Canad. J. Math. Vol. 54 (6), 2002 pp. 1187-1201

On the Injectivity of C^1 Maps of the Real Plane

Milton Cobo, Carlos Gutierrez and Jaume Llibre

Abstract. Let $X: \mathbb{R}^2 \to \mathbb{R}^2$ be a C^1 map. Denote by Spec(X) the set of (complex) eigenvalues of DX_p when p varies in \mathbb{R}^2 . If there exists $\epsilon > 0$ such that $\text{Spec}(X) \cap (-\epsilon, \epsilon) = \emptyset$, then X is injective. Some applications of this result to the real Keller Jacobian conjecture are discussed.

1 Introduction

Let $X: \mathbb{R}^2 \to \mathbb{R}^2$ be a map of class C^1 . We shall denote by Spec(X) the set of (complex) eigenvalues of the derivative DX_p when p varies in \mathbb{R}^2 . We will refer to $X: \mathbb{R}^2 \to \mathbb{R}^2$ as a *Keller map* if X is a polynomial map and the Jacobian determinant of X is identically equal to one in \mathbb{R}^2 . It is important to observe that if $X: \mathbb{R}^2 \to \mathbb{R}^2$ is a Keller map, then Spec(X) $\subset \mathbb{S}^1 \cup (\mathbb{R} \setminus \{0\})$. The bidimensional Real Keller Conjecture claims that if $X: \mathbb{R}^2 \to \mathbb{R}^2$ is a Keller map, then Jacobian conjecture see the recent book of van den Essen [5].

Our main result is the following:

Theorem A Let $X: \mathbb{R}^2 \to \mathbb{R}^2$ be a C^1 map. Suppose that, for some $\epsilon > 0$, Spec $(X) \cap (-\epsilon, \epsilon) = \emptyset$. Then X is injective.

Relevant to this theorem, we may say:

(1) It is optimal because if the assumptions are relaxed to $0 \notin \text{Spec}(X)$, the conclusion—even for a polynomial map *X*—is not true anymore, as shown by Pinchuck's counterexample [15] (See also [5], page 241).

(2) It confirms in a stronger way, the following Chamberland's conjecture [3] in dimension 2: Let $Y : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 map. Suppose that there exists an $\epsilon > 0$ such that, for all $\lambda \in \text{Spec}(Y)$, $|\lambda| > \epsilon$. Then Y is injective.

(3) It does not imply the bidimensional real Keller Conjecture because, given n an even natural, the polynomial Keller map

$$X(x, y) = (-y, x + y^n)$$

satisfies $\text{Spec}(X) = \mathbb{S}^1 \cup (\mathbb{R} \setminus \{0\})$ (that is, Spec(X) is the biggest possible for Keller maps). This example will be studied in Section 8.

(4) Campbell [2] classified the two-dimensional C^1 maps whose eigenvalues are both 1. All such maps have an explicit inverse. The class of functions considered in Theorem A is much broader, but no explicit inverse is given.

Received by the editors June 27, 2001; revised May 7, 2002.

AMS subject classification: Primary: 34D05; secondary: 54H20, 58F10, 58F21.

[©]Canadian Mathematical Society 2002.

Theorem A is proved in Section 3. A key point in its proof is notion of *half-Reeb components* which will be introduced in Section 2.

The next result is for C^1 -maps having at least one component polynomial of the form p(x)q(y).

Theorem B Let $g: \mathbb{R}^2 \to \mathbb{R}$ be a C^1 -map, let $p, q: \mathbb{R} \to \mathbb{R}$ be polynomial maps and let

$$X(x, y) = \left(f(x, y), g(x, y)\right) = \left(p(x)q(y), g(x, y)\right).$$

Then if $0 \notin \text{Spec}(X)$, X is injective.

Theorem B is proved in Section 4. For polynomial maps we have the following results.

Theorem C Let $X: \mathbb{R}^2 \to \mathbb{R}^2$ be a polynomial map. Suppose that, for some $\epsilon > 0$, either Spec $(X) \cap (-\epsilon, 0] = \emptyset$ or Spec $(X) \cap [0, \epsilon) = \emptyset$. Then X is injective.

This is a sharper version of Theorem A in the case of polynomial maps.

Theorem D Let X = (f,g): $\mathbb{R}^2 \to \mathbb{R}^2$ be a polynomial map such that $\text{Spec}(X) \cap \{0\} = \emptyset$ and denote

$$\Gamma = \{ (x, y) \in \mathbb{R}^2 : \operatorname{Trace}(\mathrm{DX})(x, y) = 0 \}.$$

Then the following statements hold.

- (a) If $f|_{\Gamma}$ or $g|_{\Gamma}$ is a proper map, then X is injective.
- (b) *X* is injective if and only if $(f^2 + g^2)|_{\Gamma}$ is a proper map.

Theorems C and D are proved in Section 7. Their proof uses the notion of pair of aligned half-Reeb components which will be introduced in Section 5.

In Section 8 we will give some examples and applications of the results above.

2 Half-Reeb Components and Injectivity

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^1 submersion. For $q \in \mathbb{R}^2$ we denote by $X_f(q) = (-f_y(q), f_x(q))$ the planar Hamiltonian vector field with Hamiltonian f. As usual $\nabla f(p) = (f_x(p), f_y(p))$ denotes the gradient of f. Let g(x, y) = xy and consider the set

$$B = \{(x, y) \in [0, 2] \times [0, 2] : x + y \le 2\} \setminus \{(0, 0)\}.$$

Definition 1 We will say that $\mathcal{A} \subset \mathbb{R}^2$ is a *half-Reeb component* for X_f (or simply a hRc for X_f) if there is a homeomorphism $h: B \to \mathcal{A}$ which is a topological equivalence between $X_f|_{\mathcal{A}}$ and $X_g|_B$ and such that

(1) The segment $\{(x, y) \in B : x + y = 2\}$ is sent by *h* onto a transversal section for the flow of X_f in the complement of h(1, 1); this section is called the *compact edge* of A.

Figure 1: A half-Reeb component.

(2) Both segments $\{(x, y) \in B : x = 0\}$ and $\{(x, y) \in B : y = 0\}$ are sent by h onto full half-trajectories of X_f . These two semi-trajectories of X_f are called the *non-compact edges* of A.

The connection between half-Reeb components and injectivity is given by the following result.

Proposition 1 Suppose that X = (f,g): $\mathbb{R}^2 \to \mathbb{R}^2$ is a C^1 map such that $0 \notin Spec(X)$. If X is not injective, then both X_f and X_g have hRc's.

Proof Suppose by contradiction that X_f has no half-Reeb components. By assumption, the Hamiltonian vector field X_f , induced by f, has no singularities. Hence, by Kaplan's classification of planar foliations [11], we obtain that X_f is topologically equivalent to the horizontal foliation of \mathbb{R}^2 . This and the fact that f is a submersion imply that each nonempty level curve of f must have exactly one connected component. As g restricted to each level curve of f is strictly monotone, we arrive at the contradiction that X is injective. This finishes the proof of the proposition.

For each $\theta \in \mathbb{R}$ let R_{θ} denote the linear rotation

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

We will use in the sequel the following proposition.

Proposition 2 Let X = (f,g): $\mathbb{R}^2 \to \mathbb{R}^2$ be a non-injective C^1 -map such that $0 \notin \operatorname{Spec}(X)$. Let \mathcal{A} be a hRc of X_f and let $(f_{\theta}, g_{\theta}) = R_{\theta} \circ X \circ R_{-\theta}, \theta \in \mathbb{R}$. Then there is an $\epsilon > 0$ such that for all $\theta \in (-\epsilon, 0) \cup (0, \epsilon)$, $X_{f_{\theta}}$ has a hRc whose projection on the *x*-axis is an interval of infinite length.

The proof of this proposition is contained in [10, Lemma 2.5].

3 Proof of Theorem A

Suppose by contradiction that X = (f, g) is not injective. Hereafter we will use the fact that non-injectivity and the assumptions of Theorem A are open in the Whitney C^1 topology; in particular we shall assume, from now on, that X is smooth.

By Proposition 1, X_f has a half-Reeb component \mathcal{A} . Let $\Pi \colon \mathbb{R}^2 \to \mathbb{R}$ be the projection on the first coordinate. By composing with a rotation if necessary, in the way stated in Proposition 2, we may assume that $\Pi(\mathcal{A})$ is an interval of infinite length. To simplify matters, let us suppose that $[b, \infty) \subset \Pi(\mathcal{A})$.

By Thom's Transversality Theorem for jets [7], we can assume the following: (a1) the set

$$T = \{(x, y) \in \mathbb{R}^2 : f_y(x, y) = 0\}$$

is made up of regular curves;

(a2) There is a discrete subset Δ of T such that if $p \in T \setminus \Delta$ (resp. $p \in \Delta$), X_f has quadratic contact (resp. cubic contact) with the vertical foliation of \mathbb{R}^2 .

Then, if a > b is large enough,

(b) for any $x \ge a$, the vertical line $\Pi^{-1}(x)$ intersects exactly one trajectory $\alpha_x \subset \mathcal{A}$ of $X_f|_{\mathcal{A}}$ such that $\Pi(\alpha_x) \cap (x, \infty) = \emptyset$; in other words, x is the maximum for the restriction $\Pi|_{\alpha_x}$.

It follows that

(c) if $x \ge a$ and $p \in \alpha_x \cap \Pi^{-1}(x)$ then $p \in T \cap \mathcal{A} \setminus \Delta$.

Let T_x be the set of $p \in A$ such that $p \in \alpha_x \cap \Pi^{-1}(x)$, $x \ge a$. Notice that, for every $x \ge a$, $\alpha_x \cap \Pi^{-1}(x)$ is a finite set; nevertheless, by (b), (c) and by using Thom's Transversality Theorem for jets, we may get the following stronger statement:

(d) There is a sequence $F = \{a_1, a_2, \ldots, a_i, \ldots\}$ in $[a, \infty)$, which may be either empty or finite or else countable, such that if $x \in F$ (resp. $x \in [a, \infty) \setminus F$), then $\Pi^{-1}(x) \cap T_x$ is a two-point-set (resp. a one-point-set).

If $x \in [a, \infty) \setminus F$, define $\eta(x) = (x, \eta_2(x)) = \Pi^{-1}(x) \cap T_m$. Observe that $\eta: [a, \infty) \setminus F \to T_m$ is a smooth embedding. As $f|_{\mathcal{A}}$ is bounded,

(e) $F \circ \eta$ extends continuously to a strictly increasing bounded map defined in $[a, \infty)$ such that, for all $x \in [a, \infty) \setminus F$, $f_x(\eta(x))$ has constant sign.

Therefore, there exists a real constant K such that

$$K = \int_{a_1}^{\infty} \frac{d}{dx} f(\eta(x)) dx = \sum_{i=1}^{\infty} \int_{a_i}^{a_{i+1}} \frac{d}{dx} f(\eta(x)) dx$$
$$= \sum_{i=1}^{\infty} \int_{a_i}^{a_{i+1}} f_x(\eta(x))$$

This and (e) imply that, for some sequence $x_n \to \infty$, $\lim_{n\to\infty} f_x(\eta(x_n)) = 0$. This is a contradiction with the assumption $\operatorname{Spec}(X) \cap (-\epsilon, \epsilon) = \emptyset$. In short we have proved Theorem A.

4 **P**roof of Theorem B

By the assumptions we have that

(a) $f_x(x, y) = p'(x)q(y)$ and $f_y(x, y) = p(x)q'(y)$.

As $0 \notin \operatorname{Spec}(X)$, we obtain that

(b) for all $y \in \mathbb{R}$, either $q(y) \neq 0$ or $q'(y) \neq 0$.

Now we assume, by contradiction, that X is not injective; then, by Proposition 1, there is a half-Reeb component \mathcal{A} for X_f . As $0 \notin \text{Spec}(X)$, f is a submersion and so the non-compact edges of \mathcal{A} must accumulate at infinity. This implies that the projection of \mathcal{A} on at least one of the coordinate axis has infinite length; let us consider only the case in which this happens for the x-axis. Let $T = \{w \in \mathbb{R}^2 : f_y(w) = 0\}$. Similarly to the proof of Theorem A, we obtain that the projection of $T \cap \mathcal{A}$ on the x-axis is an interval of infinite length, say $[a, \infty)$. Let $G = \{y_1, y_2, \ldots, y_m\}$ and $F = \{x_1, x_2, \ldots, x_n\}$ be all the real roots of the polynomials q'(y) and p(x) respectively. Under these conditions, using (a) and (b), we obtain,

(c) if $(x, y) \in T \cap A$ and $x \notin F$, then $y \in G$ and $q(y) \neq 0$.

Since f restricted to A is bounded, there is a constant M > 0 such that, for all $(x, y) \in A$, $|f(x, y) = p(x)q(y)| \leq M$. Therefore, by (c), if $(x, y) \in T \cap A$, and $x \notin F$, we have that

$$|p(x)| \leq \frac{M}{\min_{y_i \in G} |q(y_i)|}$$

which implies that p(x) is identically constant. Hence, for all $(x, y) \in \mathbb{R} \times G$, $f_x(x, y) = f_y(x, y) = 0$, and so $0 \in \text{Spec}(X)$. This contradiction proves that X is injective.

5 Aligned and Adjacent Half-Reeb Components

Definition 2 Let $\gamma = (\gamma_1, \gamma_2) \colon [0,3] \to \mathbb{R}^2$ be a compact edge of a half-Reeb component \mathcal{A} for X_f and let $\gamma(t_0)$ be the unique point where the curve γ is tangent to the flow X_f . Consider the vector $\dot{\gamma}(t_0)^{\perp} = (-\dot{\gamma}_2(t_0)\dot{\gamma}_1(t_0))$ and the straight line $r(s) = s\dot{\gamma}(t_0)^{\perp} + \gamma(t_0), s \in \mathbb{R}$, passing through $\gamma(t_0)$ with direction $\dot{\gamma}(t_0)^{\perp}$. We will say that \mathcal{A} is *on the left* (resp. *on the right*) of γ , if there is an interval $[0, \delta)$ (resp. $(-\delta, 0])$ such that $r([0, \delta)) \subset \mathcal{A}$ (resp. $r((-\delta, 0]) \subset \mathcal{A})$).

In order to prove Theorems C and D, we need to introduce some definitions and state some results. First at all we introduce the notion of aligned half-Reeb components.

Definition 3 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^1 submersion and let \mathcal{A} and \mathcal{B} be disjoint half-Reeb components for X_f . We say that \mathcal{A} and \mathcal{B} are *aligned* and denote $\{\mathcal{A}, \mathcal{B}\}$, if there is a smooth embedded curve $\gamma: [1, 2] \to \mathbb{R}^2$ such that the following properties are satisfied:

(a1) For some $1 < s_0 \le r_0 < 2$, $\gamma|_{[s_0,r_0]}$ is transversal to X_f ;

(a2) $\gamma([1, s_0])$ and $\gamma([r_0, 2])$ are the compact edges for \mathcal{A} and \mathcal{B} , respectively, and $\gamma((s_0, r_0))$ is disjoint of \mathcal{A} and \mathcal{B} ;

(a3) A and B are both either on the left or on the right of the curve γ .

The curve γ will be said to be *an aligning path for the pair* { \mathcal{A} , \mathcal{B} } with connecting interval [s_0 , r_0]. See Figure 2. Let α_p^+ (resp. α_p^-) denote the positive (resp. negative) half-trajectory of X_f starting at $p \in \mathbb{R}^2$. If $\alpha_{\gamma(s_0)}^+$ and $\alpha_{\gamma(r_0)}^+$ (resp. $\alpha_{\gamma(s_0)}^-$ and $\alpha_{\gamma(r_0)}^-$) are non-compact edges of \mathcal{A} and \mathcal{B} , respectively, then γ , as right above, will be said to be a *positive* (resp. negative) aligning path for the pair \mathcal{A} and \mathcal{B} .

Figure 2: A pair of aligned half Reeb components

We shall need the following result of Gutierrez (see [10, Theorem D]):

Proposition 3 Suppose that $X: \mathbb{R}^2 \to \mathbb{R}^2$ is a C^1 map such that $0 \notin \text{Spec}(X)$ and, for all $\theta \in \mathbb{R}$, $X_{f_{\theta}}$ has no pair of aligned hRc's, where $(f_{\theta}, g_{\theta}) = R_{\theta} \circ X \circ R_{-\theta}$. Then, X is injective.

To introduce the notion of *adjacent* half-Reeb components we will consider the following compactification of the plane.

Let $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z - 1)^2 = 1\}, \mathbb{S}^2_- = \{(x, y, z) \in \mathbb{S}^2 : 0 \le z < 1\}, \text{ and } \mathbb{S}^1 = \{(x, y, 1) \in \mathbb{S}^2\}.$ Let $\varphi : \mathbb{S}^2 \setminus \mathbb{S}^1 \to \mathbb{R}^2$ be the 2-to-1 map given by

(1)
$$\varphi(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right).$$

We shall denote by $Cl(\mathbb{R}^2)$ the compact disc made up of the union of \mathbb{R}^2 and \mathbb{S}^1 by identifying $(x, y, z) \in \mathbb{S}^2_-$ with $\varphi(x, y, z)$ and by borrowing from $\overline{\mathbb{S}^2_-} = \mathbb{S}^2_- \cup \mathbb{S}^1$ its topology.

If $f: \mathbb{R}^2 \to \mathbb{R}$ is a submersion then given a half trajectory α of X_f , it follows from the arguments of the Poincaré-Bendixson Theorem and from the fact that X_f has no singularities, that the limit set

(2)
$$\mathcal{L}(\alpha) := \bar{\alpha} \setminus \alpha$$

of α —as a subset of $\operatorname{Cl}(\mathbb{R}^2)$ —, is either \mathbb{S}^1 or a nonempty closed sub-interval of it. Also if \mathcal{A} is a half-Reeb component of X_f , the difference $\mathcal{L}(\mathcal{A}) := \overline{\mathcal{A}} \setminus \mathcal{A}$ (in $\operatorname{Cl}(\mathbb{R}^2)$) is

a compact connected subset of $Cl(\mathbb{R}^2)$ which may or may not be properly contained in \mathbb{S}^1 .

Given $p \in \mathbb{R}^2$ we will denote by α_p the trajectory of X_f passing through p. Also, α_p^+ and α_p^- will denote the positive and negative half-trajectories of X_f , respectively, starting at p. If $\gamma: [a, b] \to \mathbb{R}^2$ is an embedded smooth curve transversal to X_f and and $a \leq t_1 \leq t_2 \leq b$, we will denote

$$\mathfrak{R}^+\big(\gamma([t_1,t_2])\big) = \bigcup_{t_1 \le s \le t_2} \alpha^+_{\gamma(s)}, \quad \mathfrak{R}^-\big(\gamma([t_1,t_2])\big) = \bigcup_{t_1 \le s \le t_2} \alpha^-_{\gamma(s)}$$

Definition 4 Let \mathcal{A} and \mathcal{B} be a pair of aligned hRc's for X_f and let $\gamma: [1, 2] \to \mathbb{R}^2$ be an aligning path for the pair $\{\mathcal{A}, \mathcal{B}\}$ with connecting interval $[s_0, r_0]$. We say that \mathcal{A} and \mathcal{B} are *adjacent* half-Reeb components for X_f if the set

$$\mathcal{L}\Big(\mathfrak{R}^+\big(\gamma([s_0,r_0])\big)\Big) = \overline{\bigcup_{s_0 \le s \le r_0} \alpha_{\gamma(s)}^+} \Big\backslash \bigcup_{s_0 \le s \le r_0} \alpha_{\gamma(s)}^+$$

is contained in the unit circle S^1 at infinity (resp. $\mathcal{L}(\mathcal{R}^-(\gamma([s_0, r_0]))) \subset S^1)$. Set $\Omega = \mathcal{A} \cup \mathcal{R}^+(\gamma[s_0, r_0]) \cup \mathcal{B}$ (resp. $\Omega = \mathcal{A} \cup \mathcal{R}^-(\gamma[s_0, r_0]) \cup \mathcal{B}$). Notice that \mathcal{A} and \mathcal{B} are adjacent if and only if the subset $\Omega \cup \mathcal{L}(\Omega)$ of $Cl(\mathbb{R}^2)$ is homeomorphic to a bidimensional compact disc.

6 **P**olynomial Maps

Hereafter we will consider only polynomial maps of the plane. If $f: \mathbb{R}^2 \to \mathbb{R}$ is a polynomial submersion, then it may be seen that

(a) $\mathcal{L}(\mathcal{R}^+(\gamma[s_0, r_0]))$ is just one point of \mathbb{S}^1 ; in fact, otherwise, $\mathcal{L}(\mathcal{R}^+(\gamma[s_0, r_0]))$ would contain an open subinterval $I \subset \mathbb{S}^1$ which in turn would imply the contradiction that f is bounded along every ray approaching I (see Figure 3).

Figure 3: A pair of adjacent half Reeb components

(b) There exists a finite set $S_f = \{z_1, \ldots, z_k\}$ of points in the unit circle \mathbb{S}^1 at infinity such that if α is a half-trajectory of X_f then $\mathcal{L}(\alpha) = z_i$ for some $i \in \{1, \ldots, k\}$.

(c) If \mathcal{A} is a hRc of X_f then $\mathcal{L}(\mathcal{A}) \cap \mathbb{S}^1 \subset S_f$. Each point $z_i \in S_f$ will be called a *limit point* for X_f .

Furthermore, if $\varphi \colon \mathbb{S}^2 \setminus \mathbb{S}^1 \to \mathbb{R}^2$ is the map defined by equation (1), by studying the Poincaré compactification \tilde{X}_f —via φ —of the polynomial vector field X_f , we may conclude, using Dumortier's work [4], that

(d) X_f has finitely many hRc's.

Within the proof of next result we will use the following notation. If $\gamma \subset Cl(\mathbb{R}^2)$ is an arc and $p, q \in \gamma$ we denote by $[p, q]_{\gamma}$ (resp. $(p, q)_{\gamma}$) the closed (resp. open) sub-interval of γ with endpoints p and q.

Proposition 4 Let $X = (f,g): \mathbb{R}^2 \to \mathbb{R}^2$ be a non-injective polynomial map such that $0 \notin \operatorname{Spec}(X)$. Then there exists $\theta \in \mathbb{R}$ such that $X_{f_{\theta}}$ has a pair $\{\mathcal{A}, \mathcal{B}\}$ of adjacent half-Reeb components such that $e^{\pm \frac{\pi}{2}i} \notin \mathcal{L}(\mathcal{A}) \cup \mathcal{L}(\mathcal{B})$, where $(f_{\theta}, g_{\theta}) = R_{\theta} \circ X \circ R_{-\theta}$.

Proof By Proposition 3 there exists $\mu \in \mathbb{R}$ such that $X_{f_{\mu}}$ has a pair of aligned hRc's. Proceed assuming that $f = f_{\mu}$ and consider the case in which the limit set of one of the hRc's of X_f contains $e^{\pm \frac{\pi}{2}i}$.

By [10, Lemma 2.5], we may find $\epsilon > 0$ small, such that if $\theta \in (-\epsilon, +\epsilon)$, then $X_{f_{\theta}}$ has a pair $\{\mathcal{A}_{\theta}, \mathcal{B}_{\theta}\}$ of aligned hRc's. We claim that

(a) if $\epsilon > 0$ is small enough, for all $\theta \in (-\epsilon, 0) \cup (0, \epsilon)$ the limit set of both \mathcal{A}_{θ} and \mathcal{B}_{θ} is disjoint of $e^{\pm \frac{\pi}{2}i}$.

In fact, let f_n and g_k be the highest degree homogeneous part of f and g respectively and let L_θ denote the straight line passing through the origin with slope $\tan(\pi/2 + \theta)$. The assumptions imply that $f_n(L_0) \equiv g_k(L_0) \equiv 0$. Also, it may be seen that

(b) if $\epsilon > 0$ is small and $\theta \in (-\epsilon, 0) \cup (0, \epsilon)$, then both, $f_n(L_{\theta} \setminus \{0\})$ and $g_k(L_{\theta} \setminus \{0\})$ are disjoint of $\{0\}$.

To fix ideas, suppose that $n \ge k$. In this way, if $\theta \ne 0$ is small and $(f_{\theta})_n$ and $(g_{\theta})_n$ denote the highest degree homogeneous part of f_{θ} and g_{θ} , respectively, then

$$(f_{\theta})_{n} = (\cos \theta) f_{n} \circ R_{-\theta} - [k/n] (\sin \theta) g_{k} \circ R_{-\theta}$$
$$(g_{\theta})_{n} = (\sin \theta) f_{n} \circ R_{-\theta} + [k/n] (\cos \theta) g_{k} \circ R_{-\theta}$$

where [k/n] denotes the integer part of k/n. If we assumed that for some $\theta \in (-\epsilon, 0) \cup (0, \epsilon) \mathcal{A}_{\theta}$ accumulated at infinity at a direction corresponding to L_0 , then we would conclude that $(f_{\theta})_n(L_0) \equiv 0$. As g_{θ} , restricted to \mathcal{A} , is bounded, $(g_{\theta})_n(L_0) \equiv 0$. Therefore, we would obtain

$$f_n(L_{-\theta}) = f_n \circ R_{-\theta}(L_0) = 0 = g_n \circ R_{-\theta}(L_0) = g_n(L_{-\theta}).$$

This contradiction with (b) proves (a).

Let $\theta \in (\mu - \epsilon, \mu + \epsilon)$ be such that $X_{f_{\theta}}$ has a pair \mathcal{A}_1 and \mathcal{A}_2 of aligned hRc's with $e^{\pm \frac{\pi}{2}i} \notin \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$. Let $\gamma: [1, 2] \to \mathbb{R}^2$ be a smooth aligning path for \mathcal{A}_1 and \mathcal{A}_2 , with connecting interval $[s_0.r_0]$, which we shall assume to be positive.

We will prove that if A_1 and A_2 are not already adjacent, then we can construct a new pair $\{B_1, B_2\}$ of aligned half-Reeb components for $X_{f_{\theta}}$ such that B_1 is either equal to A_1 or A_2 and the interior of B_2 is contained in $\mathcal{R}^+(\gamma[s_0, r_0])$, *i.e.*, B_2 is different from A_1 and A_2 . As f_{θ} is polynomial, there are only a finitely many hRc's for $X_{f_{\theta}}$ and so, proceeding inductively, we will, eventually, arrive to a pair of adjacent hRc's for $X_{f_{\theta}}$.

Let $p \in \mathbb{R}^2 \cap \mathcal{L}(\mathcal{R}^+(\gamma[s_0, r_0]))$ and let $\eta: [-1, 1] \to \mathbb{R}^2$ be a regular curve satisfying

$$\eta(0) = p$$
 and $\dot{\eta}(0) = \nabla f(p)$.

We may assume that $f|_{\eta}$ is strictly monotone and that $\Re^+(\gamma[s_0, r_0])$ intersects η but $\alpha_{s_0}^+$ and $\alpha_{r_0}^+$ do not intersect η . Let $s_0 < t_1 < t_2 < t_0$ be numbers such that $\alpha_{\gamma(t_1)}^+$ and $\alpha_{\gamma(t_2)}^+$ intersect the curve η at points p_1 and p_2 respectively. As f restricted to $[p_1, p_2]_{\eta}$ and $[\gamma(t_1), \gamma(t_2)]_{\gamma}$ is strictly monotonous, there is a *flow box* between the trajectories $\alpha_{t_1}^+$ and $\alpha_{t_2}^+$ and the arcs $[p_1, p_2]_{\eta}$ and $[\gamma(t_1), \gamma(t_2)]_{\gamma}$. In particular, $[p_1, p_2]_{\eta} \subset \Re^+(\gamma[s_0, r_0])$ and all the semi-trajectories $\alpha_{\gamma(s)}^+$ with $s \in [t_1, t_2]$ intersect (only) once the curve η inside the arc $[p_1, p_2]_{\eta}$. Therefore $p \notin [p_1, p_2]_{\eta}$. Consider only the case in which $p_1 \in [p_2, p]_{\eta}$ (resp. $p_2 \in [p_1, p]_{\eta}$), $p_1 = \eta(d_1)$ and $p_2 = \eta(d_2)$ with $-1 < d_2 < d_1 < 0$. See Figure 4.

It is easy to see that we can construct a smooth curve η_0 linking the points $\gamma(t_1)$ and p_1 (resp. $\gamma(t_2)$ and p_2) and having only one quadratic tangency with the foliation of $X_{f_{\theta}}$. Moreover, η_0 can be chosen in such a way that the curve $\zeta = [\gamma(0), \gamma(t_1)]_{\gamma} \cup$ $\eta_0 \cup [p_1, p]_{\eta}$ (resp. $\zeta = [\gamma(t_2), \gamma(3)]_{\gamma} \cup \eta_0 \cup [p_2, p]_{\eta}$) is smooth. Observe that ζ has exactly two (quadratic) tangency points with the foliation of $X_{f_{\theta}}$, one inside the arc $[\gamma(0), \gamma(t_1)]_{\gamma}$ (resp. $[\gamma(t_2), \gamma(3)]_{\gamma}$) corresponding to \mathcal{A}_1 (resp. \mathcal{A}_2) and the other inside the curve η_0 . Let t_0 be the supremum of the number $s_0 < t < t_1$ such that $\alpha^+_{\gamma(t)}$ intersect the curve η . By the assumptions $s_0 < t_0 < t_1$ and $\alpha^+_{\gamma(t_0)} \cap \eta = \emptyset$.

Let

$$d_0 = \sup\{d_1 < d < 0 : \eta(d) \in \mathbb{R}^+(\gamma[s_0, r_0])\}.$$

Clearly the trajectory $\alpha_{\eta(d_0)}$ does not intersect the arc $[\gamma(s_0), \gamma(r_0)]_{\gamma}$.

It is easy to see there is a new hRc \mathcal{B}_2 of $X_{f_{\theta}}$ whose compact edge is the arc $[\gamma(t_0), \eta(d_0)]_{\zeta}$ and whose non-compact edges are $\alpha^+_{\gamma(t_0)}$ and $\alpha^-_{\eta(d_0)}$. Clearly the pair $\{\mathcal{A}_1, \mathcal{B}_2\}$ (resp. $\{\mathcal{A}_2, \mathcal{B}_2\}$) is aligned in the sense defined before. This concludes the proof of the proposition.

We shall need the following well known result essentially due to Hadamard (see for more details [5]).

Proposition 5 Let $X = (f,g) \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a polynomial map such that $\text{Spec}(X) \cap \{0\} = \emptyset$. Then X is a diffeomorphism if and only if $f^2 + g^2 \colon \mathbb{R}^2 \to \mathbb{R}$ is a proper map.

We will see in Section 8, that Theorem D give us a better criterium, than that of Proposition 5 to find out whether a polynomial map such that $\text{Spec}(X) \cap \{0\} = \emptyset$ is injective.

Figure 4: The curve η_0 .

7 **Proof of Theorems C and D**

Let us set up the preliminaries for the proof of Theorems C and D. First of all, if *X* is a non-injective polynomial map then, by Proposition 4, there exists $\theta \in \mathbb{R}$ such that if $X_{\theta} = (f_{\theta}, g_{\theta}) = R_{\theta} \circ X \circ R_{-\theta}$, the flow $X_{f_{\theta}}$ has a pair $\{\mathcal{A}_1, \mathcal{A}_2\}$ of adjacent hRc's such that $e^{\pm \frac{\pi}{2}i} \notin \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$. Notice that $\operatorname{Spec}(X_{\theta}) = \operatorname{Spec}(X)$. As f_{θ} is polynomial and \mathcal{A}_1 and \mathcal{A}_2 are adjacent, $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) = \{w\} \subset \mathbb{S}^1$, with $w \neq e^{\pm \frac{\pi}{2}i}$. Therefore, Proposition 2 implies $\Pi(\mathcal{A}_1) \cap \Pi(\mathcal{A}_2)$ contains an interval of infinite length, where $\Pi \colon \mathbb{R}^2 \to \mathbb{R}$ is the projection on the first coordinate. To fix ideas, let us suppose that $\Pi(\mathcal{A}_1) \cap \Pi(\mathcal{A}_2)$ contains the interval $[b, \infty)$, see figure 5.

As f_{θ} is a polynomial map,

(a) the algebraic curve

$$T_{\theta} = \{ p \in \mathbb{R}^2 : (f_{\theta})_y(p) = 0 \}$$

is made up of finitely many regular curves and finitely many singular points.

Similarly to the proof of Theorem A, if a > b is large enough, we have that

(b) For any $x \ge a$, the vertical line $\Pi^{-1}(x)$ intersects exactly one trajectory $\alpha_x^i \subset \mathcal{A}_i$ of $X_{f_\theta}|_{\mathcal{A}_i}$, i = 1, 2, such that $\Pi(\alpha_x^i) \cap (x, \infty) = \emptyset$, i = 1, 2; in other words, x is the maximum for the restriction $\Pi|_{\alpha_x^i}$, i = 1, 2.

It follows that

(c) If $x \ge a$ and $p_i \in \alpha_x^i \cap \Pi^{-1}(x)$, for i = 1, 2, then there is a "parabolic" tangency between X_{f_θ} and $\Pi^{-1}(x)$ at p_i . In particular, $p_i \in T$, *i.e.*, $\frac{\partial f_\theta}{\partial y}(p_i) = 0$.

Let T_x^i , i = 1, 2 be the set of $p \in A_i$ such that $p \in \alpha_x^i \cap \Pi^{-1}(x)$, $x \ge a$. Notice that, for every $x \ge a$, T_x^i is a finite set. By using (a) we may define analytic functions $\eta_i: [a, \infty) \to A_i$, i = 1, 2 in such a way that $\eta_i(x) \in T_x^i$ and there are no other points of T_x^i inside the arc of $\Pi^{-1}(x)$ connecting $\eta_1(x)$ and $\eta_2(x)$. In this way, as the flow X_f is continuous (see Figure 5)

(d) The collinear vectors $\nabla f_{\theta}(\eta_1(x))$ and $\nabla f_{\theta}(\eta_2(x))$ have opposed orientations; *i.e.*, $\frac{\partial f_{\theta}}{\partial x}(\eta_1(x)) \cdot \frac{\partial f_{\theta}}{\partial x}(\eta_2(x)) < 0$.

Figure 5: $[b, \infty) \subset \Pi(\mathcal{A}_1) \cap \Pi(\mathcal{A}_2)$.

7.1 **Proof of Theorem C**

If *X* is a non-injective polynomial map, proceeding as in the proof of Theorem A, we obtain that

$$\infty > \int_{[a,\infty)} \frac{d}{ds} f_{\theta} \big(\eta_i(s) \big) \, ds = \int_{[a,\infty)} (f_{\theta})_x \big(\eta_i(s) \big) \, ds, \quad i = 1, 2,$$

which implies that $\lim_{n\to\infty} (f_{\theta})_x (\eta_1(x_n)) = 0$ and $\lim_{n\to\infty} (f_{\theta})_x (\eta_2(y_n)) = 0$, for some sequences $x_n, y_n \to \infty$. This fact together with (d) imply that there are positive and negative values of $\operatorname{Spec}(X_{\theta})$ (= $\operatorname{Spec}(X)$) arbitrarily close to zero. Therefore if—for some $\epsilon > 0$ —either $(-\epsilon, 0] \cap \operatorname{Spec}(X) = \emptyset$ or $\operatorname{Spec}(X) \cap [0, \epsilon) = \emptyset$, X is injective.

7.2 **Proof of Theorem D**

If X is a non-injective polynomial map such that $\operatorname{Spec}(X) \cap \{0\} = \emptyset$ then the map $X_{\theta} = R_{\theta} \circ X \circ R_{-\theta}$ is also a non-injective polynomial map such that $\operatorname{Spec}(X) \cap \{0\} = \emptyset$ and the condition (d) implies that the signs of $\operatorname{Trace}\left(\operatorname{DX}_{\theta}(\eta_{1}(x))\right)$ and $\operatorname{Trace}\left(\operatorname{DX}_{\theta}(\eta_{2}(x))\right)$ are opposed. Henceforth, for each $x \ge a$ there is a point (x, q(x)) in the arc joining $\eta_{1}(x)$ and $\eta_{2}(x)$ which belongs to the set

$$\Gamma_{\theta} = \{ p \in \mathbb{R}^2 : \operatorname{Trace}(\mathrm{DX}_{\theta})(p) = 0 \}.$$

Let $\gamma: [1,2] \to \mathbb{R}^2$ be an aligning path for \mathcal{A}_1 and \mathcal{A}_2 as in Definition 3. To fix ideas let us suppose that $X_{f_{\theta}}$ is oriented in such a way that $\alpha^+_{\gamma(s_0)}$ and $\alpha^+_{\gamma(r_0)}$ belong to \mathcal{A}_1 and \mathcal{A}_2 respectively. In this way, the curve $\Sigma_{\theta} = \{(x, q(x)) : x \ge a\} \subset \Gamma_{\theta}$ accumulates at infinity inside the region $\Omega = \mathcal{A}_1 \cup \mathcal{R}^+(\gamma[s_0, r_0]) \cup \mathcal{A}_2$. We observe that all of $f_{\theta}|_{\Omega}, g_{\theta}|_{\Omega}$ and $(f_{\theta}^2 + g_{\theta}^2)|_{\Omega}$ are bounded maps. Therefore, $X_{\theta}(\Sigma_{\theta})$ is a bounded subset of \mathbb{R}^2 .

On the other hand, the relation $DX_{\theta}(q) = R_{\theta} \cdot DX(R_{-\theta}(q)) \cdot R_{-\theta}$, implies that

(3)
$$\Gamma_{\theta} = R_{\theta}(\Gamma)$$
 where $\Gamma = \{p \in \mathbb{R}^2 : \operatorname{Trace}(\mathrm{DX})(p) = 0\}$.

Let us prove item (a) of Theorem D. Suppose that X is a non-injective polynomial map such that $\text{Spec}(X) \cap \{0\} = \emptyset$ and let $\Sigma = R_{-\theta}(\Sigma_{\theta}) \subset \Gamma$. Since Σ_{θ} is noncompact, Σ is non-compact. On the other hand, $X(\Sigma) = R_{-\theta}(X_{\theta}(\Sigma_{\theta}))$ is a bounded subset of \mathbb{R}^2 which implies that all $f|_{\Gamma}$, $g|_{\Gamma}$ and $(f^2 + g^2)|_{\Gamma}$ are not proper maps (because $\Sigma \subset \Gamma$). Therefore if one of $f|_{\Gamma}$ or $g|_{\Gamma}$ is a proper map, X is injective.

Let us prove item (b) of Theorem D. By Proposition 5 if X is an injective polynomial map such that $\text{Spec}(X) \cap \{0\} = \emptyset$, then $(f^2 + g^2)|_{\Gamma}$ is a proper map. On the other hand, if X is a non-injective polynomial map such that $\text{Spec}(X) \cap \{0\} = \emptyset$, proceeding as in item (a) we conclude that $(f^2 + g^2)|_{\Gamma}$ is a not proper map.

8 Examples and Applications. Keller Maps

Example 1 Let $X = (f_x, f_y): \mathbb{R}^2 \to \mathbb{R}^2$ be the gradient of a polynomial map $f: \mathbb{R}^2 \to \mathbb{R}$. If X is an orientation preserving and locally diffeomorphic map, then Theorem C implies that X is injective.

Indeed, as the matrix DX(p) is non-singular and symmetric for all $p \in \mathbb{R}^2$, its eigenvalues are real and non-null. As X preserves orientation, $Spec(X) \subset (-\infty, 0)$ or $Spec(X) \subset (0, +\infty)$. Therefore, by Theorem C, X is injective.

Example 2 Let n > 1 be a natural number and let

$$f = x - 2y + y^n,$$
$$g = x - y + y^n.$$

Then $X = (f,g): \mathbb{R}^2 \to \mathbb{R}^2$ is an injective Keller map. Moreover, if *n* is even, Spec $(X) = \mathbb{S}^1 \cup (\mathbb{R} \setminus \{0\})$. That is, Spec(X) is the biggest possible for Keller maps

Notice that $\text{Trace}(\text{DX})(x, y) = ny^{n-1}$. This means that

$$\Gamma = \{(x, y) : \operatorname{Trace}(\mathrm{DX})(x, y) = 0\} = \{(x, y) : y = 0\}.$$

We check that both $f|_{\Gamma}$ and $g|_{\Gamma}$ are proper maps, then by Theorem D, X is injective. The characteristic polynomial of DX(x, y) is $\lambda^2 - ny^{n-1}\lambda + 1$. Therefore Spec(X) is given by all the numbers $1/2 \cdot (ny^{n-1} \pm \sqrt{n^2y^{2n-2} - 4}), y \in \mathbb{R}$. It is easy to see that $\mathbb{R} \setminus \{0\} \subset \text{Spec}(X)$ if *n* is even and then $\text{Spec}(X) = \mathbb{S}^1 \cup (\mathbb{R} \setminus \{0\})$ (because Spec(X)

is a connected set of \mathbb{R}^2). By taking an odd natural $n \ge 3$, in this example, we get that Spec(*X*) is made up of the union of the sets $\mathbb{S}^1 \cap \{(x, y) : x > 0\}$ and $(0, \infty)$.

The following example (see [3]) shows the existence of analytic non-injective Keller maps.

Example 3 Let

(4)
$$f = \sqrt{2}e^{x/2}\cos\left(\frac{y}{e^x}\right)$$
$$g = \sqrt{2}e^{x/2}\sin\left(\frac{y}{e^x}\right).$$

Then $X = (f, g) \colon \mathbb{R}^2 \to \mathbb{R}^2$ is a non-injective analytic Keller map.

It is easy to check that X is a Keller map. It is also non-injective, for instance, observe that for all $k \in \mathbb{Z}$ and all $y \in \mathbb{R}$, $X(0, y + 2k\pi) = \sqrt{2} (\cos(y), \sin(y))$.

Let us proceed to describe the adjacent half-Reeb components of X_f and X_g . In fact, both X_f and X_g have infinitely many adjacent half-Reeb components (see Definition 4). In fact, observe that f vanishes along all curves of the form

$$C_k(t) := \{(x, y) : x = t, y = (\pi/2 + \pi k) \cdot e^t\}, \quad t \in \mathbb{R}, \ k \in \mathbb{Z}.$$

Also $f(0, y) = \sqrt{2} \cos(y)$ and then $\frac{\partial}{\partial y} f(0, y)$ vanishes only once in the segment

$$S_k := \{ (x, y) : x = 0, \pi/2 + \pi k \le y \le \pi/2 + \pi (k+1) \}$$

that connects $C_k(0)$ and $C_{k+1}(0)$. We observe that f is bounded in the semi-plane $\{(x, y) : x \le 0\}$ and unbounded in $\{(x, y) : x > 0\}$. In this way, for all $k \in \mathbb{Z}$, X_f has a half-Reeb component \mathcal{A}_k bounded its non-compact edges $\{C_k(t), t \le 0\}$ and $\{C_{k+1}(t), t \le 0\}$ and its compact edge S_k . All consecutive pairs $\{\mathcal{A}_k, \mathcal{A}_{k+1}\}$ are adjacent. Similarly, X_g has a Half-Reeb component \mathcal{B}_k between consecutive curves of the form

$$D_k(t) := \{(x, y) : x = t, y = (\pi + \pi k) \cdot e^t\}, \quad t \in \mathbb{R}, \ k \in \mathbb{Z}$$

and the segment

$$T_k := \{ (x, y) : x = 0, \pi + \pi k \le y \le \pi/2 + \pi (k+1) \},\$$

and all consecutive pairs $\{\mathcal{B}_k, \mathcal{B}_{k+1}\}$ are adjacent. Observe that the curve $D_k(t), t \leq 0$ is the only semi-trajectory of X_g which is completely contained in the half-Reeb component \mathcal{A}_k of X_f .

Example 4 If X = (f,g): $\mathbb{R}^2 \to \mathbb{R}^2$ is the Pinchuck non-injective polynomial map (see [15]), then, by Theorem C, Spec(X) meets the real line at arbitrarily small positive and negative numbers.

Let us see this by directly describing the foliation induced by X_f , where

$$f = (xy - 1)(x(xy - 1) + 1) + (x(xy - 1) + 1)^{2}((xy - 1)^{2} + y)$$

After an extensive use of symbolic computation, one may see that:

(4,1) for every c < 0, {f = c} is connected;

(4,2) for every $c \ge 0$, {f = c} has 3 connected components;

(4,3) the set $\{f \le 0\}$ is usually known as a Reeb component of X_f and the set $\{f < 0\}$ is homeomorphic to a disc;

(4,4) for every $c \in \mathbb{R}$, a connected component of $\{f = c\}$ can approach to infinity, only at one of the following directions: the positive *x*-axis, the negative *x*-axis and the negative *y*-axis.

(4,5) $\{f = 0\}$ consists of 3 connected components A_1, A_2, A_3 such that

• A_1 is contained in $\{(x, y) : xy > 0\} \cup \{(0, 0)\}$ and approaches infinity in the directions of the positive *x*-axis and the negative *x*-axis.

• A_2 is contained in $\{(x, y) : x < 0, y < 0\}$ and approaches infinity in the directions of the negative *x*-axis and the negative *y*-axis.

• A_3 is contained in $\{(x, y) : y > 0\}$ meeting the *x*-axis exactly at (1,0); it approaches infinity in the directions of the positive *x*-axis and the negative *y*-axis.

(4,5) the Reeb component $\{f \leq 0\}$ contains 2 half-Reeb components, one of which approaches the positive *x*-axis and the other the negative *x*-axis. By observing, as in the proof of Theorem C, the gradient vector field (f_x, f_y) along this half-Reeb components, it can be seen that there are sequences $\{a_n\}$ and $\{b_n\}$ such that, for all n, $f_x(a_n) > 0$, $f_y(a_n) = 0 = f_y(b_n)$, $f_x(b_n) < 0$ and moreover $f_x(a_n) \to 0$ and $f_x(b_n) \to 0$. In other words, Spec(X) meets the real line at arbitrarily small positive and negative numbers.

Example 5 Let $X = (f,g): \mathbb{R}^2 \to \mathbb{R}^2$ be an orientation preserving and locally diffeomorphic polynomial map. If *X* is injective then it follows, from the main result of either of the papers [1] and [12], that *X* is a diffeomorphism. Therefore, X_f and X_g have no Reeb components.

In fact, if X_f has a hRc, say A, then, we may see that X(A) is bounded. This is not possible because A is unbounded and X is a diffeomorphism.

Acknowledgements The first author was partially supported by FAPESP grant number 99/01442-8; the second author by a PRONEX/FINEP/MCT grant number 76.97.1080.00; and the third author by a DGES grant number PB96-1153 and a CIRIT grant number 2001SGR 00173.

References

- A. Bialynicki-Birula and M. Rosenlicht, *Injective morphisms of real algebraic varieties*. Proc. Amer. Math. Soc. 13(1962), 200–203.
- [2] L. A. Campbell, Unipotent Jacobian matrices and univalent maps. Contemp. Math. 264(2000), 157–177.
- [3] M. Chamberland and G. Meisters, A mountain pass to the Jacobian Conjecture. Canad. Math. Bull. 41(1998), 442–451.
- [4] F. Dumortier, Singularities of vector fields on the plane. J. Differential Equations 23, 1(1977), 53–106.
- [5] A. van den Essen, *Polynomial automorphisms and the Jacobian conjecture*. Progr. Math. 190, Birkhauser Verlag, Basel, 2000.
- [6] R. Fessler, A proof of the two dimensional Markus-Yamabe Stability Conjecture and a generalization. Ann. Polon. Math. **LXII**(1995), 45–74.

On the Injectivity of C^1 Maps of the Real Plane

- [7] M. Golubitsky and V. Guillemin, *Stable mapings and their singularities*. Grad. Texts in Math. 14, Springer-Verlag, 1973.
- [8] E. A. González, Generic properties of polynomial vector fields at infinity. Trans. Amer. Math. Soc. 143(1969), 201–222.
- [9] C. Gutierrez, *Smoothability of Cherry flows on two-manifolds*. Lecture Notes in Math. **1007**(1981), 308–331.
- [10] C. Gutierrez, A solution to the bidimensional global asymptotic stability conjecture. Ann. Inst. Henri Poincaré 12(1995), 627–671.
- [11] W. Kaplan, Regular curve-families filling the plane II. Duke Math. J. 8(1941), 11–46.
- K. Kurdyka, Injective endomorphisms of real algebraic sets are surjective. Math. Ann. 313(1999), 69–82.
- [13] L. Markus and H. Yamabe, Global stability criteria for differential systems. Osaka Math. J. 12(1960), 305–317.
- [14] D. J. Newman, One-to-one polynomial maps. Proc. Amer. Math. Soc. 11(1960), 867–870.
- [15] S. Pinchuck, A counterexample to the strong Jacobian conjecture. Math. Z. 217(1994), 1–4.

Departamento de Matemáticas IBILCE-UNESP São José do Rio Preto (SP) Brazil e-mail: milton@mat.ibilce.unesp.br ICMC-USP São Carlos & IMPA Rio de Janeiro Brazil e-mail: gutp@icmc.sc.usp.br

Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Spain e-mail: jllibre@mat.uab.es