{A, X}, {X, B}}, cA,B,k(e) = c(e) if e ∈ E(G) \ {{A, B}}

and cA,B,k({A, X}) = kc({A, B}), cA,B,k({B, X} = (1 − k)c({A, B}).
A natural question then arises as follows: given a graph G and c and d , two weights

on G, is it possible to perform a sequence of operations of type (3) on (G, c) such that,
denoting by (G̃, c̃) the resulting graph, [(G, d)] is a minor of [(G̃, c̃)]? And, if the
answer is yes, what is the minimum number of edge subdivisions that is needed?

It turns out that the answer is no, as the following example shows:
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Indeed, given a vertex A of a graph G let us call an A-straight path to a terminal
vertex a path of the form AA1 . . . An where An is a terminal vertex and each A j , for
1 ≤ j ≤ n − 1, has degree 2. If (G, c) is a weighted graph, we denote by sdegc(A)

the sum of total weights of all A-straight paths to a terminal vertex and all edges at A
that are not part of a A-straight path to a terminal vertex. Note that if e is a edge of
G then sdegc(A) ≤ sdegc/e(A). (If e is of the form {A, B}, the vertex obtained by the
identification of A and B is still denoted by A.)

For the above example, suppose that (G̃, c̃) is a graph obtained from (G, c) using a
finite number of edge subdivisions. It is clear that sdegc̃(A) ≥ 12.

If H is any tree and f is an edge of H then H/ f is also a tree. Since G̃ is a
tree, when defining minors of (G̃, c̃), deleting an edge is not an allowed operation
(according to our definition). Suppose that (G, c1) is a minor of (G̃, c̃). It follows that
(G, c1) is obtained from (G̃, c̃) using a sequence of edge contractions. Note that the
only two vertices of G̃ of degree at least 3 are A and B. This implies that none of these
contractions will identify A and B. It follows that sdegc1

(A) ≥ 12 > 9 = sdegd(A).
In other words, (G, d) cannot be a minor of (G̃, c̃).

On the positive side, we can show that there exists a sequence of edge subdivisions
and edge contractions that will transform (G, c) in (G, d) provided that c(G) = d(G).
Moreover, this can be done using at most |E(G)| − 1 edge subdivisions.

NOTATION. For a graph G, we denote by rd(G) the number 2|E(G)| − |V (G)|

=
∑

v∈V (G)(deg(v) − 1).

By a terminal vertex we understand a vertex of degree 1.

DEFINITION 4. Suppose that G is a graph, A ∈ V (G) and {A, B1}, . . . , {A, Bk} are
the edges at A. We call the blow-up of G at A, the graph G̃ A defined as follows:

(i) V (G̃ A) = (V (G) \ {A}) ∪ {A1, . . . , Ak} where A1, A2, . . . , Ak 6∈ V (G);
(ii) E(G̃ A) = (E(G) \ {{A, B1}, . . . , {A, Bk}}) ∪ {{A1, B1}, . . . , {Ak, Bk}}.

REMARKS.

(1) If A is a vertex of G with deg(A) = k, then rd(G̃ A) = rd(G) − (k − 1).
(2) A weight on G induces a weight on G̃ A and vice versa (simply put c({A j , B j })

= c({A, B j })).

LEMMA 3. Suppose that G is a graph such that V (G) = {X, A1, . . . , An} and
E(G) = {{X, A1}, . . . , {X, An}}, and c and d are two weight functions on G such that
c(G) = d(G). Then there exists a sequence of edge subdivisions and edge contractions
that will transform (G, c) into (G, d). Moreover, this can be done using at most n − 1
edge subdivisions and the edge contractions will not involve the terminal vertices
A1, A2, . . . , An .
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PROOF. We begin by introducing notation. If H is a graph with E(H)

= {e1, . . . , ep} and u and v two weight functions on H such that (u(e1)/v(e1)) = · · ·

= (u(ek)/v(ek)) < (u(e j )/v(e j )) for every j > k, we set m(u, v) := n − k. Note that
0 ≤ m(u, v) ≤ n − 1.

We shall prove by induction on m(c, d) that we can transform c into d using at most
m(c, d) edge subdivisions and the contractions do not involve terminal vertices.

If m(c, d) = 0, that is, all ratios c j/d j are equal, since
∑

c j =
∑

d j it follows that
c j = d j for all j and there is nothing to prove.

We assume that the statement is true for m(c, d) = p − 1 and we prove it for
m(c, d) = p. Let k = n − p, put c({X, Ai }) = ci and d({X, Ai }) = di and assume
that (c1/d1) = (c2/d2) = · · · = (ck/dk) < (ck+1/dk+1) ≤ (ck+2/dk+2) ≤ (cn/dn).

We add the vertex Pk+1 on the edge {X, Ak+1} such that

c({Ak+1, Pk+1}) = c1 · dk+1/(d1), c({X, Pk+1}) = ck+1 − c1 · dk+1/(d1).

Note that since (c1/d1) < (ck+1/dk+1) the weight of {X, Pk+1} will be positive. We
denote by c̃ the weight obtained after the contraction of {X, Pj }. Since this contraction
will not create multiple edges, the ratios of those edges that are adjacent to {X, Pk+1}

will not change. The vertex obtained by identifying X and Pk+1 will be denoted by X
as well. Hence:

(a) for j ≤ k, (c̃({X, A j })/c̃({X, A1})) = (c j/c1) = (d j/d1);
(b) (c̃({X, Ak+1})/c̃({X, A1})) = (c({A1, P1})/c1) = (c1 · dk+1/d1) · (1/c1)

= (dk+1/d1);
(c) for j > s > k + 1, from (c̃({X, A j })/c̃({X, A1})) = (c j/c1) and

(c̃({X, As})/c̃({X, A1})) = (cs/c1) we deduce that (c̃({X, A j })/d j )

≥ (c̃({X, As})/ds) > (c̃({X, A1})/d1).

This means that if c̃ j := c̃({X, A j }) then

c̃1

d1
= · · · =

c̃k+1

dk+1
<

c̃k+2

dk+2
≤

c̃k+3

dk+3
≤ · · · ≤

c̃n

dn
.

This shows that m(c̃, d) = p − 1 and we can apply the induction hypothesis. As we
used only one edge subdivision to transform c into c̃, the proof is complete. 2

REMARK. In general we cannot transform c into d using n − 2 or fewer edge
subdivisions. For example, if di = 1 for all i and ci 6= c j for all i, j with i 6= j and if
we use at most n − 2 edge subdivisions then (at least) two edges are not subdivided.
They cannot be contracted either since this will decrease the degree of X . It follows
that the quotient of their weights will remain constant and it cannot be transformed
into 1.

THEOREM 4. If G is a graph with n edges and c and d are two weights on G such that
c(G) = d(G) then there exists a sequence of edge subdivisions and edge contractions
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that will transform (G, c) in (G, d). Moreover, this can be done using at most n − 1
edge subdivisions.

PROOF. For technical reasons, we shall prove that in fact it is possible to transform
c in d such that no contraction will affect a terminal vertex. The proof will be by
induction on rd(G).

If rd(G) = 0, as G is connected, G is just a single edge and there is nothing
to prove.

Assume that the statement is true for rd(G) ≤ k and we shall prove it for rd(G) =

k + 1. We choose a vertex X of G whose degree is at least 2. Let A1, . . . , Am be the
neighbours of X . Let G̃ X be the blow-up of G at X and let X1, . . . , Xm be the new
vertices introduced by the blow-up.

Let G1, G2, . . . , Gs be the connected components of G̃ X and let n j be the number
of edges of G j (it follows that

∑
n j = n). Note that rd(G j ) ≤ k. Assume that

c(G j ) > d(G j ) for j ≤ q and c(G j ) ≤ d(G j ) for q + 1 < j ≤ s. We shall do the
construction in three steps.

Step 1. Let j ≤ q be a fixed index and let {X j,1, . . . , X j,r } = V (G j )

∩ {X1, . . . , Xm}. We define the following weight on G j :

(i) if e is an edge such that e ∩ {X j,1, . . . , X j,r } = ∅ then d j (e) = d(e);
(ii) if e is an edge such that e ∩ {X j,1, . . . , X j,r } 6= ∅ then d j (e) = d(e)

+ (c(G j ) − d(G j ))/r .

Note that since c(G j ) > d(G j ), the weights d j (e) defined as such are positive and
d j (G j ) = c(G j ). We apply the induction hypothesis for G j and the weights c and
d j and we deduce that we can transform the weight c into d j by a sequence of edge
subdivisions and edge contractions, using at most n j − 1 edge subdivisions and such
that the contractions will not involve the terminal vertices of G j . In particular, they
will not involve X j,1, . . . , X j,r .

This last condition guarantees that we can perform all these operations in the
original graph G (with {A j , X} instead of {A j , X j }) without changing the weight
of an edge that is not in the subgraph corresponding to G j .

Step 2. After applying the transformations from Step 1, for j = 1, . . . , q, on (G, c)
we denote by c̃ the new weight. For each graph G j with q + 1 ≤ j ≤ s we choose an
edge {Al j , X j }. We partition the edges of G at X into three subsets:

(i) U =
⋃q

j=1{{Al , X} : Al ∈ V (G j )};
(ii) V = {{Al j , X j } : j = q + 1, . . . , s};
(iii) W = {{X, A1}, {X, A2}, . . . , {X, Am}} \ (U ∪ V).
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Note that at this moment∑
e∈U

c̃(e) =

∑
e∈U

d(e) +

q∑
j=1

(c(G j ) − d(G j ))

=

∑
e∈U

d(e) +

s∑
j=q+1

(d(G j ) − c(G j )).

We consider the graph H given by V (H) = {X, A1, . . . , Am}, E(H)

= {{X, A1}, . . . , {X, Am}}, and on H we consider two weights, c̃ and c1, where c1
is defined as follows:

(i) c1(e) = d(e) if e ∈ U ;
(ii) c1(e) = c̃(e) if e ∈W ;
(iii) c1({Al j , X}) = c̃({Al j , X}) + d(G j ) − c(G j ) for every j , q + 1 ≤ j ≤ s.

Note that all these weights are positive numbers and

c1(H) =

∑
e∈U

d(e) +

∑
e∈V∪W

c̃(e) +

s∑
j=q+1

(d(G j ) − c(G j ))

=

∑
e∈U

c̃(e) +

∑
e∈V∪W

c̃(e) = c̃(H).

Hence, we can apply Lemma 3 and after a sequence of edge subdivisions and
edge contractions we shall transform c̃ into c1. We do this using at most m − 1
edge subdivisions and the contractions will not involve A1, . . . , Am . As before, this
guarantees that we can do the same operations in G without changing anything in the
rest of the graph.

After this step the weight function of each G j for j ≤ q will be exactly d , and for
all j > q the total weight of G j will be d(G j ).

Step 3. We apply the induction hypothesis for each G j , q + 1 ≤ j ≤ s.
What is left to be done now is to notice that during the entire process the

contractions did not involve terminal vertices of G (they were terminal vertices of
G j as well) and to count the number edge subdivisions that were used.

(i) At Step 1 we used, for each j ≤ q at most n j − 1 edge subdivisions, hence
altogether

∑q
j=1(n j − 1).

(ii) At Step 2 we used at most s − 1 edge subdivisions.
(iii) At Step 3 we used, for each j > q at most n j − 1 edge subdivisions, hence

altogether
∑s

j=q+1(n j − 1).

Adding everything together, we used at most
s∑

j=1

(n j − 1) + s − 1 =

s∑
j=1

n j − 1 = n − 1

edge subdivisions. 2
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CEZAR JOIŢA, Institute of Mathematics of the Romanian Academy, PO Box 1-764,
Bucharest 014700, Romania
e-mail: Cezar.Joita@imar.ro
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