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On the Injectivity of C1 Maps
of the Real Plane

Milton Cobo, Carlos Gutierrez and Jaume Llibre

Abstract. Let X : R
2 → R

2 be a C1 map. Denote by Spec(X) the set of (complex) eigenvalues of DX p

when p varies in R
2. If there exists ε > 0 such that Spec(X) ∩ (−ε, ε) = ∅, then X is injective. Some

applications of this result to the real Keller Jacobian conjecture are discussed.

1 Introduction

Let X : R
2 → R

2 be a map of class C1. We shall denote by Spec(X) the set of
(complex) eigenvalues of the derivative DX p when p varies in R

2. We will refer to

X : R
2 → R

2 as a Keller map if X is a polynomial map and the Jacobian determinant
of X is identically equal to one in R

2. It is important to observe that if X : R
2 → R

2 is
a Keller map, then Spec(X) ⊂ S

1 ∪ (R \ {0}). The bidimensional Real Keller Conjec-
ture claims that if X : R

2 → R
2 is a Keller map, then X is injective. For more details

about Keller maps and the Jacobian conjecture see the recent book of van den Essen
[5].

Our main result is the following:

Theorem A Let X : R
2 → R

2 be a C1 map. Suppose that, for some ε > 0, Spec(X) ∩
(−ε, ε) = ∅. Then X is injective.

Relevant to this theorem, we may say:
(1) It is optimal because if the assumptions are relaxed to 0 /∈ Spec(X), the

conclusion—even for a polynomial map X—is not true anymore, as shown by Pin-
chuck’s counterexample [15] (See also [5], page 241).

(2) It confirms in a stronger way, the following Chamberland’s conjecture [3] in
dimension 2: Let Y : R

n → R
n be a C1 map. Suppose that there exists an ε > 0 such

that, for all λ ∈ Spec(Y ), |λ| > ε. Then Y is injective.
(3) It does not imply the bidimensional real Keller Conjecture because, given n

an even natural, the polynomial Keller map

X(x, y) = (−y, x + yn)

satisfies Spec(X) = S
1 ∪ (R \ {0}) (that is, Spec(X) is the biggest possible for Keller

maps). This example will be studied in Section 8.
(4) Campbell [2] classified the two-dimensional C1 maps whose eigenvalues are

both 1. All such maps have an explicit inverse. The class of functions considered in
Theorem A is much broader, but no explicit inverse is given.
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Theorem A is proved in Section 3. A key point in its proof is notion of half-Reeb

components which will be introduced in Section 2.

The next result is for C1-maps having at least one component polynomial of the
form p(x)q(y).

Theorem B Let g : R
2 → R be a C1-map, let p, q : R → R be polynomial maps and let

X(x, y) =
(

f (x, y), g(x, y)
)

=
(

p(x)q(y), g(x, y)
)

.

Then if 0 /∈ Spec(X), X is injective.

Theorem B is proved in Section 4.

For polynomial maps we have the following results.

Theorem C Let X : R
2 → R

2 be a polynomial map. Suppose that, for some ε > 0,

either Spec(X) ∩ (−ε, 0] = ∅ or Spec(X) ∩ [0, ε) = ∅. Then X is injective.

This is a sharper version of Theorem A in the case of polynomial maps.

Theorem D Let X = ( f , g) : R
2 → R

2 be a polynomial map such that Spec(X) ∩
{0} = ∅ and denote

Γ = {(x, y) ∈ R
2 : Trace(DX)(x, y) = 0}.

Then the following statements hold.

(a) If f |Γ or g|Γ is a proper map, then X is injective.

(b) X is injective if and only if ( f 2 + g2)|Γ is a proper map.

Theorems C and D are proved in Section 7. Their proof uses the notion of pair of
aligned half-Reeb components which will be introduced in Section 5.

In Section 8 we will give some examples and applications of the results above.

2 Half-Reeb Components and Injectivity

Let f : R
2 → R be a C1 submersion. For q ∈ R

2 we denote by X f (q) =
(

− fy(q),

fx(q)
)

the planar Hamiltonian vector field with Hamiltonian f . As usual ∇ f (p) =
(

fx(p), fy(p)
)

denotes the gradient of f . Let g(x, y) = xy and consider the set

B = {(x, y) ∈ [0, 2]× [0, 2] : x + y ≤ 2} \ {(0, 0)}.

Definition 1 We will say that A ⊂ R
2 is a half-Reeb component for X f (or simply a

hRc for X f ) if there is a homeomorphism h : B → A which is a topological equiva-
lence between X f |A and Xg |B and such that

(1) The segment {(x, y) ∈ B : x + y = 2} is sent by h onto a transversal section
for the flow of X f in the complement of h(1, 1); this section is called the compact edge

of A.
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Figure 1: A half-Reeb component.

(2) Both segments {(x, y) ∈ B : x = 0} and {(x, y) ∈ B : y = 0} are sent by
h onto full half-trajectories of X f . These two semi-trajectories of X f are called the
non-compact edges of A.

The connection between half-Reeb components and injectivity is given by the fol-

lowing result.

Proposition 1 Suppose that X = ( f , g) : R
2 → R

2 is a C1 map such that 0 /∈
Spec(X). If X is not injective, then both X f and Xg have hRc’s.

Proof Suppose by contradiction that X f has no half-Reeb components. By assump-
tion, the Hamiltonian vector field X f , induced by f , has no singularities. Hence,

by Kaplan’s classification of planar foliations [11], we obtain that X f is topologically
equivalent to the horizontal foliation of R

2. This and the fact that f is a submersion
imply that each nonempty level curve of f must have exactly one connected compo-
nent. As g restricted to each level curve of f is strictly monotone, we arrive at the

contradiction that X is injective. This finishes the proof of the proposition.

For each θ ∈ R let Rθ denote the linear rotation

(

cos θ − sin θ
sin θ cos θ

)

We will use in the sequel the following proposition.

Proposition 2 Let X = ( f , g) : R
2 → R

2 be a non-injective C1-map such that 0 /∈
Spec(X). Let A be a hRc of X f and let ( fθ, gθ) = Rθ ◦ X ◦ R−θ, θ ∈ R. Then there is

an ε > 0 such that for all θ ∈ (−ε, 0) ∪ (0, ε), X fθ has a hRc whose projection on the

x-axis is an interval of infinite length.

The proof of this proposition is contained in [10, Lemma 2.5].
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3 Proof of Theorem A

Suppose by contradiction that X = ( f , g) is not injective. Hereafter we will use the
fact that non-injectivity and the assumptions of Theorem A are open in the Whitney
C1 topology; in particular we shall assume, from now on, that X is smooth.

By Proposition 1, X f has a half-Reeb component A. Let Π : R
2 → R be the pro-

jection on the first coordinate. By composing with a rotation if necessary, in the way
stated in Proposition 2, we may assume thatΠ(A) is an interval of infinite length. To
simplify matters, let us suppose that [b,∞) ⊂ Π(A).

By Thom’s Transversality Theorem for jets [7], we can assume the following:
(a1) the set

T = {(x, y) ∈ R
2 : fy(x, y) = 0}

is made up of regular curves;
(a2) There is a discrete subset ∆ of T such that if p ∈ T \ ∆ (resp. p ∈ ∆), X f

has quadratic contact (resp. cubic contact) with the vertical foliation of R
2.

Then, if a > b is large enough,
(b) for any x ≥ a, the vertical lineΠ−1(x) intersects exactly one trajectory αx ⊂ A

of X f |A such that Π(αx) ∩ (x,∞) = ∅; in other words, x is the maximum for the
restriction Π|αx

.

It follows that
(c) if x ≥ a and p ∈ αx ∩Π−1(x) then p ∈ T ∩A \∆.
Let Tx be the set of p ∈ A such that p ∈ αx ∩ Π−1(x), x ≥ a. Notice that, for

every x ≥ a, αx ∩Π−1(x) is a finite set; nevertheless, by (b), (c) and by using Thom’s

Transversality Theorem for jets, we may get the following stronger statement:
(d) There is a sequence F = {a1, a2, . . . , ai , . . . } in [a,∞), which may be either

empty or finite or else countable, such that if x ∈ F (resp. x ∈ [a,∞) \ F), then
Π
−1(x) ∩ Tx is a two-point-set (resp. a one-point-set).

If x ∈ [a,∞) \ F, define η(x) =
(

x, η2(x)
)

= Π
−1(x) ∩ Tm. Observe that

η : [a,∞) \ F → Tm is a smooth embedding. As f |A is bounded,
(e) F ◦ η extends continuously to a strictly increasing bounded map defined in

[a,∞) such that, for all x ∈ [a,∞) \ F, fx

(

η(x)
)

has constant sign.

Therefore, there exists a real constant K such that

K =

∫ ∞

a1

d

dx
f
(

η(x)
)

dx =

∞
∑

i=1

∫ ai+1

ai

d

dx
f
(

η(x)
)

dx

=

∞
∑

i=1

∫ ai+1

ai

fx

(

η(x)
)

This and (e) imply that, for some sequence xn →∞, limn→∞ fx

(

η(xn)
)

= 0. This is
a contradiction with the assumption Spec(X)∩(−ε, ε) = ∅. In short we have proved
Theorem A.

4 Proof of Theorem B

By the assumptions we have that

https://doi.org/10.4153/CJM-2002-045-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-045-0


On the Injectivity of C1 Maps of the Real Plane 1191

(a) fx(x, y) = p ′(x)q(y) and fy(x, y) = p(x)q ′(y).

As 0 /∈ Spec(X), we obtain that

(b) for all y ∈ R, either q(y) 6= 0 or q ′(y) 6= 0.

Now we assume, by contradiction, that X is not injective; then, by Proposition 1,

there is a half-Reeb component A for X f . As 0 /∈ Spec(X), f is a submersion and so
the non-compact edges of A must accumulate at infinity. This implies that the pro-
jection of A on at least one of the coordinate axis has infinite length; let us consider
only the case in which this happens for the x-axis. Let T = {w ∈ R

2 : fy(w) = 0}.
Similarly to the proof of Theorem A, we obtain that the projection of T ∩ A on the
x-axis is an interval of infinite length, say [a,∞). Let G = {y1, y2, . . . , ym} and
F = {x1, x2, . . . , xn} be all the real roots of the polynomials q ′(y) and p(x) respec-
tively. Under these conditions, using (a) and (b), we obtain,

(c) if (x, y) ∈ T ∩A and x /∈ F, then y ∈ G and q(y) 6= 0.

Since f restricted to A is bounded, there is a constant M > 0 such that, for all

(x, y) ∈ A, | f (x, y) = p(x)q(y)| ≤ M. Therefore, by (c), if (x, y) ∈ T ∩ A, and
x /∈ F, we have that

|p(x)| ≤ M

minyi∈G |q(yi)|
,

which implies that p(x) is identically constant. Hence, for all (x, y) ∈ R × G,
fx(x, y) = fy(x, y) = 0, and so 0 ∈ Spec(X). This contradiction proves that X is
injective.

5 Aligned and Adjacent Half-Reeb Components

Definition 2 Let γ = (γ1, γ2) : [0, 3] → R
2 be a compact edge of a half-Reeb com-

ponent A for X f and let γ(t0) be the unique point where the curve γ is tangent to

the flow X f . Consider the vector γ̇(t0)⊥ =
(

−γ̇2(t0)γ̇1(t0)
)

and the straight line
r(s) = sγ̇(t0)⊥ + γ(t0), s ∈ R, passing through γ(t0) with direction γ̇(t0)⊥. We will
say that A is on the left (resp. on the right) of γ, if there is an interval [0, δ) (resp.
(−δ, 0]) such that r

(

[0, δ)
)

⊂ A (resp. r
(

(−δ, 0]) ⊂ A
)

).

In order to prove Theorems C and D, we need to introduce some definitions and

state some results. First at all we introduce the notion of aligned half-Reeb compo-
nents.

Definition 3 Let f : R
2 → R be a C1 submersion and let A and B be disjoint half-

Reeb components for X f . We say that A and B are aligned and denote {A,B}, if
there is a smooth embedded curve γ : [1, 2]→ R

2 such that the following properties
are satisfied:

(a1) For some 1 < s0 ≤ r0 < 2, γ|[s0,r0] is transversal to X f ;

(a2) γ([1, s0]) and γ([r0, 2]) are the compact edges for A and B, respectively, and
γ
(

(s0, r0)
)

is disjoint of A and B;

(a3) A and B are both either on the left or on the right of the curve γ.
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The curve γ will be said to be an aligning path for the pair {A,B} with connecting
interval [s0, r0]. See Figure 2. Let α+

p (resp. α−p ) denote the positive (resp. negative)

half-trajectory of X f starting at p ∈ R
2. If α+

γ(s0) and α+
γ(r0) (resp. α−γ(s0) and α−γ(r0))

are non-compact edges of A and B, respectively, then γ, as right above, will be said
to be a positive (resp. negative) aligning path for the pair A and B.

PSfrag replacements

γ

A

B

Figure 2: A pair of aligned half Reeb components

We shall need the following result of Gutierrez (see [10, Theorem D]):

Proposition 3 Suppose that X : R
2 → R

2 is a C1 map such that 0 /∈ Spec(X) and,

for all θ ∈ R, X fθ has no pair of aligned hRc’s, where ( fθ, gθ) = Rθ ◦ X ◦ R−θ. Then, X

is injective.

To introduce the notion of adjacent half-Reeb components we will consider the
following compactification of the plane.

Let S
2
= {(x, y, z) ∈ R

3 : x2 + y2 + (z− 1)2
= 1}, S

2
− = {(x, y, z) ∈ S

2 : 0 ≤ z <
1}, and S

1
= {(x, y, 1) ∈ S

2}. Let ϕ : S
2 \ S

1 → R
2 be the 2-to-1 map given by

ϕ(x, y, z) =
( x

1− z
,

y

1− z

)

.(1)

We shall denote by Cl(R
2) the compact disc made up of the union of R

2 and S
1 by

identifying (x, y, z) ∈ S
2
− with ϕ(x, y, z) and by borrowing from S

2
− = S

2
− ∪ S

1 its
topology.

If f : R
2 → R is a submersion then given a half trajectory α of X f , it follows from

the arguments of the Poincaré-Bendixson Theorem and from the fact that X f has no
singularities, that the limit set

L(α) := ᾱ \ α(2)

of α—as a subset of Cl(R
2)—, is either S

1 or a nonempty closed sub-interval of it.
Also if A is a half-Reeb component of X f , the difference L(A) := Ā\A (in Cl(R

2)) is
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a compact connected subset of Cl(R
2) which may or may not be properly contained

in S
1.

Given p ∈ R
2 we will denote by αp the trajectory of X f passing through p. Also,

α+
p and α−p will denote the positive and negative half-trajectories of X f , respectively,

starting at p. If γ : [a, b] → R
2 is an embedded smooth curve transversal to X f and

and a ≤ t1 ≤ t2 ≤ b, we will denote

R
+
(

γ([t1, t2])
)

=

⋃

t1≤s≤t2

α+
γ(s), R

−
(

γ([t1, t2])
)

=

⋃

t1≤s≤t2

α−γ(s).

Definition 4 Let A and B be a pair of aligned hRc’s for X f and let γ : [1, 2] → R
2

be an aligning path for the pair {A,B} with connecting interval [s0, r0]. We say that
A and Bare adjacent half-Reeb components for X f if the set

L

(

R
+
(

γ([s0, r0])
)

)

=

⋃

s0≤s≤r0

α+
γ(s)

∖

⋃

s0≤s≤r0

α+
γ(s)

is contained in the unit circle S
1 at infinity (resp. L

(

R−
(

γ([s0, r0])
)

)

⊂ S
1). Set

Ω = A ∪ R+(γ[s0, r0]) ∪ B (resp. Ω = A ∪ R−(γ[s0, r0]) ∪ B). Notice that A and
B are adjacent if and only if the subset Ω ∪ L(Ω) of Cl(R

2) is homeomorphic to a

bidimensional compact disc.

6 Polynomial Maps

Hereafter we will consider only polynomial maps of the plane. If f : R
2 → R is a

polynomial submersion, then it may be seen that

(a) L
(

R+(γ[s0, r0])
)

is just one point of S
1; in fact, otherwise, L

(

R+(γ[s0, r0])
)

would contain an open subinterval I ⊂ S
1 which in turn would imply the contradic-

tion that f is bounded along every ray approaching I (see Figure 3).

{A,B}

PSfrag replacements

w ∈ S
1

A

B

R+(γ[s0, r0])

Figure 3: A pair of adjacent half Reeb components
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(b) There exists a finite set S f = {z1, . . . , zk} of points in the unit circle S
1 at in-

finity such that if α is a half-trajectory of X f then L(α) = zi for some i ∈ {1, . . . , k}.
(c) If A is a hRc of X f then L(A) ∩ S

1 ⊂ S f . Each point zi ∈ S f will be called a
limit point for X f .

Furthermore, if ϕ : S
2 \ S

1 → R
2 is the map defined by equation (1), by studying

the Poincaré compactification X̃ f —via ϕ—of the polynomial vector field X f , we may

conclude, using Dumortier’s work [4], that
(d) X f has finitely many hRc’s.
Within the proof of next result we will use the following notation. If γ ⊂ Cl(R

2)
is an arc and p, q ∈ γ we denote by [p, q]γ (resp. (p, q)γ) the closed (resp. open)

sub-interval of γ with endpoints p and q.

Proposition 4 Let X = ( f , g) : R
2 → R

2 be a non-injective polynomial map such

that 0 /∈ Spec(X). Then there exists θ ∈ R such that X fθ has a pair {A,B} of adjacent

half-Reeb components such that e±
π
2

i /∈ L(A) ∪L(B), where ( fθ, gθ) = Rθ ◦ X ◦ R−θ.

Proof By Proposition 3 there exists µ ∈ R such that X fµ has a pair of aligned hRc’s.
Proceed assuming that f = fµ and consider the case in which the limit set of one of

the hRc’s of X f contains e±
π
2

i .
By [10, Lemma 2.5], we may find ε > 0 small, such that if θ ∈ (−ε,+ε), then X fθ

has a pair {Aθ,Bθ} of aligned hRc’s. We claim that
(a) if ε > 0 is small enough, for all θ ∈ (−ε, 0) ∪ (0, ε) the limit set of both Aθ

and Bθ is disjoint of e±
π
2

i .
In fact, let fn and gk be the highest degree homogeneous part of f and g re-

spectively and let Lθ denote the straight line passing through the origin with slope
tan(π/2 + θ). The assumptions imply that fn(L0) ≡ gk(L0) ≡ 0. Also, it may be seen

that
(b) if ε > 0 is small and θ ∈ (−ε, 0)∪(0, ε), then both, fn(Lθ\{0}) and gk(Lθ\{0})

are disjoint of {0}.
To fix ideas, suppose that n ≥ k. In this way, if θ 6= 0 is small and ( fθ)n and (gθ)n

denote the highest degree homogeneous part of fθ and gθ, respectively, then

( fθ)n = (cos θ) fn ◦ R−θ − [k/n](sin θ)gk ◦ R−θ

(gθ)n = (sin θ) fn ◦ R−θ + [k/n](cos θ)gk ◦ R−θ

where [k/n] denotes the integer part of k/n. If we assumed that for some θ ∈
(−ε, 0)∪(0, ε) Aθ accumulated at infinity at a direction corresponding to L0, then we
would conclude that ( fθ)n(L0) ≡ 0. As gθ, restricted to A, is bounded, (gθ)n(L0) ≡ 0.

Therefore, we would obtain

fn(L−θ) = fn ◦ R−θ(L0)) = 0 = gn ◦ R−θ(L0) = gn(L−θ).

This contradiction with (b) proves (a).
Let θ ∈ (µ− ε, µ + ε) be such that X fθ has a pair A1 and A2 of aligned hRc’s with

e±
π
2

i /∈ L(A1) ∪ L(A2). Let γ : [1, 2] → R
2 be a smooth aligning path for A1 and

A2, with connecting interval [s0.r0], which we shall assume to be positive.
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We will prove that if A1 and A2 are not already adjacent, then we can construct
a new pair {B1,B2} of aligned half-Reeb components for X fθ such that B1 is either

equal to A1 or A2 and the interior of B2 is contained in R+(γ[s0, r0]), i.e., B2 is
different from A1 and A2. As fθ is polynomial, there are only a finitely many hRc’s
for X fθ and so, proceeding inductively, we will, eventually, arrive to a pair of adjacent
hRc’s for X fθ .

Let p ∈ R
2 ∩ L

(

R+(γ[s0, r0])
)

and let η : [−1, 1] → R
2 be a regular curve satis-

fying

η(0) = p and η̇(0) = ∇ f (p).

We may assume that f |η is strictly monotone and that R+(γ[s0, r0]) intersects η but
α+

s0
and α+

r0
do not intersect η. Let s0 < t1 < t2 < t0 be numbers such that α+

γ(t1)

and α+
γ(t2) intersect the curve η at points p1 and p2 respectively. As f restricted

to [p1, p2]η and [γ(t1), γ(t2)]γ is strictly monotonous, there is a flow box between
the trajectories α+

t1
and α+

t2
and the arcs [p1, p2]η and [γ(t1), γ(t2)]γ . In particular,

[p1, p2]η ⊂ R+(γ[s0, r0]) and all the semi-trajectories α+
γ(s) with s ∈ [t1, t2] intersect

(only) once the curve η inside the arc [p1, p2]η . Therefore p /∈ [p1, p2]η . Con-
sider only the case in which p1 ∈ [p2, p]η (resp. p2 ∈ [p1, p]η), p1 = η(d1) and
p2 = η(d2) with−1 < d2 < d1 < 0. See Figure 4.

It is easy to see that we can construct a smooth curve η0 linking the points γ(t1)
and p1 (resp. γ(t2) and p2) and having only one quadratic tangency with the foliation

of X fθ . Moreover, η0 can be chosen in such a way that the curve ζ = [γ(0), γ(t1)]γ ∪
η0 ∪ [p1, p]η (resp. ζ = [γ(t2), γ(3)]γ ∪ η0 ∪ [p2, p]η) is smooth. Observe that ζ
has exactly two (quadratic) tangency points with the foliation of X fθ , one inside the
arc [γ(0), γ(t1)]γ (resp. [γ(t2), γ(3)]γ) corresponding to A1 (resp. A2) and the other

inside the curve η0. Let t0 be the supremum of the number s0 < t < t1 such that α+
γ(t)

intersect the curve η. By the assumptions s0 < t0 < t1 and α+
γ(t0) ∩ η = ∅.

Let

d0 = sup{d1 < d < 0 : η(d) ∈ R
+(γ[s0, r0])}.

Clearly the trajectory αη(d0) does not intersect the arc [γ(s0), γ(r0)]γ .

It is easy to see there is a new hRc B2 of X fθ whose compact edge is the arc
[γ(t0), η(d0)]ζ and whose non-compact edges are α+

γ(t0) and α−η(d0). Clearly the pair

{A1,B2} (resp. {A2,B2}) is aligned in the sense defined before. This concludes the
proof of the proposition.

We shall need the following well known result essentially due to Hadamard (see
for more details [5]).

Proposition 5 Let X = ( f , g) : R
2 → R

2 be a polynomial map such that Spec(X) ∩
{0} = ∅. Then X is a diffeomorphism if and only if f 2 + g2 : R

2 → R is a proper map.

We will see in Section 8, that Theorem D give us a better criterium, than that of
Proposition 5 to find out whether a polynomial map such that Spec(X) ∩ {0} = ∅

is injective.
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PSfrag replacementsp

p1

p2

A1
A2

γ
γ(t1) γ(t2)

η0

Figure 4: The curve η0.

7 Proof of Theorems C and D

Let us set up the preliminaries for the proof of Theorems C and D. First of all, if X is a
non-injective polynomial map then, by Proposition 4, there exists θ ∈ R such that if
Xθ = ( fθ, gθ) = Rθ ◦X ◦R−θ, the flow X fθ has a pair {A1,A2} of adjacent hRc’s such
that e±

π
2

i /∈ L(A1) ∪ L(A2). Notice that Spec(Xθ) = Spec(X). As fθ is polynomial

and A1 and A2 are adjacent, L(A1)∩L(A2) = {w} ⊂ S
1, with w 6= e±

π
2

i . Therefore,
Proposition 2 implies Π(A1) ∩ Π(A2) contains an interval of infinite length, where
Π : R

2 → R is the projection on the first coordinate. To fix ideas, let us suppose that
Π(A1) ∩Π(A2) contains the interval [b,∞), see figure 5.

As fθ is a polynomial map,

(a) the algebraic curve

Tθ = {p ∈ R
2 : ( fθ)y(p) = 0}

is made up of finitely many regular curves and finitely many singular points.

Similarly to the proof of Theorem A, if a > b is large enough, we have that

(b) For any x ≥ a, the vertical line Π−1(x) intersects exactly one trajectory αi
x ⊂

Ai of X fθ |Ai
, i = 1, 2, such that Π(αi

x) ∩ (x,∞) = ∅, i = 1, 2; in other words, x is
the maximum for the restriction Π|αi

x
, i = 1, 2.

It follows that

(c) If x ≥ a and pi ∈ αi
x ∩ Π−1(x), for i = 1, 2, then there is a “parabolic”

tangency between X fθ and Π−1(x) at pi . In particular, pi ∈ T, i.e.,
∂ fθ
∂y

(pi) = 0.

Let T i
x, i = 1, 2 be the set of p ∈ Ai such that p ∈ αi

x ∩ Π−1(x), x ≥ a. Notice

that, for every x ≥ a, T i
x is a finite set. By using (a) we may define analytic functions

ηi : [a,∞)→ Ai , i = 1, 2 in such a way that ηi(x) ∈ T i
x and there are no other points

of T i
x inside the arc ofΠ−1(x) connecting η1(x) and η2(x). In this way, as the flow X f

is continuous (see Figure 5)
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(d) The collinear vectors ∇ fθ
(

η1(x)
)

and ∇ fθ
(

η2(x)
)

have opposed orienta-

tions; i.e.,
∂ fθ
∂x

(

η1(x)
)

· ∂ fθ
∂x

(

η2(x)
)

< 0.

A

B

PSfrag replacements

b
A1

A2

γ

Figure 5: [b,∞) ⊂ Π(A1) ∩ Π(A2).

7.1 Proof of Theorem C

If X is a non-injective polynomial map, proceeding as in the proof of Theorem A, we

obtain that

∞ >
∫

[a,∞)

d

ds
fθ
(

ηi(s)
)

ds =

∫

[a,∞)

( fθ)x

(

ηi(s)
)

ds, i = 1, 2,

which implies that limn→∞ ( fθ)x

(

η1(xn)
)

= 0 and limn→∞ ( fθ)x

(

η2(yn)
)

= 0, for
some sequences xn, yn →∞. This fact together with (d) imply that there are positive
and negative values of Spec(Xθ) (= Spec(X)) arbitrarily close to zero. Therefore
if—for some ε > 0—either (−ε, 0] ∩ Spec(X) = ∅ or Spec(X) ∩ [0, ε) = ∅, X is

injective.

7.2 Proof of Theorem D

If X is a non-injective polynomial map such that Spec(X) ∩ {0} = ∅ then the map
Xθ = Rθ ◦ X ◦ R−θ is also a non-injective polynomial map such that Spec(X) ∩
{0} = ∅ and the condition (d) implies that the signs of Trace

(

DXθ
(

η1(x)
)

)

and

Trace
(

DXθ
(

η2(x)
)

)

are opposed. Henceforth, for each x ≥ a there is a point
(

x, q(x)
)

in the arc joining η1(x) and η2(x) which belongs to the set

Γθ = {p ∈ R
2 : Trace(DXθ)(p) = 0}.
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Let γ : [1, 2]→ R
2 be an aligning path for A1 and A2 as in Definition 3. To fix ideas

let us suppose that X fθ is oriented in such a way that α+
γ(s0) and α+

γ(r0) belong to A1 and

A2 respectively. In this way, the curve Σθ =
{(

x, q(x)
)

: x ≥ a
}

⊂ Γθ accumulates

at infinity inside the region Ω = A1 ∪ R+(γ[s0, r0]) ∪ A2. We observe that all of
fθ|Ω, gθ|Ω and ( f 2

θ + g2
θ)|Ω are bounded maps. Therefore, Xθ(Σθ) is a bounded subset

of R
2.

On the other hand, the relation DXθ(q) = Rθ · DX
(

R−θ(q)
)

· R−θ, implies that

Γθ = Rθ(Γ) where Γ = {p ∈ R
2 : Trace(DX)(p) = 0}.(3)

Let us prove item (a) of Theorem D. Suppose that X is a non-injective polynomial
map such that Spec(X) ∩ {0} = ∅ and let Σ = R−θ(Σθ) ⊂ Γ. Since Σθ is non-

compact,Σ is non-compact. On the other hand, X(Σ) = R−θ
(

Xθ(Σθ)
)

is a bounded
subset of R

2 which implies that all f |Γ, g|Γ and ( f 2 + g2)|Γ are not proper maps
(because Σ ⊂ Γ). Therefore if one of f |Γ or g|Γ is a proper map, X is injective.

Let us prove item (b) of Theorem D. By Proposition 5 if X is an injective polyno-
mial map such that Spec(X) ∩ {0} = ∅, then ( f 2 + g2)|Γ is a proper map. On the

other hand, if X is a non-injective polynomial map such that Spec(X) ∩ {0} = ∅,
proceeding as in item (a) we conclude that ( f 2 + g2)|Γ is a not proper map.

8 Examples and Applications. Keller Maps

Example 1 Let X = ( fx, fy) : R
2 → R

2 be the gradient of a polynomial map
f : R

2 → R. If X is an orientation preserving and locally diffeomorphic map, then
Theorem C implies that X is injective.

Indeed, as the matrix DX(p) is non-singular and symmetric for all p ∈ R
2, its

eigenvalues are real and non-null. As X preserves orientation, Spec(X) ⊂ (−∞, 0)
or Spec(X) ⊂ (0,+∞). Therefore, by Theorem C, X is injective.

Example 2 Let n > 1 be a natural number and let

f = x − 2y + yn,

g = x − y + yn.

Then X = ( f , g) : R
2 → R

2 is an injective Keller map. Moreover, if n is even,
Spec(X) = S

1 ∪ (R \ {0}). That is, Spec(X) is the biggest possible for Keller maps

Notice that Trace(DX)(x, y) = nyn−1. This means that

Γ = {(x, y) : Trace(DX)(x, y) = 0} = {(x, y) : y = 0}.

We check that both f |Γ and g|Γ are proper maps, then by Theorem D, X is injective.
The characteristic polynomial of DX(x, y) is λ2 − nyn−1λ + 1. Therefore Spec(X) is
given by all the numbers 1/2 · (nyn−1 ±

√

n2 y2n−2 − 4), y ∈ R. It is easy to see that
R \ {0} ⊂ Spec(X) if n is even and then Spec(X) = S

1 ∪ (R \ {0}) (because Spec(X)
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is a connected set of R
2). By taking an odd natural n ≥ 3, in this example, we get that

Spec(X) is made up of the union of the sets S
1 ∩ {(x, y) : x > 0} and (0,∞).

The following example (see [3]) shows the existence of analytic non-injective
Keller maps.

Example 3 Let

f =
√

2ex/2 cos
( y

ex

)

g =
√

2ex/2 sin
( y

ex

)

.(4)

Then X = ( f , g) : R
2 → R

2 is a non-injective analytic Keller map.

It is easy to check that X is a Keller map. It is also non-injective, for instance,
observe that for all k ∈ Z and all y ∈ R, X(0, y + 2kπ) =

√
2
(

cos(y), sin(y)
)

.
Let us proceed to describe the adjacent half-Reeb components of X f and Xg . In

fact, both X f and Xg have infinitely many adjacent half-Reeb components (see Defi-

nition 4). In fact, observe that f vanishes along all curves of the form

Ck(t) := {(x, y) : x = t, y = (π/2 + πk) · et}, t ∈ R, k ∈ Z.

Also f (0, y) =
√

2 cos(y) and then ∂
∂y

f (0, y) vanishes only once in the segment

Sk := {(x, y) : x = 0, π/2 + πk ≤ y ≤ π/2 + π(k + 1)}

that connects Ck(0) and Ck+1(0). We observe that f is bounded in the semi-plane
{(x, y) : x ≤ 0} and unbounded in {(x, y) : x > 0}. In this way, for all k ∈ Z,
X f has a half-Reeb component Ak bounded its non-compact edges {Ck(t), t ≤ 0}
and {Ck+1(t), t ≤ 0} and its compact edge Sk. All consecutive pairs {Ak,Ak+1} are
adjacent. Similarly, Xg has a Half-Reeb component Bk between consecutive curves of
the form

Dk(t) := {(x, y) : x = t, y = (π + πk) · et}, t ∈ R, k ∈ Z

and the segment

Tk := {(x, y) : x = 0, π + πk ≤ y ≤ π/2 + π(k + 1)},

and all consecutive pairs {Bk,Bk+1} are adjacent. Observe that the curve Dk(t), t ≤
0 is the only semi-trajectory of Xg which is completely contained in the half-Reeb
component Ak of X f .

Example 4 If X = ( f , g) : R
2 → R

2 is the Pinchuck non-injective polynomial map
(see [15]), then, by Theorem C, Spec(X) meets the real line at arbitrarily small posi-
tive and negative numbers.

Let us see this by directly describing the foliation induced by X f , where

f = (xy − 1)
(

x(xy − 1) + 1
)

+
(

x(xy − 1) + 1
) 2(

(xy − 1)2 + y
)
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After an extensive use of symbolic computation, one may see that:

(4,1) for every c < 0, { f = c} is connected;

(4,2) for every c ≥ 0, { f = c} has 3 connected components;

(4,3) the set { f ≤ 0} is usually known as a Reeb component of X f and the set
{ f < 0} is homeomorphic to a disc;

(4,4) for every c ∈ R, a connected component of { f = c} can approach to infinity,
only at one of the following directions: the positive x-axis, the negative x-axis and the

negative y−axis.

(4,5) { f = 0} consists of 3 connected components A1, A2, A3 such that

• A1 is contained in {(x, y) : xy > 0} ∪ {(0, 0} and approaches infinity in the
directions of the positive x−axis and the negative x−axis.

• A2 is contained in {(x, y) : x < 0, y < 0} and approaches infinity in the
directions of the negative x−axis and the negative y−axis.

• A3 is contained in {(x, y) : y > 0} meeting the x−axis exactly at (1, 0); it
approaches infinity in the directions of the positive x−axis and the negative y−axis.

(4,5) the Reeb component { f ≤ 0} contains 2 half-Reeb components, one of
which approaches the positive x−axis and the other the negative x−axis. By observ-
ing, as in the proof of Theorem C, the gradient vector field ( fx, fy) along this half-
Reeb components, it can be seen that there are sequences {an} and {bn} such that,

for all n, fx(an) > 0, fy(an) = 0 = fy(bn), fx(bn) < 0 and moreover fx(an) → 0 and
fx(bn) → 0. In other words, Spec(X) meets the real line at arbitrarily small positive
and negative numbers.

Example 5 Let X = ( f , g) : R
2 → R

2 be an orientation preserving and locally
diffeomorphic polynomial map. If X is injective then it follows, from the main result

of either of the papers [1] and [12], that X is a diffeomorphism. Therefore, X f and
Xg have no Reeb components.

In fact, if X f has a hRc, say A, then, we may see that X(A) is bounded. This is not
possible because A is unbounded and X is a diffeomorphism.
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[8] E. A. González, Generic properties of polynomial vector fields at infinity. Trans. Amer. Math. Soc.
143(1969), 201–222.

[9] C. Gutierrez, Smoothability of Cherry flows on two-manifolds. Lecture Notes in Math. 1007(1981),
308–331.

[10] C. Gutierrez, A solution to the bidimensional global asymptotic stability conjecture. Ann. Inst. Henri
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