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A continuum model of discrete granular
avalanches
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A simple continuum model is proposed for discrete granular avalanches, as observed in
slowly rotating drums. Subject to granular transfer across the basal interface, the model
evolves the transient surface inclination and mid-slope velocity profile of the avalanches,
from failure to arrest. This is done using new boundary conditions that allow entrainment
or detrainment contingent on the basal shear rate. For entrainment to occur, the basal shear
stress must overcome the erosion resistance of the jammed deposit, while for detrainment
to take place the basal shear rate must vanish. The resulting avalanche dynamics is
controlled by a single dimensionless number, the ratio of excess slope at failure to
excess resistance to erosion, that can be determined from inclination history data. This
number provides a measure of slope brittleness, from which the peak flow rate and arrest
inclination can be predicted. Analytical techniques are used to derive model solutions, and
clarify the resulting behaviour. Finally, the model is tested by comparing solutions with
laboratory experiments and discrete particle simulations.

Key words: avalanches, dry granular material

1. Introduction

Based upon rheological descriptions of granular behaviour (Silbert et al. 2001; da Cruz
et al. 2005; Jop, Forterre & Pouliquen 2006), continuum models have in recent decades
been applied successfully to a variety of granular surface flows. These include flows over
rigid boundaries (Edwards et al. 2019; Lin & Yang 2020) and flows over erodible layers.
The latter include steady channel flows (Jop, Forterre & Pouliquen 2005; Liu & Henann
2017; Berzi, Jenkins & Richard 2020), transient channel flows (Jop, Forterre & Pouliquen
2007; Capart, Hung & Stark 2015; Parez, Aharonov & Toussaint 2016; Larcher, Prati
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Figure 1. Discrete avalanches in a slowly rotated drum: (a) definition sketch with key parameters and variables;
(b) typical surface inclination history, featuring a series of sudden slope relaxation events lasting from failure
at time tf to arrest at time ta.

& Fraccarollo 2018; Capart 2023) and steady, continuous avalanching in rotating drums
and draining silos (Hung, Stark & Capart 2016; Hung, Aussillous & Capart 2018; Hung
et al. 2023). Important flows over erodible beds that have so far resisted this approach,
however, are the discrete avalanches produced in very slowly rotated drums (Evesque 1991;
Courrech du Pont et al. 2005; Liu, Zhou & Specht 2010; Balmforth & McElwaine 2018), in
gradually tilted sand boxes (Jaeger, Liu & Nagel 1989; Evesque et al. 1993; Aguirre et al.
2000) or down continuously supplied sand piles (Lemieux & Durian 2000; Altshuler et al.
2008; Arran & Vriend 2018; Alonso-Llanes et al. 2022). In such configurations, granular
slopes can remain at rest in a metastable state, then suddenly relax to milder inclinations
by way of short-lived surface avalanches. In slowly driven experiments that used ionic
concentration to turn interparticle friction on and off, Perrin et al. (2019) found that
sawtooth-shaped hysteretic avalanches occurred for frictional particles, but that hysteresis
completely disappeared for frictionless particles.

In rotating drums, the regime in which discrete avalanches occur is known as the
slumping regime, as opposed to the rolling and cascading regimes for which grains flow
continuously and steadily along the surface. As illustrated by figure 1(a), a characteristic
of the slumping regime is that the granular free surface remains nearly straight as it
evolves over time. For the rolling regime, the surface is also nearly straight, but maintains
a steady inclination, whereas for the cascading regime the steady free surface becomes
curved (Rajchenbach 1990; Hung et al. 2016; Li & Andrade 2020). In the slumping
regime, observed at very slow rotation rates, avalanches occur episodically, alternating
with periods of pure rigid body rotation. As illustrated by figure 1(b), during these periods
the surface inclination gradually steepens, before the next avalanche occurs. During each
avalanche, grains typically accelerate from rest, then decelerate back to arrest within a
short time. Granular motion is often limited to a surface layer, but the thickness of this
layer can grow and decay over time as the avalanche entrains and detrains grains at the
base. The basal boundary is therefore a moving non-material interface (Jop et al. 2007;
Lusso et al. 2021; Capart 2023). As for other geomorphic flows (Hungr 1995), bulking
and debulking may significantly affect the flow dynamics, and in particular control the
peak flow rate. Unlike most geomorphic flows, however, water is not needed. Instead, the
flowing layer and static deposit are composed of the same material: dry grains.

In nature, episodic avalanches of dry grains can be observed down screes or debris
slopes (Church, Stock & Ryder 1979; Dai et al. 2022), or down the lee faces of eolian
dunes (Allen 1970; Sherman et al. 2022). Related phenomena, also involving the failure
of metastable slopes, include landslides and snow avalanches. The study of rotating drum
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avalanches can thus help clarify generic features of granular flows that are of much broader
interest (Evesque 1991; Linz, Hager & Hänggi 1999; Perrin et al. 2019). In particular,
episodic avalanches of dry grains represent possibly the simplest case in which a small
perturbation, slow steepening or gradual weakening can produce a disproportionate slope
response. The prediction of the resulting amplitude, peak flow rate and eventual arrest
inclination is therefore a problem of practical as well as fundamental interest.

To simulate the dynamics of discrete avalanches, a number of phenomenological models
have been proposed and applied to rotating drum flows (Bouchaud et al. 1994; Linz et al.
1999; Fischer et al. 2008; Fischer, Gondret & Rabaud 2009; Marteau & Andrade 2018).
Typically, these models formulate an ordinary differential equation for the time-evolving
surface inclination θ(t) (see figure 1a,b), with terms designed to replicate experimentally
observed behaviours. Although such models provide valuable insights, they do not deduce
the flow dynamics from generally applicable, explicit assumptions about local granular
behaviour. Continuum models, on the other hand, have been successful at describing
avalanching flows released from rest by suddenly lifting a lid (Jop et al. 2007; Larcher
et al. 2018) or tilting a channel (Capart et al. 2015). These include models resolved over
the vertical (Jop et al. 2007; Sarno et al. 2022), or integrated over depth (Capart et al.
2015). So far, however, no continuum model has been able to evolve the inclination and
velocity profile of self-triggered avalanches like those observed in slowly rotating drums.

In the present work, we propose such a deductive model, based on two essential
components. The first is a local flow rheology, provided by the linearized μ(I) model
relating the stress ratio μ to the inertia number I (da Cruz et al. 2005; Jop et al. 2006).
The second is a new set of basal boundary conditions, proposed recently for granular
flows over brittle erodible beds (Capart 2023). These assert that, for entrainment to occur,
the basal shear stress must overcome the erosion resistance of the jammed deposit, while
for detrainment to take place the basal shear rate must vanish. Bypass takes place when
neither entrainment or detrainment can occur. The adopted rheology, although simple,
is supported by experiments (Jop et al. 2005; Tapia, Pouliquen & Guazzelli 2019) and
discrete particle simulations (da Cruz et al. 2005; Azéma & Radjaï 2014). The basal
boundary conditions, by contrast, have so far been confronted only with experiments
involving starting and stopping flows, down slopes of constant inclination (Capart et al.
2015; Larcher et al. 2018). Their application to episodic avalanches, down slopes of
evolving inclination, thus constitutes a challenging new test.

The paper is structured as follows. In § 2, model assumptions and equations are
presented, simplified and cast in dimensionless form. In § 3, analytical techniques are
used to derive solutions for three successive stages of avalanche evolution, characterized
respectively by entrainment, bypass and detrainment. In § 4, the behaviour of the solutions
is described, as a function of the dimensionless number that measures the brittleness of the
slope. In § 5, comparisons are made with experiments and discrete element simulations.
Section 6, finally, is devoted to conclusions and avenues for future work.

2. Model formulation

2.1. Model equations and assumptions
As illustrated by figure 1(a), we consider dry granular avalanches down erodible slopes
of surface inclination θ close to the critical angle θc, and choose axes (x, z) tilted at
this angle. We denote by z̃(x, t) and

˜
z(x, t) the upper and lower boundaries of the flow

layer, with h(x, t) = z̃ −
˜
z the corresponding thickness. Local governing equations are then

applied to domain
˜
z < z < z̃, subject to the following assumptions. In a drum of width W,
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we consider solid grains of diameter D and density ρS, and assume dense granular flows
for which the solid fraction cS and bulk density ρ = cSρS are approximately constant, as
supported by experimental observations (MiDi 2004). Although the transition from static
to flowing typically involves some degree of dilatancy, the resulting changes in volume
fraction are assumed small enough to be negligible. Mass conservation therefore reduces
to the continuity equation

∂u
∂x

+ ∂w
∂z

= 0, (2.1)

where u,w are the downslope and normal components of velocity. Secondly, shallow flows
are assumed, hence local momentum balance equations parallel and normal to the slope
can be written

ρ

(
∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= ρg sin θ + ∂τ

∂z
, (2.2)

∂σ

∂z
= −ρg cos θ, (2.3)

where τ and σ are respectively the shear and normal granular stresses, and g is the
gravitational acceleration. Transverse velocity variations are neglected, and the flows are
assumed sufficiently shallow and wide to neglect the influence of sidewall friction. For
some granular flows in thin channels, sidewall friction plays a crucial role, as it controls the
flow depth attained at steady state over erodible beds (Taberlet et al. 2003; Jop et al. 2005).
Episodic surface avalanches, however, also occur in wide drums, or in discrete element
simulations for which sidewalls are replaced by periodic boundary conditions (Han et al.
2021). This indicates that sidewall friction is not a crucial factor for unsteady, discrete
avalanching. Even when frictional sidewalls are present, in this work we will assume for
simplicity that the ratio of flow depth to drum width remains small enough for sidewall
friction to be negligible.

For the shear stress τ within the flow layer, we assume the linearized μ(I) rheology (da
Cruz et al. 2005)

τ = μ(I)σ = (tan θc + χ
√
ρ/ρSI)σ = tan θcσ + χD

√
ρσ γ̇, (2.4)

where μ is the dimensionless shear to normal stress ratio, χ a dimensionless rheological
coefficient, γ̇ = ∂u/∂z the local shear rate and I = γ̇D/

√
σ/ρS the inertial number. For

sustained shear at very slow shear rate, I � 1, the ratio of shear to normal stress therefore
reduces to τ/σ = tan θc, which defines the critical angle of internal friction θc. As γ̇
increases, τ increases proportionately, with an effective viscosity χD

√
ρσ that varies as

the square root of the normal stress σ . For frictional spheres, experiments (Jop et al. 2005;
Tapia et al. 2019) and discrete element simulations (Azéma & Radjaï 2014) show that
the rheological coefficient does not vary greatly with particle properties, and takes the
approximate value χ ≈ 1. For frictionless particles, simulations with two-dimensional
(Bouzid et al. 2013) and three-dimensional grains (Dumont et al. 2023) indicate that,
instead of a linear relationship, the rate-dependent component of the shear stress varies
roughly with the square root of the shear rate. In this work, we restrict our attention to
frictional spheres.

Boundary conditions at the surface and at the base of the flowing layer are formulated
as follows. First, we assume zero flux across the free surface z = z̃, hence the kinematic
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boundary condition
∂ z̃
∂t

+ ũ
∂ z̃
∂x

= w̃, (2.5)

where ũ, w̃ denote the velocity components along the free surface. At the surface, we also
assume no stress, or τ̃ = σ̃ = 0. The normal stress then integrates to σ = ρg⊥y, where
g⊥ = g cos θc and y = z̃ − z denotes the depth below free surface. Assuming the rheology
(2.4), the shear rate must therefore vanish at the upper free surface. This is at variance
with experiments (Capart et al. 2015) and discrete element simulations (Parez et al. 2016),
which show instead a finite shear rate at the top. The resulting velocity profiles, however,
remain in relatively close agreement.

At the base, we adopt the new boundary conditions proposed recently by Capart (2023)
for granular flows over brittle beds. Flow is assumed to take place over an erodible
granular substrate, or bed, with which grains can be exchanged. The basal boundary z =

˜
z,

representing the interface between the flow and bed, is defined as the uppermost locus
where Δu = 0, with Δu denoting the granular velocity in excess of the bed velocity
due to rigid body rotation. For slow drum rotation rates, the bed rotation velocity can
be neglected, as it is much smaller than the velocity of avalanching grains. Regardless,
the decrease of the excess velocity Δu to zero at a well-defined finite depth is again an
idealization, as actual velocity profiles typically show a more gradual exponential decay
or power law decrease to zero at the base.

Subject to this idealization, the basal interface constitutes a sharply defined moving
boundary that evolves according to

∂
˜
z
∂t

− ˜w = −e + d. (2.6)

On the left-hand side, ˜w is the velocity at which the basal substrate uplifts ( ˜w > 0) or
subsides ( ˜w < 0) due to drum rotation or sandbox tilting. On the right-hand side, e ≥ 0 is
the rate of erosion or entrainment and d ≥ 0 the rate of deposition or detrainment, both
assumed positive. Whether entrainment (e > 0) or detrainment (d > 0) can occur then
depends on the shear stress ˜τ and shear rate

˜
γ̇ attained at the base of the flow layer. For

erosion to occur (e > 0), the basal shear stress must overcome the erosion resistance

τe = tan θeσ, (2.7)

where θe > θc is an angle of friction describing the bed resistance to erosion: a greater
shear stress is needed to unjam bed grains than to keep them flowing at a slow shear rate
(Atman et al. 2014; Farain & Bonn 2023). Note that the angle θe, like the failure angle
θf , does not take a unique value. Instead, it may depend on system history and exhibit
random variation from one avalanche to the next. For a single avalanche, however, we
will assume θe to be constant. Similar to our assumed gap between θe and θc, Dumont
et al. (2020) conducted discrete element simulations of heap and inclined plane flows of
frictional spheres in which they found a significant gap between erosion and sedimentation
angles.

Accordingly, when e > 0, the shear stress at the base of the flowing layer must satisfy

˜τ = tan θe ˜σ = tan θc ˜σ + χD
√
ρ ˜σ ˜
γ̇ , (2.8)

where ˜σ = ρg⊥h is the normal stress at the base. For entrainment to occur, the requisite
shear stress must be provided by rapidly sheared near-bed grains. Thus the basal shear rate
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Figure 2. Three possible solution behaviours dependent on the basal shear rate: (a) entrainment, possible
only when the shear rate is maximal (dashed blue line); (b) bypass, when the basal shear rate is intermediate;
(c) detrainment, possible only when the basal shear rate is zero (dashed magenta line). Arrows up or down
denote basal interface motions, and a cross the absence of such motion.

has to reach the maximal value

˜
γ̇max = tan θe − tan θc

χD

√
g⊥h, (2.9)

proportional to the difference between the two friction coefficients tan θe and tan θc. For
detrainment to occur (d > 0), on the other hand, we assume that the basal shear rate must
decrease to zero. The entrainment and detrainment rates e, d are therefore governed by the
following complementary inequalities

e ≥ 0,
˜
γ̇ ≤

˜
γ̇max, (

˜
γ̇ −

˜
γ̇max)e = 0, (2.10a–c)

d ≥ 0,
˜
γ̇ ≥ 0,

˜
γ̇ d = 0. (2.11a–c)

By eroding or depositing grains as needed, the flow layer thus maintains its basal shear
rate within a finite range, bracketed by the following lower and upper bounds:

0 ≤
˜
γ̇ ≤

˜
γ̇max. (2.12)

Conversely, these bounds must be attained for the flow to erode or deposit grains. If the
bounds are not attained, 0 <

˜
γ̇ <

˜
γ̇max, we assume that the flow can neither entrain or

detrain, and call this situation bypass. These three possible basal behaviours – entrainment,
bypass and detrainment – are illustrated in figure 2. As the flow evolves over time, the
conditions (2.10a–c) and (2.10a–c) allow the flow to transition continuously between these
three behaviours.

2.2. Reduced equations
Integrated over depth, the local continuity equation (2.1) yields an evolution equation for
the surface profile z̃(x, t)

∂ z̃
∂t

+ ∂q
∂x

= ˜w, (2.13)

where q = ∫
u dz is the discharge per unit width. Upon invoking (2.6), we can then deduce

∂h
∂t

+ ∂q
∂x

= e − d. (2.14)

The erosion and deposition rates e, d thus affect the evolution of the flow thickness h,
but do not directly affect the evolution of the free surface elevation z̃. For application to
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rotating drums, the basal velocity ˜w induced by drum rotation can be expressed

˜w = −Ωx, (2.15)

where Ω is the drum rotation rate, and with the origin x = 0 placed at mid-slope. When
the drum is slowly rotated, episodic avalanches occur, during which the surface inclination
drops rapidly, alternating with periods of no flow and gradual re-steepening. Both during
and between slope relaxation events, experiments indicate that the surface profile z̃(x, t)
can be well approximated by a straight line of time-varying inclination

z̃(x, t) = −(θ(t)− θc)x. (2.16)

Substitution of (2.15) and (2.16) into (2.13) produces

∂q
∂x

=
(

dθ
dt

−Ω

)
x. (2.17)

Integration subject to boundary conditions q = 0 at x = ±L/2 then yields

q(x, t) = (L/2)2 − x2

2

(
Ω − dθ

dt

)
. (2.18)

By assuming that the free surface remains perfectly straight, with a time-dependent but
uniform inclination, we therefore constrain the flow discharge to evolve synchronously
everywhere along the slope. Thus we neglect the local surface irregularities and
propagation dynamics that can be observed in both experiments (Balmforth & McElwaine
2018) and discrete element simulations (Han et al. 2021). In what follows, we will assume
very slow steepening rates (Ω � −dθ/dt) and focus on the comparatively fast slope
relaxation events. Applying (2.18) at mid-slope then yields for the inclination θ(t) the
ordinary differential equation (Courrech du Pont et al. 2005)

dθ
dt

= − 8
L2 q(0, t), (2.19)

involving only the discharge q(0, t) at mid-slope (x = 0), where z̃(0, t) = 0. At mid-slope,
moreover, ∂q/∂x = 0 and the flow is approximately uniform, so that convective
acceleration terms can be safely neglected. The local momentum balance equation (2.2)
can therefore be approximated there by

ρ
∂u
∂t

= ρg sin θ + ∂τ

∂z
. (2.20)

Substitution of the rheology (2.4) then yields

∂u
∂t

= g⊥(tan θ − tan θc)+ g1/2
⊥ χD

∂

∂y

(
y1/2 ∂u

∂y

)
, (2.21)

where it is convenient to use the depth coordinate y = z̃ − z instead of z. Upon defining
the excess slope S(t) by

S(t) = tan θ(t)− tan θc, (2.22)

we can approximate dθ/dt = cos2 θc dS/dt. We can therefore describe the relaxation of
slopes of finite length using two coupled equations. The first is an ordinary differential
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equation for the excess slope

cos2 θc
dS
dt

= − 8
L2

∫ h

0
udy, (2.23)

featuring on the right-hand side the integral of the velocity profile at mid-slope, u( y, t).
The second is a partial differential equation for this velocity profile

∂u
∂t

= g⊥S(t)+ g1/2
⊥ χD

∂

∂y

(
y1/2 ∂u

∂y

)
(0 < y < h), (2.24)

where the excess slope S(t) intervenes as a time-dependent forcing term. The velocity
profile is subject to three boundary conditions, one at the free surface and two at the base

∂u
∂y

= 0 ( y = 0), (2.25)

u = 0, 0 ≤ −∂u
∂y

≤ tan θe − tan θc

χD

√
g⊥h ( y = h). (2.26)

Two boundary conditions are needed at the base because the time-evolving flow thickness
h(t) is also unknown. For the initial conditions, finally, we assume that the granular slope
starts from rest, at failure time tf and failure angle θf , with a flow layer of zero initial
thickness hf = 0.

Assuming slow rotation rates, note that the equations derived here apply to arbitrary
drum fill level l, the influence of which we capture via the slope length L. Following Gray
(2001), we define the fill level l as the offset distance of the flat free surface away from the
drum centre. The slope length is then L = 2

√
R2 − l2, and reduces to L = 2R when the

drum is half-filled (l = 0). Provided that the correct slope length L is used, all our results
continue to hold when l /= 0, motivating our choice of L instead of R as our defining length.
In § 5, we will need this flexibility to apply the theory to the discrete element simulations of
Kasper et al. (2021), for which the drum was not half-filled. Prior to solving the equations,
it is useful to first cast them in dimensionless form. For this purpose, a scaling analysis is
conducted in the next section.

2.3. Scaling analysis
To make the equations dimensionless, let us adopt the slope length L as length scale, and
Se = tan θe − tan θc as slope scale. We then seek time, velocity and depth scales T , U and
H that balance the different terms of the reduced equations. From (2.23), we deduce

cos2 θc
Se

T
= HU

L2 . (2.27)

From (2.24), on the other hand, we get

U
T

= g⊥Se = g1/2
⊥ χDU

H3/2 . (2.28)

For the depth scale, we obtain

H = (χDL cos θc)
1/2. (2.29)

The depth scale H is therefore proportional to the geometric mean of the grain diameter
D and slope length L, a surprisingly simple result that does not seem to have been
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reported previously. For the time scale, we deduce

T = (L cos θc)
3/4

g1/2
⊥ (χD)1/4

, (2.30)

proportional to the slope length L raised to the power 3/4, and inversely proportional to
the grain diameter D to the power 1/4. For the velocity scale, finally, we get

U = g1/2
⊥
(L cos θc)

3/4

(χD)1/4
Se, (2.31)

proportional to the slope scale Se. We use these scales to define the dimensionless variables

y∗ = y
H
, h∗ = h

H
, t∗ = t − tf

T
, S∗ = S

Se
, u∗ = u

U
, γ̇ ∗ = γ̇

U/H
. (2.32a–f )

The governing equations then become, in dimensionless form,

dS∗

dt∗
= −8

∫ h∗

0
u∗ dy∗, (2.33)

∂u∗

∂t∗
= S∗ + ∂

∂y∗

(
y∗1/2 ∂u∗

∂y∗

)
, (2.34)

with boundary conditions

∂u∗

∂y∗ = 0 ( y∗ = 0), (2.35)

u∗ = 0, 0 ≤ −∂u∗

∂y∗ ≤ h∗1/2 ( y∗ = h∗), (2.36)

and initial conditions

h∗ = 0, S∗ = S∗
f = tan θf − tan θc

tan θe − tan θc
≈ θf − θc

θe − θc
(t∗ = t∗f = 0). (2.37)

The number S∗
f , the only dimensionless number that remains, represents the

over-steepening of the slope at failure. It is defined as the ratio of excess slope at failure
to excess resistance to erosion. Remarkably, the failure and erosion resistance inclinations
θf and θe affect the dimensionless dynamics of discrete avalanches only jointly, via this
number S∗

f . Analogous to the brittleness index introduced by Bishop (1971), it provides a
dimensionless measure of the brittleness, or degree of metastability of the slope.

Mathematically, we obtain a rather unusual system coupling one integro-differential
equation for the slope S∗(t∗) (2.33), with one partial differential equation for the velocity
profile u∗( y∗, t∗) (2.34). To solve this system, we need to examine in sequence three
distinct stages, characterized respectively by entrainment, bypass and detrainment. In the
next section, analytical techniques will be used to derive solutions for each stage.
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3. Solution derivation

3.1. Entrainment stage
Upon failure, the avalanching layer must first entrain grains from the underlying substrate.
For erosion to occur, the basal shear rate must attain its upper limit

−∂u∗

∂y∗ ( y∗ = h∗) =
˜
γ̇ ∗

max = h∗1/2. (3.1)

By analogy with the constant slope case treated in Capart (2023), we seek an exact
similarity solution whereby the flowing layer simultaneously thickens and accelerates,
while maintaining a velocity profile of Bagnold shape. The time-evolving velocity profile
satisfying the boundary conditions at the surface and at the base is then

u∗( y∗, t∗) =
{

2
3(h

∗(t∗)3/2 − y∗3/2), 0 ≤ y∗ ≤ h∗(t∗),
0, h∗(t∗) ≤ y∗,

(3.2)

where h∗(t∗) is the flow thickness evolution, yet to be determined. Substituting this ansatz
into the mass and momentum balance equations (2.33) and (2.34) yields

dS∗

dt∗
= −16

5
h∗5/2, (3.3)

h∗1/2 dh∗

dt∗
= S∗ − 1, (3.4)

which form a pair of nonlinear ordinary differential equations (ODEs) for the coupled
time evolution of the avalanche slope S∗(t∗) and thickness h∗(t∗). Note that the Bagnold
velocity profile does not represent an extra assumption or approximation on our part, nor is
it restricted to flows over a non-erodible base. For the entrainment stage, the time-evolving
Bagnold profile (3.2) is the exact solution to the assumed governing equations, boundary
and initial conditions, provided that the two ODEs (3.3) and (3.4) are satisfied. This was
derived step by step in Capart (2023), and can be checked by direct substitution into (2.33)
to (2.37). During bypass and detrainment, the Bagnold shape no longer applies and the
velocity profile deforms into a sigmoidal shape.

To solve the equations, the time variable can be eliminated from (3.4) by using the chain
rule together with (3.3), yielding the separable ODE

h∗1/2 dh∗

dS∗
dS∗

dt∗
= −16

5
h∗3 dh∗

dS∗ = S∗ − 1. (3.5)

This can be integrated with initial conditions S∗ = S∗
f and h∗ = 0 at time t∗f = 0, to get

h∗(S∗) =
(

5
8

)1/4
((S∗

f − 1)2 − (S∗ − 1)2)1/4. (3.6)

The flow layer thickness increases until S∗ = S∗
e = 1, where it saturates at the extremal

value

h∗
e =

(
5
8

)1/4
(S∗

f − 1)1/2, (3.7)

retained during the ensuing bypass stage. By integrating the profile (3.2) over depth, we
can also calculate the discharge evolution

q∗(S∗) = 2
5

(
5
8

)5/8
((S∗

f − 1)2 − (S∗ − 1)2)5/8. (3.8)
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Figure 3. Solution curves for slopes of varying brittleness, during successive evolution stages: (a,b) solutions
for the entrainment stage (blue lines) and their continuation beyond their domain of validity (long blue dashes);
(c,d) solutions for the bypass stage (green lines) and their continuation beyond their domain of validity (long
green dashes); (e, f ) solutions for the detrainment stage (magenta lines). Short dashes: domain boundaries.

The resulting orbits are shown in figure 3(a), for five different values of S∗
f . The discharge

peaks at the end of the entrainment stage (S∗ = S∗
e = 1), reaching the maximum value

q∗
e = 2

5

(
5
8

)5/8
(S∗

f − 1)5/4. (3.9)

Upon defining S′ = S∗ − 1, Ŝ′ = S′/S′
f and q̂ = q∗/q∗

e , the slope-discharge relationship
can also be written

Ŝ′2 + (q̂4/5)2 = 1. (3.10)

In the (Ŝ′, q̂4/5) plane, the orbits trace a unit circle centred at the origin. In the (S∗, q∗)
plane, as illustrated in figure 3(a), the orbits become slightly distorted. Different failure
slopes S∗

f yield geometrically similar orbits (scaled copies of each other) with similarity
centre (S∗

e , 0) = (1, 0). Starting from rest, no self-accelerating erosion can occur if S∗
f ≤ 1.

Beyond this threshold, the greater the oversteepening at failure, the greater the maximum
discharge attained by the resulting avalanche.

To obtain the time evolution, the solution (3.6) can be substituted back into (3.3) to get

dS∗

dt∗
= −2

(
8
5

)3/8

((S∗
f − 1)2 − (S∗ − 1)2)5/8. (3.11)
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Defining t̂ = 2(8
5 )

3/8S′1/4
f t∗, this ODE can be normalized and separated into

dŜ′

(1 − Ŝ′2)5/8
= −dt̂. (3.12)

Integration subject to initial condition Ŝ′(0) = 1 then yields the implicit solution

G5/4(Ŝ′)− G5/4(1) = −t̂. (3.13)

Here, we have introduced the generalized arcsine function

Gϕ(x) =
∫ x

0

dξ
(1 − ξ2)ϕ/2

= x2F1

(
1
2
,
ϕ

2
; 3

2
; x2

)
, (3.14)

where 2F1(a, b; c, x) is the hypergeometric function. Defined over interval −1 ≤ x ≤ 1,
Gϕ(x) is an odd function that resembles an arcsine and in fact reduces to G1(x) = sin−1(x)
when ϕ = 1. The normalized time at which Ŝ′ = 0, erosion ends and the discharge peaks
is then given by

t̂e = G5/4(1) =
∫ 1

0

dx
(1 − x2)5/8

=
√

πΓ

(
3
8

)

2Γ
(

7
8

) ≈ 1.9279, (3.15)

where Γ (·) is the gamma function. In terms of dimensionless variables (2.36), this result
can also be written

t∗e = 1
2

(
5
8

)3/8
t̂e(S∗

f − 1)−1/4 = 1
4

(
5
2

)3/10
t̂eq∗−1/5

e . (3.16)

Thus the greater the oversteepening at failure, the greater the peak discharge, and the
shorter the time needed to attain this peak. This is illustrated in figure 3(b), which shows
the dimensionless discharge hydrographs q∗(t∗) associated with the orbits of figure 3(a).
Note that the results of this section are valid only for the entrainment stage, over time
interval t∗f = 0 ≤ t∗ ≤ t∗e . The corresponding curve segments are shown as solid lines on
figure 3(a,b). To show what the formulas produce beyond this range of validity, however,
the corresponding curves are also shown as dashed lines. The correct curves for t∗ > t∗e
are derived in the next sections.

3.2. Bypass stage
At time t∗ = t∗e , the flow layer starts to decelerate. Detrainment cannot yet occur, however,
because the basal shear rate

˜
γ̇ ∗ at this time still has the maximal value

˜
γ̇ ∗

max = h∗1/2
e . (3.17)

Starting from this finite value, the basal shear rate must drop back to zero before deposition
can occur. Over some time t∗e ≤ t∗ ≤ t∗d , the flowing layer will therefore undergo bypass,
during which it will retain the constant thickness h∗ = h∗

e given by (3.7). During the bypass
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stage, the Bagnold shape (3.2) no longer holds, hence the evolving shape of the velocity
profile must be derived anew. The equations to be solved can be written

dS∗

dt∗
= −8h∗

e

∫ 1

0
u∗ dη, (3.18)

∂u∗

∂t∗
= S∗ + 1

h∗3/2
e

∂

∂η

(
η1/2 ∂u∗

∂η

)
, (3.19)

where η = y/h = y∗/h∗ is a normalized depth coordinate, and where the evolving velocity
profile u∗(η, t∗) must satisfy the homogeneous boundary conditions

∂u∗

∂η
(0, t∗) = 0, u∗(1, t∗) = 0. (3.20a,b)

Given at time t∗ = t∗e , the initial conditions for the slope and velocity profile are

S∗(t∗e ) = 1, u∗(η, t∗e ) = 2
3 h∗3/2

e (1 − η3/2), (3.21a,b)

as obtained in the previous section. Whereas for the entrainment stage a nonlinear moving
boundary problem had to be solved, here the flow thickness remains constant. The
equations therefore become linear and homogeneous: they are linear in the two unknowns
S∗ and u∗, and admit the solution pair u∗ = 0, S∗ = 0. Moreover, their behaviour depends
on the single dimensionless number h∗

e = (5
8 )

1/4(S∗
f − 1)1/2, which itself depends only on

the oversteepening at failure, S∗
f .

Generalizing an approach applied earlier by Parez et al. (2016) and Capart (2023) to the
constant slope case, we seek series solutions for S∗(t) and u∗(η, t∗) of the form

S∗(t∗) =
N∑

n=1

Cn exp(−λn(t∗ − t∗e )), (3.22)

u∗(η, t∗) =
N∑

n=1

Cn fn(η) exp(−λn(t∗ − t∗e )), (3.23)

where the roots λn and coefficients Cn can be real or complex, and the infinite series is
truncated to a finite number of terms N = 8 (in practice, N = 3 is sufficient for accuracy
to at least three significant figures). The eigenfunctions fn(η) that satisfy the partial
differential equation (3.19) and boundary conditions (3.20a,b) are obtained as

fn(η) = η1/4J−1/3(κnη
3/4)− J−1/3(κn)

λnJ−1/3(κn)
, (3.24)

where κn = 4
3λ

1/2
n h∗3/4

e , and Jν(z) is the Bessel function of the first kind of order ν. To
satisfy (3.18), the roots λn must satisfy the transcendental equation

K(λ) = (λ2 + 8h∗
e)J−1/3(κ)− 8h∗1/4

e
J2/3(κ)

λ1/2 = 0, (3.25)

in which κ = 4
3λ

1/2h∗3/4
e . Note that K(λ) is a complex-valued function of a complex

variable, hence we must find roots λ in the complex plane that zero both its
real and imaginary parts. The condition (3.25) yields infinitely many discrete roots
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S∗
f λ1 λ2 λ3 C1 C2 C3

1.4 0.9497 3.714 33.16 1.0690 −0.0689 −0.0000
2.2 1.0531 ± 2.2412i 14.50 0.5004 ∓ 0.4359i −0.0008
3.0 0.7565 ± 2.7199i 9.82 0.5028 ∓ 0.9137i −0.0056
3.8 0.6284 ± 3.0203i 7.57 0.5096 ∓ 1.3494i −0.0187
4.6 0.5597 ± 3.2546i 6.21 0.5221 ∓ 1.7721i −0.0431

Table 1. First calculated roots λn and coefficients Cn of the bypass series solution.

λn, n = 1, . . . ,∞, indexed by taking the real part of λn in ascending order. For selected
values of the slope brittleness S∗

f , the first three calculated roots λn, n = 1, . . . , 3 are listed
in table 1. The real parts of all roots are positive, yielding, as expected, solutions that decay
over time. All roots starting from n = 3 are real and distinct. For n > 3, the values κn can
be approximated by the zeros of J−1/3(κ), the roots obtained earlier for the constant slope
case (Capart 2023). For the first three roots, however, the variable slope condition (3.25)
must be used.

The character of the first two roots depends on the value of S∗
f relative to the value

S∗
f ,crit ≈ 1.4976 at which critical damping occurs. For 1 < S∗

f < S∗
f ,crit, the first two roots

are real and distinct, 0 < λ1 < λ2. For S∗
f > S∗

f ,crit, by contrast, the first two roots are
complex conjugate, λ1,2 = α ± iβ. The value S∗

f = S∗
f ,crit therefore marks a transition

from overdamping to underdamping. For avalanching flows started from S∗
f < S∗

f ,crit,
the flowing layer decelerates asymptotically to zero. Likewise, the basal shear rate

˜
γ̇ ∗

decreases asymptotically to zero, without ever reaching zero and triggering detrainment.
For avalanching flows started from S∗

f > S∗
f ,crit, on the other hand, the flowing layer

decelerates more strongly, and reaches zero basal shear rate in finite time. This finite time
t∗ = t∗d at which detrainment starts is again dependent on h∗

e , or equivalently on S∗
f .

The coefficients Cn, finally, must be chosen to satisfy the initial conditions (3.20a,b).
In table 1, we provide calculated values for the first three coefficients, for selected
values of S∗

f . As needed to satisfy the initial condition S∗(t∗e ) = 1, it can be checked
that the coefficients Cn sum to 1 in each case. Once the coefficients Cn are known, the
time-evolving discharge can be obtained from

q∗(t∗) = h∗
e

∫ 1

0
u∗(η) dη =

N∑
n=1

λnCn

8
exp(−λn(t∗ − t∗e )). (3.26)

Likewise the time-evolving basal shear rate can be calculated from

˜
γ̇ ∗(t∗) =

N∑
n=1

C′
n exp(−λn(t∗ − t∗e )), (3.27)

where

C′
n = −Cn

h∗
e

dfn
dη
(1) =

(
J2/3(κn)− J−4/3(κn)

2λ1/2
n h∗1/4

e J−1/3(κn)
− 1

4λnh∗
e

)
Cn. (3.28)

If S∗
f > Sf ,crit, this basal shear rate drops to zero at the finite time t∗d . To find this time,

we approximate the series (3.27) at t∗d by its first two terms, with complex conjugate
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coefficients C′
1,2 = A ± iB, such that

˜
γ̇ ∗(t∗d) ≈ (2A cos(β(t∗d − t∗e ))+ 2B sin(β(t∗d − t∗e ))) exp(−α(t∗d − t∗e )). (3.29)

The time t∗d at which
˜
γ̇ ∗(t∗d) = 0 is therefore obtained as

t∗d ≈ t∗e + 1
β

tan−1(−A/B). (3.30)

By sampling (3.22) and (3.23) at time t∗d , we can also determine the slope S∗
d = S∗(t∗d) < 0

and velocity profile u∗
d(η) = u∗(η, t∗d) attained when detrainment starts.

For the values of S∗
f listed in table 1, the resulting orbits (S∗(t∗), q∗(t∗)) are plotted

in figure 3(c) (green curves). For S∗
f = 1.4, the solution is overdamped, and reaches the

origin (0, 0) without ever leaving the upper half-plane. The other orbits are underdamped,
and would eventually spiral inwards to the origin if the basal shear rate did not first drop
to zero. The locus

˜
γ̇ ∗ = 0 across which this occurs (short green dashes) is located in

the upper left quadrant of the (S∗, q∗) plane. The flow therefore reaches zero basal shear
rate before the discharge q∗ becomes negative. The corresponding discharge hydrographs
q∗(t∗) are plotted in figure 3(d). Valid solutions for the bypass stage (continuous green
lines) are restricted to the time interval t∗e ≤ t∗ ≤ t∗d , during which the basal shear rate
remains positive. The underdamped curves are also plotted beyond this range (dashed
green lines), but only to show their oscillatory behaviour. The correct curves for t∗ > t∗d
are derived in the next section.

3.3. Detrainment stage
During the detrainment stage, the flow simultaneously thins and decelerates. We are thus
back to a moving boundary problem, this time with a given initial velocity profile at
dimensionless time t∗ = t∗d . For this stage an exact analytical solution is out of reach, but
an approximate semi-analytical solution can be obtained. For this purpose, we let both the
flow layer thickness h∗ and mean velocity ū∗ = q∗/h∗ evolve over time, but assume that
the velocity profile maintains the self-similar shape

u∗(η, t∗)
ū∗(t∗)

= u∗(η, t∗d)
ū∗(t∗d)

, (3.31)

inherited from the bypass solution at time t∗ = t∗d . Self-similarity does not hold exactly,
but is supported by numerical solutions of stopping transients (Capart et al. 2015; Barker
& Gray 2017). Subject to this assumption, only three variables S∗(t∗), h∗(t∗) and ū∗(t∗)
suffice to describe the system. Like before, the slope must satisfy

dS∗

dt∗
= −8h∗ū∗. (3.32)

Subject to the basal boundary condition
˜
γ̇ ∗ = 0, appropriate for detrainment, we integrate

(2.34) over the flow depth to obtain the momentum balance equation

d
dt∗
(h∗ū∗) = h∗S∗. (3.33)

Finally, we follow Capart et al. (2015) and integrate over depth u∗ times (2.34) to obtain a
balance equation for the kinetic energy of the flow layer

d
dt∗

(
1
2
ϕh∗ū∗2

)
= h∗ū∗S∗ − ψ

ū∗2

h∗1/2 , (3.34)
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S∗
f t∗e q∗

e t∗d S∗
d q∗

d ϕ ψ t∗a S∗
a

1.4 1.016 0.095 — — — — — ∞ 0
2.2 0.772 0.375 1.547 −0.453 0.045 1.57 3.70 1.692 −0.474
3.0 0.680 0.709 1.197 −1.109 0.191 1.55 3.59 1.391 −1.228
3.8 0.625 1.080 1.034 −1.711 0.406 1.52 3.44 1.255 −2.000
4.6 0.587 1.479 0.935 −2.279 0.659 1.49 3.29 1.169 −2.777

Table 2. Calculated solution properties for selected values of S∗
f .

where ϕ (Boussinesq coefficient) and ψ are the two shape factors defined by

ϕ = 1
hū2

∫ h

0
u2 dy, ψ = h1/2

ū2

∫ h

0
y1/2γ̇ 2 dy. (3.35a,b)

Under the similarity assumption (3.31), both ϕ and ψ remain constant during detrainment.
Using the product rule and taking quasilinear combinations of (3.33) and (3.34), we deduce
the following evolution equations for the flow depth and mean velocity:

1
2
ϕū∗ dh∗

dt∗
= (ϕ − 1)h∗S∗ + ψ

ū∗

h∗1/2 , (3.36)

1
2
ϕh

dū∗

dt∗
= (1 − ϕ

2 )h
∗S∗ − ψ

ū∗

h∗1/2 . (3.37)

Together, the three equations (3.32), (3.36) and (3.37) form a closed system of three
coupled nonlinear ODEs for S∗(t∗), h∗(t∗) and ū∗(t∗). Unless ψ = 0 is assumed, no closed
form solution could be found. The equations can, however, be integrated numerically,
starting from the known initial conditions

S∗(t∗d) = S∗
d, h∗(t∗d) = h∗

e , ū∗(t∗d) = ū∗
d, (3.38a–c)

applied at the time t∗d when bypass ends and detrainment starts. Flow stops when ū∗ and
h∗ drop to zero, at which point the arrest time t∗a has been reached, and the slope has
attained the inclination S∗

a < 0. Contrary to early ideas about rotating drum avalanches
(Carrigy 1970), the arrest angle S∗

a is therefore not a property of the granular material,
but a consequence of the avalanching process that can be predicted from the model. For
selected values of S∗

f , table 2 lists the calculated values of these and other flow properties.
As plotted in figure 3(e, f ) (magenta lines) the detrainment solutions provide the last

missing segments of the orbits and discharge hydrographs. The complete orbits (figure 3e)
adopt teardrop shapes when S∗

f < S∗
f ,crit. They become ovoidal when S∗

f > S∗
f ,crit and

get gradually more symmetrical as the slope brittleness S∗
f increases. The discharge

hydrographs, likewise, become more symmetrical about their peaks as S∗
f increases

(figure 3f ). When S∗
f > S∗

f ,crit, the discharge decreases to zero in finite time, and this
time to arrest t∗a occurs sooner as S∗

f increases. The behaviour of the resulting solutions
is described further in the next section.

4. Solution behaviour

To further illustrate solution behaviour, time-evolving velocity profiles are shown in
figure 4. Here, plots are normalized by the maximum flow thickness h∗

e and maximum
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Figure 4. Normalized solutions for the time-evolving velocity profile at the centreline: (a) entrainment stage;
(b) bypass stage for overdamped avalanche (S∗

f = 1.4); (c) bypass (green) and detrainment (magenta) stages
for underdamped avalanche (S∗

f = 3); (d) close up of detrainment stage for underdamped avalanche (S∗
f = 3).

Arrows show direction of change: acceleration vs deceleration at the top; entrainment vs detrainment to the
side. There is no detrainment stage for the overdamped case.

surface velocity u∗
e = 2

3 (
5
8)

3/8(S∗
f − 1)3/4 experienced during the avalanche. During the

entrainment phase (figure 4a), the flow simultaneously accelerates and thickens, while
preserving a self-similar shape given by the Bagnold profile of (3.2). The same normalized
evolution, moreover, occurs regardless of the value of the slope brittleness S∗

f . After the
transition from entrainment to bypass, by contrast, the behaviour of the velocity profile
becomes strongly affected by the slope brittleness. When S∗

f < S∗
f ,crit (overdamped case,

figure 4b), the flow thickness remains constant indefinitely, and the flow layer arrests
by decelerating gradually throughout its thickness. Asymptotically, the velocity profile
reduces to the first term of the series (3.23), and decreases to zero over time as a negative
exponential. During this deceleration, the basal shear rate always remains positive and no
detrainment occurs.

When S∗
f > S∗

f ,crit (underdamped case, figure 4c), deceleration during the bypass stage
(green lines) causes the velocity profile to gradually deform into a sigmoidal shape. As a
result, the basal shear rate decreases to zero in finite time. At this point, detrainment occurs,
and the ensuing velocity profiles simultaneously thin and decelerate (magenta lines, see
also the close up of figure 4d). As the profiles shrink to zero, flow arrest occurs abruptly,
also in finite time. During the deceleration phase, resistance to erosion no longer influences
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ũ∗h∗

γ̇∗


t∗

(a) (b)

(c) (d )

Figure 5. Time-evolving variables for overdamped (S∗
f = 1.4, long dashes) and underdamped avalanches

(S∗
f = 3, continuous lines): (a) flowing layer thickness; (b) basal shear rate; (c) surface velocity; (d) surface

inclination. Blue: entrainment stage (short blue dashes: response for infinitely long channel); green: bypass
stage; magenta: detrainment stage. There is no detrainment stage for the overdamped case.

the evolution of the flow, and the resulting profiles agree qualitatively with numerical and
analytical solutions obtained earlier for stopping flows (Barker & Gray 2017; Capart 2023).

Throughout the avalanching process, the evolving velocity profile remains continuous
in both space and time. The rate of change of the velocity also remains continuous, except
at the base of the flow layer upon passage of the erosion front, and at the surface upon
failure and sudden arrest. To within approximation error, these continuity properties also
hold across the transitions from entrainment to bypass, and from bypass to detrainment.
The adopted governing equations and basal boundary conditions therefore let the flow
transition freely and smoothly between entrainment, bypass and detrainment.

The time evolution of some additional solution properties is illustrated in figure 5.
Figures 5(a) and 5(b) show how the flow thickness h∗(t∗) and

˜
γ̇ ∗(t∗) jointly evolve subject

to the complementary inequalities (2.10a–c) and (2.10a–c). During the entrainment stage
(blue lines), both increase in algebraic lockstep, as the two quantities vary together while
satisfying the quadratic relation h∗ =

˜
γ̇ ∗2

max implied by (3.1). During the bypass stage (green
lines), by contrast, the flow thickness remains constant while the basal shear rate decreases.
For the overdamped case (S∗

f = 1.4), the basal shear rate decreases asymptotically to zero,
and detrainment does not occur. For the underdamped case, the basal shear rate reaches
zero in finite time, after which detrainment occurs (magenta lines) until the flow thickness
has decreased to zero and flow arrest occurs.

Figure 5(c) shows the corresponding evolution of the surface velocity ũ∗(t∗). Surface
grains accelerate during the entrainment stage (blue lines), then decelerate during the
bypass (green lines) and detrainment stages (magenta line). Whereas for the overdamped
case, the surface velocity decreases asymptotically to zero, for the underdamped case
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Figure 6. Dimensionless characteristic times as a function of slope brittleness. Solid lines: times at which
entrainment ends (blue), detrainment starts (green) and arrest occurs (magenta). The dashed lines are the two
vertical asymptotes.

the deceleration to zero occurs abruptly. Like the discharge, the surface velocity peaks
at time t∗e . The erosion resistance angle θe is therefore the angle at which both the
discharge and surface velocity reach their maximum. This makes it straightforward to
estimate from experiments or discrete element simulations. The angle of peak velocity was
earlier identified by Marteau & Andrade (2018) as an important characteristic of granular
avalanches.

Finally figure 5(d) shows the time evolution of the surface inclination during the sudden
relaxation process. Immediately after failure, the inclination S∗ changes slowly at first. The
variables thus behave as if the channel inclination remained frozen. Accordingly, the early
time evolutions of the other variables match the power laws h∗ ∝ t∗2/3,

˜
γ̇ ∗ ∝ t∗1/3 and

ũ∗ ∝ t∗ derived in Capart (2023) for entraining flows in channels of constant inclination
(dashed blue lines in figure 5a–c). For slopes of finite length, however, the surface
inclination eventually starts to drop. When the curves reach the inclination S∗

e = 1, they
exhibit an inflection point and the flow switches from entrainment (blue lines) to bypass
(green lines). In the overdamped case, the inclination then decreases asymptotically to
the critical slope S∗

c = 0, and it takes infinite time for the flow to stop completely. Such
exponentially decaying angle histories were observed by Perrin et al. (2019) in drum
experiments involving frictionless immersed grains. In the underdamped case, by contrast,
the surface inclination undershoots the critical inclination, reaching an arrest inclination
S∗

a (magenta dashes) that is milder than the critical inclination S∗
c = 0 (black dashes),

and stops evolving in finite time. Such stopping in finite time was likewise observed by
Perrin et al. (2019) in drum experiments, when performed with frictional grains. Unlike
the transition from entrainment to bypass (blue to green), the transition from bypass to
detrainment (green to magenta) does not coincide with any peak or inflection point of the
surface velocity or inclination history (figure 5c,d). Its occurrence hinges instead on what
occurs at the base of the flow layer (figure 5a,b), more difficult to observe.

As illustrated by figure 6, the characteristic times of the avalanching process vary with
the slope brittleness S∗

f . At time t∗e (blue curve), avalanches reach their peak discharge, and
transition from entrainment to bypass. This time is undefined for S∗

f < 1, as in that case
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Test L W D Ω θf θc Θe te − tf (dθ̄/dt)e Θa ta − tf
case (mm) (mm) (mm) (deg. s−1) (deg.) (deg.) (−) (s) (deg. s−1) (−) (s)

1 500 50 1 0.018 25.1 ± 0.3 23.7 0.45 0.83 −1.8 −0.22 1.96
2 287 110 3 0.23 27.6 ± 0.4 26.4 0.27 0.92 −1.9 −0.53 1.91
3a 118 22 2.5 3.0 29.3 ± 1.4 26.2 0.37 0.37 −8.4 −0.31 0.77

Table 3. Test conditions and model parameters determined from inclination history data. Experiments by
Fischer et al. (2008) (case 1) and Balmforth & McElwaine (2018) (case 2); discrete particle simulations by
Kasper et al. (2021) (case 3a).

resistance to erosion at the base prevents avalanches from growing and accelerating. For
S∗

f > 1, t∗e becomes shorter as the slope becomes more brittle, and diverges to infinity as
S∗

f ↓ 1. This limit is associated with avalanches that grow and decay infinitely slowly. At
time t∗d (green curve), avalanches transition from bypass to detrainment, and at time t∗a they
come to complete arrest (magenta curve). When S∗

f ≤ S∗
f ,crit, neither event occurs in finite

time. For S∗
f > S∗

f ,crit, by contrast, both t∗d and t∗a are finite, and occur sooner as the slope
becomes more brittle. Both times also diverge to infinity as S∗

f ↓ S∗
f ,crit. When 1 < S∗

f ≤
S∗

f ,crit, avalanches reach their peak discharge in finite time, but arrest infinitely slowly. Such
contrasted approaches to flow arrest were observed earlier by Perrin et al. (2019), in drum
avalanche experiments performed with frictionless and frictional immersed grains.

5. Comparison with experiments and discrete element simulations

5.1. Data sources and processing
To test the proposed theory, its predictions will be compared with data from three different
sources: laboratory experiments by Fischer et al. (2008) and Balmforth & McElwaine
(2018), and discrete element simulations by Kasper et al. (2021). The three test cases
chosen, listed in table 3, are those that were described most completely in each reference.
All involve frictional spherical particles in partially filled rotating drums, but the grain
sizes, drum dimensions and rotation rates differ. Crucially, inclination histories featuring
multiple avalanche events were reported for each test case, allowing characteristic angles
to be determined. For illustration, we show in figures 7 and 8 how we processed the data
from the discrete element simulations of Kasper et al. (2021). As explained in the original
references, Fischer et al. (2008) and Balmforth & McElwaine (2018) used similar steps to
process their own experimental data.

Illustrated in figure 7, the inclination time history θ(t) can be obtained by video analysis
in experiments (Fischer et al. 2008; Balmforth & McElwaine 2018), or by processing
particle positions in discrete element simulations (Kasper et al. 2021). From such time
series, individual avalanche events can be identified and analysed. For each event, the (t, θ)
coordinates of the maximum and minimum inclinations can first be acquired (figure 7a).
These approximate the failure time and angle (tf , θf ), and the arrest time and angle (ta, θa)
associated with the event. Secondly, numerical differentiation can be used to obtain the
inclination rate of change, dθ/dt, and estimate from its extreme value the time, angle and
angular velocity (te, θe, (dθ/dt)e) at the end of the entrainment phase (figure 7b).

In both simulations and experiments, avalanching is quasi-periodic (Evesque 1991),
featuring a regular sequence of similar but not identical avalanches. Even after the
drum has rotated at constant speed for some time, there is considerable variation
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Figure 7. Processing of surface inclination history recorded in an experiment or discrete element simulation
(here, a simulation by Kasper et al. 2021): (a) segmentation of angle history into separate avalanche events;
(b) identification of extremal slope relaxation rates from numerically differentiated signal. Symbols: failure
(stars), arrest (plus) and extremal values (circles). Dashes: drum rotation rate.

between successive avalanche events. In particular, a broad distribution is obtained for the
avalanche amplitude Δθ = θf − θa. By contrast, the avalanche and entrainment durations,
ta − tf and te − tf , show less variation. Angle histories θ(t) for distinct avalanches,
moreover, exhibit similar shapes. They were found by Balmforth & McElwaine (2018)
to collapse reasonably close together when normalized in the form

Φ(t) = θ(t − tm)− θa

θf − θa
, (5.1)

where tm is the time at which the angle crosses the midpoint value θm = (θf + θa)/2. This
normalized signal can therefore be averaged over multiple events to obtain the mean signal,
or master curve,

θ̄ (t) = θ̄a + Φ̄(t)(θ̄f − θ̄a), (5.2)

where θ̄f and θ̄a are mean failure and arrest angles, averaged over many avalanches. The
resulting master curves are shown in figure 8(a,b), respectively, for the experiments of
Balmforth & McElwaine (2018) (magenta line) and the discrete element simulations of
Kasper et al. (2021) (green line). The master curve derived by Fischer et al. (2008) from
340 avalanches is also plotted on figure 8(a) (blue line). Note, however, that these authors
used a slightly different averaging procedure, in which they also normalized the time scale
(for details, see Fischer et al. 2008).

In their experiments (figure 8(c), blue dots), Fischer et al. (2008) found a weak, but
unambiguous negative correlation between the arrest angle θa and the failure angle θf .
Avalanche events that start from a higher than average failure inclination θf tend to stop at a
lower than average arrest inclination θa. To describe this relationship, Fischer et al. (2008)
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Figure 8. Master curves (a,b) and angle correlations (c,d) deduced from experiments (a,c) and discrete
element simulations (b,d). Experiments by Fischer et al. (2008) (blue) and Balmforth & McElwaine (2018)
(magenta); discrete element simulations by Kasper et al. (2021). Continuous lines: master curves; short dashes:
± one standard deviation; symbols: angle data from individual avalanche events; long dashes: fits through these
data.

proposed a linear fit of the form

θa = θn +Θa(θf − θn), (5.3)

where Θa < 0 is the slope of the best fit line, and θn the neutral angle defined by

θn = θ̄a − Θa

1 −Θa
(θ̄f − θ̄a). (5.4)

As illustrated by figure 8(c) (magenta dots), Balmforth & McElwaine (2018) found a
similar negative correlation between the arrest and failure angles, for episodic avalanches
produced at low drum rotation rates. At higher rotation rates, they investigated also the
continuous granular flow regime. When extrapolated to zero rotation rate (Ω = 0), the
inclinations of their continuous flows yield inclination angles θ1 that approximately match
the neutral angles obtained from their episodic avalanches. For glass spheres of diameter
3 mm, for instance, they obtained θ1 = 26.5◦, vs θn = 26.4◦ calculated from (5.4). The
critical angle θc, defined as the friction angle under slow, sustained shear, can therefore be
identified with either θ1 or θn. Since θn can be estimated from the data for all three test
cases, in this work we will set θc = θn as calculated from (5.4).

Whereas hundreds of avalanche events were recorded in the experiments by Fischer
et al. (2008) and Balmforth & McElwaine (2018), the simulated signal reported by
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Kasper et al. (2021) includes only seven avalanches. Nevertheless, the data from these
seven events again show a clear negative correlation (figure 8(d), green plus symbols).
They also exhibit a clear positive correlation between θe and θf (green circles), well
described by the linear fit

θe = θc +Θe(θf − θc), (5.5)

where 0 < Θe < 1 is the slope of the best fit line, and θc is again calculated using (5.4).
Unfortunately, neither Fischer et al. (2008) nor Balmforth & McElwaine (2018) reported
values of θe for individual avalanches. The time te − tf , mean inclination θ̄e and angular
velocity (dθ̄/dt)e at the end of the entrainment phase can nevertheless be deduced from
their master curves. We can then estimate the implied correlation from

Θe = θ̄e − θc

θ̄f − θc
. (5.6)

The resulting numbers are listed in table 3, together with those calculated from the discrete
element simulations.

The above observations provide useful guidance for model parameterization. They imply
that neither the failure angle θf nor the erosion angle θe can be taken as constant, even
for avalanches taking place in identical conditions. The critical angle θc and the slope
brittleness S∗

f = 1/Θe, by contrast, do appear approximately constant over repeat events.
Thus although θf and θe both vary from one event to another, they do so together according
to the approximate relationship (5.5). This suggests that they are set by a common jamming
process, undergone by the slope material prior to failure. For avalanches involving the
same materials in identical conditions, we will therefore assume a constant value S∗

f =
1/Θe, estimated from the empirical correlation Θe. We will also adopt the constant
approximate value χ ≈ 1 for the rheological coefficient, except when flow thickness data
are available to make a more precise determination.

To summarize, table 3 lists the two condition-dependent parameters that must be
provided as inputs to the theory. They are: the critical angle, θc, and the erosion correlation,
Θe. From these parameters, the complete evolution of an avalanche event can be predicted
from its initial failure inclination θf . Table 3 also lists some additional measurements,
likewise determined from the slope data, but which are not needed as model inputs. They
are: the entrainment phase duration, te − tf , the extremal rate of change of the mean
inclination, (dθ̄/dt)e, the arrest correlation,Θa, and the avalanche duration ta − tf . Among
these parameters, the arrest correlation Θa is deduced from linear fits through the arrest
inclination data (figure 8c,d). The other parameters are averaged from multiple events,
when possible, or obtained from the master curve θ̄ (t) otherwise.

5.2. Comparison and discussion
As illustrated in figure 9, the parameters listed in table 3 allow various predictions of the
theory to be tested. For the inclination rate of change, (3.13) governing the slope evolution
during entrainment implies the dimensionless relationship

(dθ̄/dt)e(te − tf )

θ̄f − θ̄c
= −t̂e(S∗

f − 1), (5.7)
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Figure 9. Comparison of predicted relationships with the data of Fischer et al. (2008) (blue), Balmforth &
McElwaine (2018) (magenta) and Kasper et al. (2021) (green), for different variables as a function of slope
brittleness: (a) extremal slope relaxation rate; (b) arrest inclination; (c) times at which entrainment ends (dashed
line, circles) and arrest occurs (solid line, plus symbols).

where t̂e is the numerical constant given by (3.15). The arrest correlation Θa, on the other
hand, should satisfy the dimensionless relationship

Θa =
S∗

a(S
∗
f )

S∗
f

, (5.8)

where S∗
a(S

∗
f ) is the predicted under-steepening at arrest, calculated from the theory as a

function of the over-steepening at failure, S∗
f . In figure 9(a,b), the two theoretical relations

(5.7) and (5.8) are compared with the data for the three test cases. Excellent agreement is
observed, indicating that the theory accurately describes these two characteristics of slope
relaxation, associated, respectively, with entrainment and arrest.

For the avalanche and entrainment durations, the theory predicts the results

te − tf
T

= t∗e (S
∗
f ),

ta − tf
T

= t∗a(S
∗
f ), (5.9a,b)

where T = (L cos θc)
3/4/(g1/2

⊥ (χD)1/4) is the time scale given by (2.30), and where t∗e , t∗a
are the dimensionless times plotted earlier in figure 4. In figure 9(c), these model estimates
are compared with the data. Agreement is good with the experimental data of Fischer
et al. (2008), but quite poor for the other two cases. The predicted evolution is three times
faster than that measured by Balmforth & McElwaine (2018), and twice faster than that
simulated by Kasper et al. (2021). To reproduce the observed durations for these cases,
we would need to adopt values of the rheological coefficient χ much smaller than the
expected approximate value χ ≈ 1.

For the experiments of Fischer et al. (2008), the drum rotation rate Ω is only
approximately 1 % of the peak slope relaxation rate −(dθ̄/dt)e. For the test cases of
Balmforth & McElwaine (2018) and Kasper et al. (2021), by contrast, the corresponding
ratios are, respectively, 12 % and 36 % (see table 3). For these two test cases, one
may therefore suspect that the discrepancy is due to the relatively faster rotation rates,
compromising the approximation Ω � −dθ/dt adopted to derive solutions and process
the data. Because they reported more complete results for this run, the test case we
selected for comparison (test case 2) corresponds to the moderate drum rotation rate
Ω = 0.23 deg. s−1. In their figure 14(d), however, Balmforth and McElwaine also reported
avalanche duration data obtained in otherwise identical conditions, but for much slower
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rotation rates, down to Ω = 0.005 deg. s−1. This does not reduce the discrepancy, ruling
out the finite rotating rate as the most likely reason.

The following other factors, not taken into account by our model, may account for the
discrepancy. First, failure may not occur synchronously along the slope face, but instead
nucleate locally and take time to propagate elsewhere (Balmforth & McElwaine 2018;
Han et al. 2021). Secondly, sidewall friction or finite size effects may slow the avalanching
process. As reported by Balmforth and McElwaine (see their figure 13), avalanche duration
increases when the drum width W is reduced. Finally, the assumed transition between zero
and finite shear rate subject to the rheology (2.4) may fail to capture important aspects of
granular system evolution during the cyclic process. Some creep, for instance, may take
place before yield occurs (Komatsu et al. 2001; Farain & Bonn 2023).

In figure 10(a–c), model results for the time evolution of the avalanches are compared
with the master curves. To correct for the time scale discrepancy noted in the previous
paragraph, for these comparisons we normalize the time coordinate by the duration of
the entrainment phase, te − tf , as was done for figure 9(a). When time is normalized in
this way, good agreement is obtained between the predicted solutions and the recorded
master curves, both for the inclination θ(t) (figure 10a) and for its rate of change dθ/dt
(figure 10b), a proxy for flow rate q(t), as functions of the normalized time. The shapes
of the orbits (figure 10c) are also well reproduced. For low slope brittleness (experiments
of Fischer et al. (2008), in blue), the flow rate curve is less sharply peaked and the orbit
is more ovoidal, indicating a greater asymmetry between acceleration and deceleration.
For high slope brittleness (experiments of Balmforth & McElwaine (2018), in magenta),
by contrast, the flow rate curve is more sharply peaked, and the orbit more elliptical,
indicating greater symmetry between acceleration and deceleration. The simulations of
Kasper et al. (2021) (in green) are intermediate between the two experimental cases.
Agreement is closest with the experiments of Fischer et al. (2008), which also best satisfy
the assumptions of the model.

To check that the model can reproduce not just the composite master curve, but also
individual avalanches, figure 10(d–f ) compares solution curves with the two measured
avalanche events reported by Fischer et al. (2008). For these comparisons, no adjustment
or normalization is performed, and all parameters are kept the same as before save for the
failure angles θf = 25.64 and θf = 24.70 deg. that were measured for these two events.
The resulting solution curves (solid lines) are in fair agreement with the measurements
(dots), supporting the ability of the model to describe individual avalanches despite their
variability from one event to the next. Closer agreement (not shown), would be achieved by
adjusting the critical angle θc and slope brittleness value S∗

f for each event, but this would
undermine the predictive character of the model. Instead, the fair agreement obtained
while keeping these two parameters constant suggests that they represent (approximately)
intrinsic properties of the granular slope, unlike the highly variable failure and arrest
angles.

Finally, the predicted velocity profiles at peak flow rate can be compared with
the profiles obtained by Kasper et al. (2021) from discrete particle simulations. The
simulations were performed with particles of three different diameters, in otherwise
identical conditions. This makes it possible to test the scaling (2.29) for the dependence
of the flow thickness on particle diameter and slope length. To compare theory and
simulations, model parameters were set as follows. Because characteristic angles vary with
grain size, and from one event to another, they were determined separately for each case
(table 4). The critical angles θc were obtained from the angle histories reported by Kasper
et al. (2021), using the fitting procedure of figure 8(d). The failure angles θf , on the other
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Figure 10. Comparison of predicted evolution curves with the data from Fischer et al. (2008) (blue, cyan),
Balmforth & McElwaine (2018) (magenta) and Kasper et al. (2021) (green): (a–c) dimensionless solutions
(solid lines) compared with master curve data (short dashes); (d–f ) dimensional solutions (solid lines)
compared with the data (dots) from two individual avalanche events reported by Fischer et al. (2008).

hand, were set by matching the peak flow rates qe of the theory, as calculated using (3.9),
with the simulated flow rates obtained by integrating the reported velocity profiles. The θf
values deduced in this way (table 4) are somewhat higher than expected from the reported
angle histories θ(t). Likewise, the integrated values qe are higher than expected from the
(dθ/dt)e values of the simulated inclination histories. For the other model parameters,
identical values were adopted for all three cases. For the slope brittleness, the value
S∗

f = 1/Θe = 2.70 was retained, as determined earlier from the inclination history data
of figure 8(d). For the rheological coefficient, finally, the common value χ = 0.95 was
adopted, adjusted slightly from the reference value χ = 1 used earlier.

The resulting comparisons are shown in figure 11(a). Good agreement is obtained for
the velocity profile shape. Over most of the flowing layer, the simulated velocities match
well the predicted Bagnold profile. At the base, however, the simulated profiles decrease
to zero more gradually. Instead of the sharp drop in shear rate assumed by the model, the
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Test L W D Ω θc qe θf
case (mm) (mm) (mm) (deg. s−1) (deg.) (mm2 s−1) (deg.)

3a 118 22 2.5 3.0 26.2 1525 33.9
3b 118 22 4 3.0 27.9 2670 39.3
3c 118 22 6 3.0 29.9 4280 45.2

Table 4. Test conditions and avalanche event parameters for the velocity profiles obtained by Kasper et al.
(2021) from discrete particle simulations.

0

0.01

0.02

0.03

0.04
0 0.1

u (m s–1) u∗ = u/U
0.2 0.3

0

0.5

1.0

1.5

2.0
0 0.5 1.0

y∗
 =

 y
/H

y∗
 (

m
)

(b)(a)

Figure 11. Comparison of predicted velocity profiles at peak flow rate (lines) with the discrete element
simulations (circles) of Kasper et al. (2021) for three different grain diameters (magenta, D = 2.5 mm;
blue, D = 4 mm; green, D = 6 mm) in otherwise identical conditions: (a) dimensional comparison;
(b) dimensionless comparison.

simulations indicate a more gradual decrease. In earlier experiments, Courrech du Pont
et al. (2005) measured velocity profiles along the sidewall during a single avalanche event,
and found an even more diffuse, approximately exponential decrease. For steady flows over
erodible heaps, models based on non-local rheology have been successful at describing
velocity profiles that decay into the bed, in agreement with experiments (Komatsu et al.
2001). The applicability of such models to unsteady and eroding flows, however, remains
uncertain (Liu & Henann 2017). In this work, we did not explore this avenue and restricted
our attention to the μ(I) rheology, known to make the velocity decrease to zero at finite
depth (Jop et al. 2005).

For the velocity magnitude, the agreement obtained is not meaningful, since we matched
peak flow rates between theory and simulations. For the thickness of the flowing layer,
likewise, we improved agreement by adjusting the value of the rheological coefficient.
A common value for this coefficient, however, yields excellent agreement for all three
grain sizes. The simulations therefore verify the predicted scaling law (2.29), whereby the
characteristic thickness H of the flowing layer increases in proportion to the geometric
mean of the grain diameter D and slope length L. This is further emphasized by the
normalized profiles of figure 11(b). When plotted in dimensionless form, the simulated
velocity profiles collapse closely together, and onto a common profile that matches well
the predicted Bagnold shape.
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6. Conclusions

In this paper, a simple continuum model of discrete granular avalanches was formulated
and solved, then compared with experiments and discrete element simulations. The model
assumes a linearized μ(I) rheology, and a basal erosion resistance τe = tan θeσ in excess
of the critical stress τc = tan θcσ needed to sustain shear deformation. Subject to these
assumptions, the model can evolve the surface inclination and mid-slope velocity profile of
transient avalanches, starting from rest at the failure inclination θf . The resulting avalanche
dynamics is controlled by well-defined thickness, velocity and time scales, together with
a single dimensionless number S∗

f = (tan θf − tan θc)/(tan θe − tan θc) that measures the
brittleness of the slope. From inclination histories recording multiple discrete avalanches,
both the critical angle θc and the slope brittleness S∗

f can be determined. Avalanche
characteristics that can then be predicted include the peak flow rate and surface velocity,
occurring when the inclination θe is crossed, and the arrest inclination θa ≤ θc attained
when the flow ends.

The resulting solution curves and properties are in partial agreement with rotating drum
experiments and discrete element simulations. Agreement is good for the arrest angle, the
normalized time evolution of the slope inclination, the shape of the velocity profile at peak
flow and the predicted scaling for the flow thickness, proportional to the geometric mean
of the grain diameter and slope length. For the avalanche duration, however, agreement is
good for one test case, but poor for the other two. To probe the remaining discrepancies,
new careful experiments or discrete element simulations performed at slow drum rotation
rates over multiple avalanche events would be very valuable. Detailed particle simulations
could also help elucidate the grain-scale mechanisms governing slope failure and basal
erosion (Atman et al. 2014). Likewise, the effects of finite grain size relative to channel
width, slope length and flow thickness remain to be clarified.

Multiple model limitations would also need be addressed. First, the influence of
interparticle friction and finite rates of drum rotation should be considered. This is
necessary to model their influence on the dynamics of discrete avalanches (Allen 1970;
Balmforth & McElwaine 2018), and the transition between discrete and continuous
avalanching (Rajchenbach 1990; Linz et al. 1999; Fischer et al. 2009; Balmforth &
McElwaine 2018; Perrin et al. 2019). Secondly, partial derivatives in the longitudinal
and transverse directions must be included to model spatially varying flows, such as
avalanches initiated from irregular terrain topography (Tai & Kuo 2008). Finally the
presence of an interstitial fluid should be considered, to model liquid-immersed (Courrech
du Pont et al. 2003), fluidized (Jessop et al. 2017) or liquid-driven (Gonzalez-Ondina, Liu
& Fraccarollo 2022) granular flows. Such model extensions will likely require suitable
numerical methods, to solve either the complete equations (see e.g. Lin & Yang 2020;
Sarno et al. 2022) or the simpler equations obtained by integration over depth (see e.g.
Capart et al. 2015; Edwards et al. 2019). Solutions obtained by analytical techniques, such
as those derived in the present paper, should nevertheless remain useful to guide and verify
numerical methods. These various tasks are recommended as avenues for future work.
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