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Abstract

In this paper we introduce T -noncosingular modules. Rings for which all right modules are
T -noncosingular are shown to be precisely those for which every simple right module is injective.
Moreover, for any ring R we show that the right R-module R is T -noncosingular precisely when R
has zero Jacobson radical. We also study the T -noncosingular condition in association with (strongly)
FI-lifting modules.
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1. Introduction

Throughout this paper S denotes the endomorphism ring of any module M . In [8], the
authors investigate K-nonsingular modules. Motivated by this work, we introduce the
notion of T -noncosingular modules as the dual notion to the notion of K-nonsingular
modules. A module M is called T -noncosingular if, for every nonzero endomorphism
ϕ of M , Im ϕ is not small in M . Following [10], the module M is called noncosingular
if for every nonzero module N and every nonzero homomorphism f : M→ N , Im f
is not a small submodule of N . It is clear that every noncosingular module is
T -noncosingular.

The aim of this paper is to study T -noncosingular modules. It turns out that some
results about K-nonsingular modules have corresponding duals for T -noncosingular
modules.

Section 2 introduces the concept of T -noncosingular modules. The structure of
finitely generated T -noncosingular Z-modules is described. We show that in general
the direct sum of T -noncosingular modules is not a T -noncosingular module. Then
we provide a necessary and sufficient condition for a direct sum of T -noncosingular
modules to be T -noncosingular. We also prove that T -noncosingularity is inherited
by direct summands.
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Section 3 is concerned with the concept of FI-lifting modules. We prove some
results concerning these types of modules using the notion of T -noncosingularity. In
particular, any ⊕-supplemented module is FI-lifting.

2. T -noncosingular modules

Let M and N be two modules. We say that M is T -noncosingular relative to N
if, for every nonzero homomorphism ϕ : M −→ N , Im ϕ is not small in N . If M is
T -noncosingular relative to M , we say that M is T -noncosingular. The ring R is
said to be right T -noncosingular if the right R-module RR is T -noncosingular. Left
T -noncosingular rings are defined similarly.

Recall (see, for example, [11, 23.1]) that a module M is called cosemisimple if each
factor module of M has zero (Jacobson) radical and, for any ring R, the right R-module
RR is cosemisimple precisely when every simple right R-module is injective, that is, R
is a right V -ring. Note, from the above definition, that every module with zero radical
is T -noncosingular. Consequently every cosemisimple module is T -noncosingular.

It is clear that a module M is noncosingular if and only if it is a T -noncosingular
module relative to N for every module N . However, it is easy to check that
the Z-module M = Z/pZ, where p is a prime integer, is T -noncosingular but
not noncosingular.

For every module M , let

Z(M)=
⋂
{Ker g | g : M→ T, where T is small in its injective hull}

and let ∇(M)= {ϕ ∈ S | Im ϕ� M}. It is easy to see that ∇(M) is an ideal of S. By
the T -noncosingular submodule of M we mean Z T (M)=

⋂
ϕ∈∇(M) Ker ϕ.

A module M is called a lifting module if for every submodule N of M , there is a
decomposition M = M1 ⊕ M2 such that M1 ≤ N and N ∩ M2� M2 or, equivalently,
for every submodule N of M there is a direct summand K of M such that N/K �
M/K . The module M is called discrete if it is lifting and satisfies the condition that,
if N is a submodule of M for which M/N is isomorphic to a direct summand of M ,
then N is a direct summand of M .

EXAMPLE 2.1. Every injective module over a right hereditary ring R is T -noncosin-
gular. In fact, let f be an endomorphism of M such that Im f � M . Since R is a
right hereditary ring and Im f ∼= M/ Ker f , Im f is injective. Thus, Im f is a direct
summand of M . Therefore, f = 0.

PROPOSITION 2.2. Let M be a module. We have:

(i) M is T -noncosingular if and only if Z T (M)= M;
(ii) Z T (M) is a fully invariant submodule of M; moreover, Z(M)⊆ Z T (M);
(iii) if M =

⊕
i∈I Mi , then Z T (M)⊆

⊕
i∈I Z T (Mi ).
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PROOF. (i) This is clear.

(ii) Let ϕ ∈ S such that Im ϕ� M and let f ∈ S. We have Im ϕ f ⊆ Im ϕ, and hence
Im ϕ f � M . Therefore, Z T (M) is fully invariant.

The inclusion Z(M)⊆ Z T (M) is clear from the definitions.

(iii) Since Z T (M) is fully invariant in M , we have Z T (M)=
⊕

i∈I (Z T (M) ∩ Mi ). It
is sufficient to show that Z T (M) ∩ Mi ⊆ Z T (Mi ) for all i ∈ I .

Let xi ∈ Z T (M) ∩ Mi for a fixed i ∈ I . Let ϕi ∈ End(Mi ) such that Im ϕi � Mi .
Extending ϕi to ϕi : M −→ M by ϕi | M j = 0 for i 6= j , we have Im ϕi � M . Thus,
ϕi (xi )= ϕi (xi )= 0. Therefore, xi ∈ Z T (Mi ). 2

PROPOSITION 2.3. Let M be a T -noncosingular module and let N be a direct
summand of M. Then N is T -noncosingular.

PROOF. Let M = N ⊕ N ′. Let ϕ : N → N with Im ϕ� N . Consider the
homomorphism ϕ ⊕ 0N ′ : N ⊕ N ′→ N ⊕ N ′ defined by ϕ ⊕ 0N ′(n + n′)= ϕ(n).
Now ϕ ⊕ 0N ′(N ⊕ N ′)= ϕ(N )� M . Since M is T -noncosingular, ϕ ⊕ 0N ′ = 0, and
hence ϕ = 0. 2

Note that the Z-module Z is T -noncosingular, but S = End(Z) is not von Neumann
regular. However, the following two results show that there is some connection
between the T -noncosingular condition and regular endomorphism rings.

PROPOSITION 2.4. If M is a T -noncosingular discrete module, then S is
von Neumann regular.

PROOF. By [7, Theorem 5.4], ∇(M)= J (S) the Jacobson radical of S and S/J (S) is
von Neumann regular. However, since M is T -noncosingular, ∇(M)= 0. 2

PROPOSITION 2.5. If M is a module such that S is von Neumann regular, then M is
T -noncosingular.

PROOF. Let f ∈ S such that Im f � M . Since S is von Neumann regular, there exists
g ∈ S such that f g f = f . This gives that f g is an idempotent. Hence Im f g is a
direct summand of M . But Im f g ≤ Im f . Thus Im f g� M . So f g = 0, and hence
f = f g f = 0. 2

PROPOSITION 2.6. Let M = x R be a cyclic module such that Ann(x), the right
annihilator of x, is an ideal of R. Then M is a T -noncosingular module if and only if
Rad(M)= 0.

PROOF. Suppose that M is a T -noncosingular module and Rad(M) 6= 0. Therefore
there exists a ∈ R such that xa 6= 0 and xa ∈ Rad(M). Consider the endomorphism
f of M defined by f (xα)= xaα for every α ∈ R. The map f is well defined since
Ann(x) is an ideal of R. Thus, Im f ≤ Rad(M) and f 6= 0. However, Rad(M)� M .
Then M is not T -noncosingular, a contradiction. The converse is clear. 2

The following two corollaries are now immediate.
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COROLLARY 2.7. A ring R is right (left) T -noncosingular if and only if Rad(R)= 0.

COROLLARY 2.8. Let M be a local module over a commutative ring R. Then M is a
T -noncosingular module if and only if M is a simple module.

COROLLARY 2.9. Let M be a finitely generated module over a commutative principal
ideal domain R. Then M is a T -noncosingular module if and only if Rad(M)= 0.

PROOF. This follows from Propositions 2.3, 2.6 and [9, Corollary, p. 179]. 2

PROPOSITION 2.10. A finitely generated Z-module M is a T -noncosingular module
if and only if M = Z(n) ⊕ K for some n ∈ N and semisimple module K .

PROOF. It is well known that every finitely generated Z-module is a finite direct sum
of cyclic modules. Since every direct summand of a T -noncosingular module is a
T -noncosingular module, the Chinese remainder theorem implies that every cyclic
torsion Z-module is a T -noncosingular module if and only if it is semisimple by
Corollary 2.8. The result follows. On the other hand, it is clear that if K is semisimple,
then Z(n) ⊕ K is T -noncosingular because Rad(Z(n) ⊕ K )= 0. 2

PROPOSITION 2.11. Let (Mi )i∈I be a family of modules. Then M =
⊕

i∈I Mi is a
T -noncosingular module if and only if Mi is a T -noncosingular module relative to
M j for all i, j ∈ I .

PROOF. (⇒) Let (i, j) be any pair in I × I . Let ϕ ∈ Hom(Mi , M j ) such that
Im ϕ� M j . Consider the homomorphism f : Mi ⊕ M j → Mi ⊕ M j defined by
f (xi + x j )= ϕ(xi ) with xi ∈ Mi and x j ∈ M j . Then Im f = ϕ(Mi )� Mi ⊕ M j .
However, Mi ⊕ M j is a T -noncosingular module by Proposition 2.3. Thus, f = 0
and hence ϕ = 0. This completes the proof.

(⇐) Let f be an endomorphism of M such that Im f � M . Consider the
homomorphisms πi : M→ Mi (the projections) and φi : Mi → M (the inclusion
maps). Let (i, j) be any pair in I × I . Since Im( f φi )� M , we have
Im(π j f φi )� M j . By hypothesis, π j f φi = 0. Now, for all x ∈ M , we have f (x)=∑

i∈I
∑

j∈I π j [ f (φi (πi (x)))] (The sum is finite.) Thus, f = 0. Consequently, M is a
T -noncosingular module. 2

In general, a direct sum of T -noncosingular modules is not a T -noncosingular
module, as the following example shows.

If R is a Dedekind domain, then R is said to be proper if R is not a field.
If R is a proper Dedekind domain, then for each nonzero prime ideal P of R,

R(P∞) will denote the P-primary component of the torsion R-module K/R, where
K is the quotient field of R.

EXAMPLE 2.12. Let R be a proper Dedekind domain. Let P be any nonzero
prime ideal of R. Consider the module M = R(P∞)⊕ R/P and the endomorphism
f : M −→ M defined by f (x + y)= cy with x ∈ R(P∞), y ∈ R and c is a nonzero
element of R(P∞) such that cP = 0. It is clear that Im f = cR which is nonzero
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and small in M . So M is not a T -noncosingular module. In particular, for any prime
integer p, the Z-module Z(p∞)⊕ Z/pZ is not a T -noncosingular Z-module.

PROPOSITION 2.13. The following are equivalent for a ring R.

(i) Every right R-module is T -noncosingular.
(ii) Every right R-module is noncosingular.
(iii) R is a right V -ring, that is, every simple right R-module is injective.

PROOF. (i)⇒ (ii) Let M and N be two modules. Since M ⊕ N is T -noncosingular,
M is T -noncosingular relative to N by Proposition 2.11. Therefore, M is
noncosingular. The implications (ii) ⇒ (iii) and (iii) ⇒ (i) follow from [10,
Proposition 2.5]. 2

PROPOSITION 2.14. Let M be a T -noncosingular module. If N ≤ X, X/N � M/N
and N is a direct summand of M, then N is unique.

PROOF. Let M be T -noncosingular. Assume that X/Ni � M/Ni with M = Ni ⊕ Pi ,
i = 1, 2 and assume that N1 6= N2. Without loss of generality, suppose that N1 * N2.
Consider the projections πN1 : M→ N1 and πP2 : M→ P2. Then we have the
nonzero homomorphism ϕ = πP2πN1 . On the other hand, Im ϕ = (N1 + N2) ∩ P2 ⊆

X ∩ P2� P2 implies that ϕ = 0, a contradiction. Therefore, N1 = N2. 2

Let M be a module and N ≤ M . The submodule N is called coclosed if
N/K � M/K implies N = K for every submodule K of M contained in N . Let
K ≤ N ≤ M . If K is coclosed in M and N/K � M/K , then K is called a coclosure
of N in M . The module M is called a UCC module if every submodule of M has a
unique coclosure in M (see [3]).

COROLLARY 2.15. Every lifting T -noncosingular module is UCC.

PROPOSITION 2.16. Let M be a T -noncosingular module and X fully invariant in M.
Let N ≤ X such that X/N � M/N and N a direct summand of M. Then N is (unique)
fully invariant in M.

PROOF. Let P be a submodule of M such that M = N ⊕ P . Assume that N is not
fully invariant in M . Then there exist an endomorphism ϕ of M and x ∈ N such that
ϕ(x) 6∈ N . Let ψ = πPϕπN : M→ P , where πN : M→ N and πP : M→ P are the
projections. Note that ψ 6= 0 (ϕ(x) 6∈ N ) and Im ψ ⊆ X ∩ P � M . This contradicts
the fact that M is T -noncosingular. Thus, N is fully invariant in M . 2

COROLLARY 2.17. We have the following results.

(i) Let M be a noncosingular module and X ≤ M. Let N ≤ X such that
X/N � M/N and N is a direct summand of M. Then N is unique.

(ii) Let M be a noncosingular module and X a fully invariant submodule of M. Let
N ≤ X such that X/N � M/N and N is a direct summand of M. Then N is
unique and fully invariant in M.
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PROOF. Part (i) follows from Proposition 2.14 while part (ii) follows from
Proposition 2.16. 2

3. FI-lifting and strongly FI-lifting modules

A module M is called FI-lifting if for every fully invariant submodule N of M ,
there is a decomposition M = M1 ⊕ M2 such that M1 ≤ N and N ∩ M2� M2 or,
equivalently, for every fully invariant submodule N of M there is a direct summand K
of M such that N/K � M/K . The module M is called strongly FI-lifting if, for every
fully invariant submodule N of M , there is a fully invariant direct summand K of M
such that N/K � M/K . It is easy to prove that any direct summand of a strongly
FI-lifting module is strongly FI-lifting.

Let M be a module. If N ≤ M , then N is called a supplement submodule of M if
there exists a submodule K of M such that M = N + K and N ∩ K � N (in this
case we say that N is a supplement of K in M). If every submodule of M has
a (direct summand) supplement in M , then M is called (⊕-)supplemented. If for
every submodule N of M there exists a submodule K of M with M = N + K and
N ∩ K � M , then M is called weakly supplemented.

By [6, Theorem 3.4], any finite direct sum of FI-lifting modules is again FI-lifting.
The following two examples show that this property is not true in general for infinite
direct sums of FI-lifting modules. Let R be a discrete valuation ring with maximal
ideal m. Let M =

⊕
∞

i=1 R/mi or M = RN. By [12, Corollary 2, p. 48], Rad(M) does
not have a supplement in M . Since Rad(M) is a fully invariant submodule of M , M
is not FI-lifting. On the other hand, it is clear that R/mi (i ≥ 1) and R are lifting
modules.

PROPOSITION 3.1. Let M be a T -noncosingular module. Then M is FI-lifting if and
only if M is strongly FI-lifting.

PROOF. Let M be FI-lifting and X a fully invariant submodule of M . Then there
exists a direct summand N of M such that X/N � M/N . By Proposition 2.16, N is
fully invariant in M . Thus, M is strongly FI-lifting. The converse is clear. 2

COROLLARY 3.2. Let M be a noncosingular module. Then M is FI-lifting if and only
if M is strongly FI-lifting.

The following proof uses the concept of a left semicentral idempotent of a ring S:
this is an idempotent e of S for which exe = xe for all x ∈ S.

LEMMA 3.3. If K is a fully invariant submodule of M having a coclosure L which is
a fully invariant direct summand of M, then L is the unique direct summand coclosure
of K .

PROOF. By [1, Lemma 1.9] and our hypothesis, there is a left semicentral idempotent
e ∈ S such that L = e(M) and K/e(M)� M/e(M). Let c ∈ S be an idempotent such
that K/c(M)� M/c(M). Then (1− c)(M) ∩ K � (1− c)(M). Let us show that
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L = c(M). Since K is fully invariant in M , we have (1− c)(K )= (1− c)(M) ∩ K .
Thus, (1− c)(K )� M . Therefore, e(1− c)(K )� e(M) and hence e(1− c)(K )�
K since e(M)⊆ K . So e(1− c)e(K )⊆ e(1− c)(K )� K . Then, since e is left
semicentral, (1− c)e(K )= e(1− c)e(K )� K and (1− c)e is an idempotent of S.
Therefore, (1− c)e(K )= 0. Since e(M)= e(K ), we have (1− c)e(M)= 0, and
hence e = ce. It follows that e(M)⊆ c(M). Since c(M)/e(M)⊆ K/e(M)�
M/e(M), we obtain c(M)= e(M). This completes the proof. 2

PROPOSITION 3.4. If M is a strongly FI-lifting module and K is a fully invariant
submodule of M, then there exists a unique (fully invariant) direct summand L of M
such that K/L � M/L.

PROOF. This follows from Lemma 3.3. 2

PROPOSITION 3.5. Let M be an FI-lifting module and X a fully invariant submodule
of M. If one of the following conditions is satisfied, then M/X is strongly FI-lifting:

(i) M/X is indecomposable;
(ii) M/X is T -noncosingular.

PROOF. By [6, Proposition 3.3], M/X is FI-lifting.
(i) Clearly, indecomposable FI-lifting modules are strongly FI-lifting.
(ii) This follows from Proposition 3.1. 2

PROPOSITION 3.6. Let M be a lifting (respectively noncosingular weakly supple-
mented FI-lifting) module such that every small submodule is fully invariant. Then
every factor module of M is lifting (respectively strongly FI-lifting).

PROOF. Let X, Y be submodules of M such that M = X + Y and X ∩ Y � M . Note
that M/(X ∩ Y )= X/(X ∩ Y )⊕ Y/(X ∩ Y ). By hypothesis, X ∩ Y is fully invariant
in M . If M is lifting, then M/(X ∩ Y ) is lifting by [2, 22.2]. Since the lifting
property is inherited by direct summands, M/X is lifting. Now assume that M is
a noncosingular weakly supplemented FI-lifting module. Then the result follows
from [6, Proposition 3.3], Corollary 3.2 and the fact that any direct summand of a
strongly FI-lifting module is strongly FI-lifting. 2

PROPOSITION 3.7. Let M be a module. The following are equivalent:

(i) M is FI-lifting;
(ii) every fully invariant submodule of M has a direct summand supplement;
(iii) for each fully invariant submodule X of M, there is a coclosed submodule K

of M and a direct summand supplement L of K such that K ≤ X, X/K �
M/K and every homomorphism f : M→ M/(L ∩ K ) can be lifted to an
endomorphism g : M→ M, that is, such that g(m)+ (L ∩ K )= f (m) for all
m ∈ M.
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PROOF. (i) ⇔ (ii) Let X be a fully invariant submodule of M . First assume that
M is FI-lifting. Then there exists a decomposition M = M1 ⊕ M2 such that M1 ≤ X
and M2 ∩ X � M2. Then M = X + M2 and M2 is a direct summand supplement
of X . Conversely, let K be a direct summand supplement of X in M . Then
M = K + X = K ⊕ K ′ and K ∩ X � K for some submodule K ′ of M . Consider
the natural projection map φ : M→ K ′. Since X is fully invariant,

φ(X)= (X + K ) ∩ K ′ = M ∩ K ′ = K ′ ≤ X.

Thus, M is FI-lifting.

(i)⇒ (iii) Let X be a fully invariant submodule of M . Since M is FI-lifting, there exists
a decomposition M = L ⊕ K such that K ≤ X and X/K � M/K . Since L ∩ K = 0,
clearly any homomorphism f : M→ M/(L ∩ K ) lifts to a g : M→ M .

(iii) ⇒ (i) Let X be a fully invariant submodule of M . By (iii), there is a coclosed
submodule K of M and a direct summand supplement L of K such that K ≤ X and
X/K � M/K . Since K is a supplement in M by [4, Proposition 3], it follows from [5,
Lemma 2.2] that K is a direct summand of M . Thus, M is FI-lifting. 2

PROPOSITION 3.8. Let M be a module. The following are equivalent:

(i) M is strongly FI-lifting;
(ii) every fully invariant submodule of M has a supplement K which is a direct

summand of M with M = K ⊕ N for some fully invariant submodule N of M.

PROOF. We completely follow the proof of Proposition 3.7((i)⇔ (ii)). 2

PROPOSITION 3.9. Let M be an FI-lifting module and let U be a fully invariant
submodule of M. Then M/U is FI-lifting. If, moreover, U is coclosed in M, then
U is also FI-lifting.

PROOF. By [6, Proposition 3.3], M/U is FI-lifting. Assume that U is coclosed in M .
Let V be a fully invariant submodule of U . Then V is fully invariant in M . So, there
exist submodules K and K ′ of M such that M = K ⊕ K ′, K ′ ≤ V and K ∩ V � K .
Thus, U = V + (U ∩ K ). Since U is fully invariant in M , U = (U ∩ K )⊕ (U ∩ K ′).
Hence, U ∩ K is a direct summand of U . Moreover, V ∩ (U ∩ K )= V ∩ K � K .
This implies that V ∩ (U ∩ K )�U ∩ K since U ∩ K is coclosed in M by [2, 3.7].
Therefore, U ∩ K is a direct summand supplement of V in U . By Proposition 3.7, U
is FI-lifting. 2

A module M is called a duo module provided that every submodule of M is
fully invariant.

PROPOSITION 3.10. Let M be a module. Consider the following statements:

(i) M is lifting;
(ii) M is ⊕-supplemented;
(iii) M is FI-lifting.

Then (i)⇒ (ii)⇒ (iii). If M is a duo module, then (iii)⇒ (i).
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PROOF. (i)⇒ (ii) This is clear.

(ii)⇒ (iii) This is clear by Proposition 3.7.

The rest is clear from the definitions. 2

REMARK. (1) Consider the Z-module M = Z/pZ⊕ Z/p3Z. It is well known that M
is not lifting, but it is FI-lifting by [6, Theorem 3.4].

(2) Consider Q the additive group of rational numbers. Let f be any nonzero
Z-endomorphism of Q. Let r be a nonzero element of Q such that f (1)= r .
Let a and b be two nonzero integers. Then f (1)= f ((1/b)× b)= f (1/b)b = r .
So f (1/b)= r/b. Thus, f (a/b)= f (1/b)a = (r/b)a = (a/b)r . Now let N be a
nonzero fully invariant submodule of Q. Let s be a nonzero element of N . Let
g be the endomorphism of Q defined by g(x)= (1/s)x for every x ∈Q. Since N
is fully invariant, g(s) ∈ N . Thus, 1 ∈ N . Hence, Q≤ N since h(1) ∈ N for every
h ∈ EndZ(Q). Consequently, the only fully invariant submodules of Q are 0 and Q.
Therefore, Q is strongly FI-lifting. On the other hand, Q is not ⊕-supplemented since
Q is an indecomposable Z-module which is not hollow.

THEOREM 3.11. Let M be a T -noncosingular module and X a fully invariant
submodule of M. Then M is (strongly) FI-lifting if and only if M = M1 ⊕ M2 such
that M1 and M2 are (strongly) FI-lifting and M1 is the unique fully invariant direct
summand of M with M1 ⊆ X and X/M1� M/M1.

PROOF. (⇒) Since X is fully invariant in M and M is FI-lifting, there exists
a decomposition M = M1 ⊕ M2 such that M1 ⊆ X and X/M1� M/M1. By
Proposition 2.16, M1 is unique and fully invariant in M . Then by Proposition 3.9, M1
and M2 are FI-lifting. The remainder of the proof is a consequence of Propositions 2.3
and 3.1.

(⇐) This follows from [6, Theorem 3.4] and Proposition 3.1. 2

PROPOSITION 3.12. Let M = M1 ⊕ M2. Then M2 is FI-lifting if and only if for every
fully invariant submodule N/M1 of M/M1, there exists a direct summand K of M
such that K ≤ M2, M = K + N and N ∩ K � M.

PROOF. Suppose that M2 is FI-lifting. Let N/M1 be any fully invariant submodule
of M/M1. It is easy to see that N ∩ M2 is fully invariant in M2. Since M2 is
FI-lifting, there exists a decomposition M2 = K ⊕ K ′ such that M2 = (N ∩ M2)+ K
and N ∩ K � K . Clearly, M = N + K .

Conversely, suppose that M/M1 has the stated property. Let H be a fully
invariant submodule of M2. It is easy to see that (H ⊕ M1)/M1 is fully invariant
in M/M1. By hypothesis, there exists a direct summand L of M such that
L ≤ M2, M = L + H + M1 and L ∩ (H + M1)� M . By modularity, M2 = L + H .
It follows easily that L is a supplement of H in M2. Therefore, M2 is FI-lifting by
Proposition 3.7. 2
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