Bull. Aust. Math. Soc. **80** (2009), 462–471 doi:10.1017/S0004972709000409

ON \mathcal{T} -NONCOSINGULAR MODULES

DERYA KESKIN TÜTÜNCÜ[™] and RACHID TRIBAK

(Received 15 January 2009)

Abstract

In this paper we introduce \mathcal{T} -noncosingular modules. Rings for which all right modules are \mathcal{T} -noncosingular are shown to be precisely those for which every simple right module is injective. Moreover, for any ring R we show that the right R-module R is \mathcal{T} -noncosingular precisely when R has zero Jacobson radical. We also study the \mathcal{T} -noncosingular condition in association with (strongly) FI-lifting modules.

2000 *Mathematics subject classification*: primary 16D10; secondary 16D80. *Keywords and phrases*: \mathcal{T} -noncosingular module, (strongly) FI-lifting module.

1. Introduction

Throughout this paper S denotes the endomorphism ring of any module M. In [8], the authors investigate \mathcal{K} -nonsingular modules. Motivated by this work, we introduce the notion of \mathcal{T} -noncosingular modules as the dual notion to the notion of \mathcal{K} -nonsingular modules. A module M is called \mathcal{T} -noncosingular if, for every nonzero endomorphism φ of M, Im φ is not small in M. Following [10], the module M is called noncosingular if for every nonzero module N and every nonzero homomorphism $f: M \to N$, Im f is not a small submodule of N. It is clear that every noncosingular module is \mathcal{T} -noncosingular.

The aim of this paper is to study \mathcal{T} -noncosingular modules. It turns out that some results about \mathcal{K} -nonsingular modules have corresponding duals for \mathcal{T} -noncosingular modules.

Section 2 introduces the concept of \mathcal{T} -noncosingular modules. The structure of finitely generated \mathcal{T} -noncosingular \mathbb{Z} -modules is described. We show that in general the direct sum of \mathcal{T} -noncosingular modules is not a \mathcal{T} -noncosingular module. Then we provide a necessary and sufficient condition for a direct sum of \mathcal{T} -noncosingular modules to be \mathcal{T} -noncosingular. We also prove that \mathcal{T} -noncosingularity is inherited by direct summands.

^{© 2009} Australian Mathematical Publishing Association Inc. 0004-9727/2009 \$16.00

463

Section 3 is concerned with the concept of FI-lifting modules. We prove some results concerning these types of modules using the notion of \mathcal{T} -noncosingularity. In particular, any \oplus -supplemented module is FI-lifting.

2. T-noncosingular modules

Let *M* and *N* be two modules. We say that *M* is \mathcal{T} -noncosingular relative to *N* if, for every nonzero homomorphism $\varphi : M \longrightarrow N$, Im φ is not small in *N*. If *M* is \mathcal{T} -noncosingular relative to *M*, we say that *M* is \mathcal{T} -noncosingular. The ring *R* is said to be right \mathcal{T} -noncosingular if the right *R*-module R_R is \mathcal{T} -noncosingular. Left \mathcal{T} -noncosingular rings are defined similarly.

Recall (see, for example, [11, 23.1]) that a module M is called *cosemisimple* if each factor module of M has zero (Jacobson) radical and, for any ring R, the right R-module R_R is cosemisimple precisely when every simple right R-module is injective, that is, R is a right V-ring. Note, from the above definition, that every module with zero radical is T-noncosingular. Consequently every cosemisimple module is T-noncosingular.

It is clear that a module M is noncosingular if and only if it is a \mathcal{T} -noncosingular module relative to N for every module N. However, it is easy to check that the \mathbb{Z} -module $M = \mathbb{Z}/p\mathbb{Z}$, where p is a prime integer, is \mathcal{T} -noncosingular but not noncosingular.

For every module M, let

 $\overline{Z}(M) = \bigcap \{ \text{Ker } g \mid g : M \to T, \text{ where } T \text{ is small in its injective hull} \}$

and let $\nabla(M) = \{\varphi \in S \mid \text{Im } \varphi \ll M\}$. It is easy to see that $\nabla(M)$ is an ideal of *S*. By the *T*-noncosingular submodule of *M* we mean $\overline{Z}_{\mathcal{T}}(M) = \bigcap_{\varphi \in \nabla(M)} \text{Ker } \varphi$.

A module *M* is called a *lifting* module if for every submodule *N* of *M*, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 \ll M_2$ or, equivalently, for every submodule *N* of *M* there is a direct summand *K* of *M* such that $N/K \ll M/K$. The module *M* is called *discrete* if it is lifting and satisfies the condition that, if *N* is a submodule of *M* for which M/N is isomorphic to a direct summand of *M*, then *N* is a direct summand of *M*.

EXAMPLE 2.1. Every injective module over a right hereditary ring R is \mathcal{T} -noncosingular. In fact, let f be an endomorphism of M such that Im $f \ll M$. Since R is a right hereditary ring and Im $f \cong M/$ Ker f, Im f is injective. Thus, Im f is a direct summand of M. Therefore, f = 0.

PROPOSITION 2.2. Let M be a module. We have:

- (i) *M* is \mathcal{T} -noncosingular if and only if $\overline{Z}_{\mathcal{T}}(M) = M$;
- (ii) $\overline{Z}_{\mathcal{T}}(M)$ is a fully invariant submodule of M; moreover, $\overline{Z}(M) \subseteq \overline{Z}_{\mathcal{T}}(M)$;
- (iii) if $M = \bigoplus_{i \in I} M_i$, then $\overline{Z}_T(M) \subseteq \bigoplus_{i \in I} \overline{Z}_T(M_i)$.

PROOF. (i) This is clear.

(ii) Let $\varphi \in S$ such that Im $\varphi \ll M$ and let $f \in S$. We have Im $\varphi f \subseteq \text{Im } \varphi$, and hence Im $\varphi f \ll M$. Therefore, $\overline{Z}_T(M)$ is fully invariant.

The inclusion $\overline{Z}(M) \subseteq \overline{Z}_{\mathcal{T}}(M)$ is clear from the definitions.

(iii) Since $\overline{Z}_{\mathcal{T}}(M)$ is fully invariant in M, we have $\overline{Z}_{\mathcal{T}}(M) = \bigoplus_{i \in I} (\overline{Z}_{\mathcal{T}}(M) \cap M_i)$. It is sufficient to show that $\overline{Z}_{\mathcal{T}}(M) \cap M_i \subseteq \overline{Z}_{\mathcal{T}}(M_i)$ for all $i \in I$.

Let $x_i \in \overline{Z}_T(M) \cap M_i$ for a fixed $i \in I$. Let $\varphi_i \in \text{End}(M_i)$ such that $\text{Im } \varphi_i \ll M_i$. Extending φ_i to $\overline{\varphi_i} : M \longrightarrow M$ by $\overline{\varphi_i} \mid M_j = 0$ for $i \neq j$, we have $\text{Im } \overline{\varphi_i} \ll M$. Thus, $\overline{\varphi_i}(x_i) = \varphi_i(x_i) = 0$. Therefore, $x_i \in \overline{Z}_T(M_i)$.

PROPOSITION 2.3. Let M be a T-noncosingular module and let N be a direct summand of M. Then N is T-noncosingular.

PROOF. Let $M = N \oplus N'$. Let $\varphi : N \to N$ with $\operatorname{Im} \varphi \ll N$. Consider the homomorphism $\varphi \oplus 0_{N'} : N \oplus N' \to N \oplus N'$ defined by $\varphi \oplus 0_{N'}(n + n') = \varphi(n)$. Now $\varphi \oplus 0_{N'}(N \oplus N') = \varphi(N) \ll M$. Since *M* is *T*-noncosingular, $\varphi \oplus 0_{N'} = 0$, and hence $\varphi = 0$.

Note that the \mathbb{Z} -module \mathbb{Z} is \mathcal{T} -noncosingular, but $S = \text{End}(\mathbb{Z})$ is not von Neumann regular. However, the following two results show that there is some connection between the \mathcal{T} -noncosingular condition and regular endomorphism rings.

PROPOSITION 2.4. If M is a T-noncosingular discrete module, then S is von Neumann regular.

PROOF. By [7, Theorem 5.4], $\nabla(M) = J(S)$ the Jacobson radical of *S* and *S*/*J*(*S*) is von Neumann regular. However, since *M* is \mathcal{T} -noncosingular, $\nabla(M) = 0$.

PROPOSITION 2.5. If M is a module such that S is von Neumann regular, then M is T-noncosingular.

PROOF. Let $f \in S$ such that Im $f \ll M$. Since S is von Neumann regular, there exists $g \in S$ such that fgf = f. This gives that fg is an idempotent. Hence Im fg is a direct summand of M. But Im $fg \leq \text{Im } f$. Thus Im $fg \ll M$. So fg = 0, and hence f = fgf = 0.

PROPOSITION 2.6. Let M = xR be a cyclic module such that Ann(x), the right annihilator of x, is an ideal of R. Then M is a T-noncosingular module if and only if Rad(M) = 0.

PROOF. Suppose that *M* is a \mathcal{T} -noncosingular module and $\operatorname{Rad}(M) \neq 0$. Therefore there exists $a \in R$ such that $xa \neq 0$ and $xa \in \operatorname{Rad}(M)$. Consider the endomorphism *f* of *M* defined by $f(x\alpha) = xa\alpha$ for every $\alpha \in R$. The map *f* is well defined since Ann(x) is an ideal of *R*. Thus, Im $f \leq \operatorname{Rad}(M)$ and $f \neq 0$. However, $\operatorname{Rad}(M) \ll M$. Then *M* is not \mathcal{T} -noncosingular, a contradiction. The converse is clear. \Box

The following two corollaries are now immediate.

COROLLARY 2.7. A ring R is right (left) \mathcal{T} -noncosingular if and only if $\operatorname{Rad}(R) = 0$.

COROLLARY 2.8. Let M be a local module over a commutative ring R. Then M is a T-noncosingular module if and only if M is a simple module.

COROLLARY 2.9. Let M be a finitely generated module over a commutative principal ideal domain R. Then M is a T-noncosingular module if and only if Rad(M) = 0.

PROOF. This follows from Propositions 2.3, 2.6 and [9, Corollary, p. 179].

PROPOSITION 2.10. A finitely generated \mathbb{Z} -module M is a \mathcal{T} -noncosingular module if and only if $M = \mathbb{Z}^{(n)} \oplus K$ for some $n \in \mathbb{N}$ and semisimple module K.

PROOF. It is well known that every finitely generated \mathbb{Z} -module is a finite direct sum of cyclic modules. Since every direct summand of a \mathcal{T} -noncosingular module is a \mathcal{T} -noncosingular module, the Chinese remainder theorem implies that every cyclic torsion \mathbb{Z} -module is a \mathcal{T} -noncosingular module if and only if it is semisimple by Corollary 2.8. The result follows. On the other hand, it is clear that if *K* is semisimple, then $\mathbb{Z}^{(n)} \oplus K$ is \mathcal{T} -noncosingular because $\operatorname{Rad}(\mathbb{Z}^{(n)} \oplus K) = 0$.

PROPOSITION 2.11. Let $(M_i)_{i \in I}$ be a family of modules. Then $M = \bigoplus_{i \in I} M_i$ is a T-noncosingular module if and only if M_i is a T-noncosingular module relative to M_j for all $i, j \in I$.

PROOF. (\Rightarrow) Let (i, j) be any pair in $I \times I$. Let $\varphi \in \text{Hom}(M_i, M_j)$ such that Im $\varphi \ll M_j$. Consider the homomorphism $f: M_i \oplus M_j \to M_i \oplus M_j$ defined by $f(x_i + x_j) = \varphi(x_i)$ with $x_i \in M_i$ and $x_j \in M_j$. Then Im $f = \varphi(M_i) \ll M_i \oplus M_j$. However, $M_i \oplus M_j$ is a \mathcal{T} -noncosingular module by Proposition 2.3. Thus, f = 0 and hence $\varphi = 0$. This completes the proof.

(\Leftarrow) Let *f* be an endomorphism of *M* such that Im $f \ll M$. Consider the homomorphisms $\pi_i : M \to M_i$ (the projections) and $\phi_i : M_i \to M$ (the inclusion maps). Let (i, j) be any pair in $I \times I$. Since $\text{Im}(f\phi_i) \ll M$, we have $\text{Im}(\pi_j f\phi_i) \ll M_j$. By hypothesis, $\pi_j f\phi_i = 0$. Now, for all $x \in M$, we have $f(x) = \sum_{i \in I} \sum_{j \in I} \pi_j [f(\phi_i(\pi_i(x)))]$ (The sum is finite.) Thus, f = 0. Consequently, *M* is a T-noncosingular module.

In general, a direct sum of \mathcal{T} -noncosingular modules is not a \mathcal{T} -noncosingular module, as the following example shows.

If *R* is a Dedekind domain, then *R* is said to be *proper* if *R* is not a field.

If *R* is a proper Dedekind domain, then for each nonzero prime ideal *P* of *R*, $R(P^{\infty})$ will denote the *P*-primary component of the torsion *R*-module *K*/*R*, where *K* is the quotient field of *R*.

EXAMPLE 2.12. Let *R* be a proper Dedekind domain. Let *P* be any nonzero prime ideal of *R*. Consider the module $M = R(P^{\infty}) \oplus R/P$ and the endomorphism $f: M \longrightarrow M$ defined by $f(x + \overline{y}) = cy$ with $x \in R(P^{\infty})$, $y \in R$ and *c* is a nonzero element of $R(P^{\infty})$ such that cP = 0. It is clear that Im f = cR which is nonzero

[4]

and small in *M*. So *M* is not a \mathcal{T} -noncosingular module. In particular, for any prime integer *p*, the \mathbb{Z} -module $\mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}/p\mathbb{Z}$ is not a \mathcal{T} -noncosingular \mathbb{Z} -module.

PROPOSITION 2.13. *The following are equivalent for a ring R.*

- (i) Every right *R*-module is *T*-noncosingular.
- (ii) *Every right R-module is noncosingular.*
- (iii) *R* is a right *V*-ring, that is, every simple right *R*-module is injective.

PROOF. (i) \Rightarrow (ii) Let *M* and *N* be two modules. Since $M \oplus N$ is \mathcal{T} -noncosingular, *M* is \mathcal{T} -noncosingular relative to *N* by Proposition 2.11. Therefore, *M* is noncosingular. The implications (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) follow from [10, Proposition 2.5].

PROPOSITION 2.14. Let M be a T-noncosingular module. If $N \le X$, $X/N \ll M/N$ and N is a direct summand of M, then N is unique.

PROOF. Let *M* be \mathcal{T} -noncosingular. Assume that $X/N_i \ll M/N_i$ with $M = N_i \oplus P_i$, i = 1, 2 and assume that $N_1 \neq N_2$. Without loss of generality, suppose that $N_1 \not\subseteq N_2$. Consider the projections $\pi_{N_1} : M \to N_1$ and $\pi_{P_2} : M \to P_2$. Then we have the nonzero homomorphism $\varphi = \pi_{P_2}\pi_{N_1}$. On the other hand, Im $\varphi = (N_1 + N_2) \cap P_2 \subseteq X \cap P_2 \ll P_2$ implies that $\varphi = 0$, a contradiction. Therefore, $N_1 = N_2$.

Let *M* be a module and $N \le M$. The submodule *N* is called *coclosed* if $N/K \ll M/K$ implies N = K for every submodule *K* of *M* contained in *N*. Let $K \le N \le M$. If *K* is coclosed in *M* and $N/K \ll M/K$, then *K* is called a *coclosure* of *N* in *M*. The module *M* is called a *UCC* module if every submodule of *M* has a unique coclosure in *M* (see [3]).

COROLLARY 2.15. Every lifting T-noncosingular module is UCC.

PROPOSITION 2.16. Let M be a T-noncosingular module and X fully invariant in M. Let $N \leq X$ such that $X/N \ll M/N$ and N a direct summand of M. Then N is (unique) fully invariant in M.

PROOF. Let *P* be a submodule of *M* such that $M = N \oplus P$. Assume that *N* is not fully invariant in *M*. Then there exist an endomorphism φ of *M* and $x \in N$ such that $\varphi(x) \notin N$. Let $\psi = \pi_P \varphi \pi_N : M \to P$, where $\pi_N : M \to N$ and $\pi_P : M \to P$ are the projections. Note that $\psi \neq 0$ ($\varphi(x) \notin N$) and Im $\psi \subseteq X \cap P \ll M$. This contradicts the fact that *M* is \mathcal{T} -noncosingular. Thus, *N* is fully invariant in *M*.

COROLLARY 2.17. We have the following results.

- (i) Let M be a noncosingular module and $X \le M$. Let $N \le X$ such that $X/N \ll M/N$ and N is a direct summand of M. Then N is unique.
- (ii) Let M be a noncosingular module and X a fully invariant submodule of M. Let $N \le X$ such that $X/N \ll M/N$ and N is a direct summand of M. Then N is unique and fully invariant in M.

PROOF. Part (i) follows from Proposition 2.14 while part (ii) follows from Proposition 2.16.

3. FI-lifting and strongly FI-lifting modules

A module M is called FI-*lifting* if for every fully invariant submodule N of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 \ll M_2$ or, equivalently, for every fully invariant submodule N of M there is a direct summand Kof M such that $N/K \ll M/K$. The module M is called *strongly* FI-*lifting* if, for every fully invariant submodule N of M, there is a fully invariant direct summand K of M such that $N/K \ll M/K$. It is easy to prove that any direct summand of a strongly FI-lifting module is strongly FI-lifting.

Let M be a module. If N < M, then N is called a *supplement* submodule of M if there exists a submodule K of M such that M = N + K and $N \cap K \ll N$ (in this case we say that N is a supplement of K in M). If every submodule of M has a (direct summand) supplement in M, then M is called (\oplus) -supplemented. If for every submodule N of M there exists a submodule K of M with M = N + K and $N \cap K \ll M$, then M is called *weakly supplemented*.

By [6, Theorem 3.4], any finite direct sum of FI-lifting modules is again FI-lifting. The following two examples show that this property is not true in general for infinite direct sums of FI-lifting modules. Let R be a discrete valuation ring with maximal ideal *m*. Let $M = \bigoplus_{i=1}^{\infty} R/m^i$ or $M = R^{\mathbb{N}}$. By [12, Corollary 2, p. 48], Rad(M) does not have a supplement in M. Since $\operatorname{Rad}(M)$ is a fully invariant submodule of M, M is not FI-lifting. On the other hand, it is clear that R/m^i $(i \ge 1)$ and R are lifting modules.

PROPOSITION 3.1. Let M be a T-noncosingular module. Then M is FI-lifting if and only if M is strongly FI-lifting.

PROOF. Let M be FI-lifting and X a fully invariant submodule of M. Then there exists a direct summand N of M such that $X/N \ll M/N$. By Proposition 2.16, N is fully invariant in *M*. Thus, *M* is strongly FI-lifting. The converse is clear.

COROLLARY 3.2. Let M be a noncosingular module. Then M is FI-lifting if and only if M is strongly FI-lifting.

The following proof uses the concept of a *left semicentral idempotent* of a ring S: this is an idempotent *e* of *S* for which exe = xe for all $x \in S$.

LEMMA 3.3. If K is a fully invariant submodule of M having a coclosure L which is a fully invariant direct summand of M, then L is the unique direct summand coclosure of K.

PROOF. By [1, Lemma 1.9] and our hypothesis, there is a left semicentral idempotent $e \in S$ such that L = e(M) and $K/e(M) \ll M/e(M)$. Let $c \in S$ be an idempotent such that $K/c(M) \ll M/c(M)$. Then $(1-c)(M) \cap K \ll (1-c)(M)$. Let us show that

L = c(M). Since K is fully invariant in M, we have $(1 - c)(K) = (1 - c)(M) \cap K$. Thus, $(1 - c)(K) \ll M$. Therefore, $e(1 - c)(K) \ll e(M)$ and hence $e(1 - c)(K) \ll K$ since $e(M) \subseteq K$. So $e(1 - c)e(K) \subseteq e(1 - c)(K) \ll K$. Then, since e is left semicentral, $(1 - c)e(K) = e(1 - c)e(K) \ll K$ and (1 - c)e is an idempotent of S. Therefore, (1 - c)e(K) = 0. Since e(M) = e(K), we have (1 - c)e(M) = 0, and hence e = ce. It follows that $e(M) \subseteq c(M)$. Since $c(M)/e(M) \subseteq K/e(M) \ll M/e(M)$, we obtain c(M) = e(M). This completes the proof.

PROPOSITION 3.4. If M is a strongly FI-lifting module and K is a fully invariant submodule of M, then there exists a unique (fully invariant) direct summand L of M such that $K/L \ll M/L$.

PROOF. This follows from Lemma 3.3.

PROPOSITION 3.5. Let M be an FI-lifting module and X a fully invariant submodule of M. If one of the following conditions is satisfied, then M/X is strongly FI-lifting:

- (i) M/X is indecomposable;
- (ii) M/X is T-noncosingular.

PROOF. By [6, Proposition 3.3], M/X is FI-lifting.

(i) Clearly, indecomposable FI-lifting modules are strongly FI-lifting.

(ii) This follows from Proposition 3.1.

PROPOSITION 3.6. Let *M* be a lifting (respectively noncosingular weakly supplemented FI-lifting) module such that every small submodule is fully invariant. Then every factor module of *M* is lifting (respectively strongly FI-lifting).

PROOF. Let *X*, *Y* be submodules of *M* such that M = X + Y and $X \cap Y \ll M$. Note that $M/(X \cap Y) = X/(X \cap Y) \oplus Y/(X \cap Y)$. By hypothesis, $X \cap Y$ is fully invariant in *M*. If *M* is lifting, then $M/(X \cap Y)$ is lifting by [2, 22.2]. Since the lifting property is inherited by direct summands, M/X is lifting. Now assume that *M* is a noncosingular weakly supplemented FI-lifting module. Then the result follows from [6, Proposition 3.3], Corollary 3.2 and the fact that any direct summand of a strongly FI-lifting module is strongly FI-lifting.

PROPOSITION 3.7. Let M be a module. The following are equivalent:

- (i) *M* is *FI*-lifting;
- (ii) every fully invariant submodule of M has a direct summand supplement;
- (iii) for each fully invariant submodule X of M, there is a coclosed submodule K of M and a direct summand supplement L of K such that $K \le X$, $X/K \ll$ M/K and every homomorphism $f: M \to M/(L \cap K)$ can be lifted to an endomorphism $g: M \to M$, that is, such that $g(m) + (L \cap K) = f(m)$ for all $m \in M$.

[7]

PROOF. (i) \Leftrightarrow (ii) Let *X* be a fully invariant submodule of *M*. First assume that *M* is FI-lifting. Then there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq X$ and $M_2 \cap X \ll M_2$. Then $M = X + M_2$ and M_2 is a direct summand supplement of *X*. Conversely, let *K* be a direct summand supplement of *X* in *M*. Then $M = K + X = K \oplus K'$ and $K \cap X \ll K$ for some submodule *K'* of *M*. Consider the natural projection map $\phi : M \to K'$. Since *X* is fully invariant,

$$\phi(X) = (X+K) \cap K' = M \cap K' = K' \le X.$$

Thus, *M* is FI-lifting.

(i) \Rightarrow (iii) Let *X* be a fully invariant submodule of *M*. Since *M* is FI-lifting, there exists a decomposition $M = L \oplus K$ such that $K \leq X$ and $X/K \ll M/K$. Since $L \cap K = 0$, clearly any homomorphism $f : M \to M/(L \cap K)$ lifts to a $g : M \to M$.

(iii) \Rightarrow (i) Let X be a fully invariant submodule of M. By (iii), there is a coclosed submodule K of M and a direct summand supplement L of K such that $K \leq X$ and $X/K \ll M/K$. Since K is a supplement in M by [4, Proposition 3], it follows from [5, Lemma 2.2] that K is a direct summand of M. Thus, M is FI-lifting.

PROPOSITION 3.8. Let M be a module. The following are equivalent:

- (i) *M* is strongly *FI*-lifting;
- (ii) every fully invariant submodule of M has a supplement K which is a direct summand of M with $M = K \oplus N$ for some fully invariant submodule N of M.

PROOF. We completely follow the proof of Proposition 3.7((i) \Leftrightarrow (ii)).

PROPOSITION 3.9. Let M be an FI-lifting module and let U be a fully invariant submodule of M. Then M/U is FI-lifting. If, moreover, U is coclosed in M, then U is also FI-lifting.

PROOF. By [6, Proposition 3.3], M/U is FI-lifting. Assume that U is coclosed in M. Let V be a fully invariant submodule of U. Then V is fully invariant in M. So, there exist submodules K and K' of M such that $M = K \oplus K', K' \le V$ and $K \cap V \ll K$. Thus, $U = V + (U \cap K)$. Since U is fully invariant in $M, U = (U \cap K) \oplus (U \cap K')$. Hence, $U \cap K$ is a direct summand of U. Moreover, $V \cap (U \cap K) = V \cap K \ll K$. This implies that $V \cap (U \cap K) \ll U \cap K$ since $U \cap K$ is coclosed in M by [2, 3.7]. Therefore, $U \cap K$ is a direct summand supplement of V in U. By Proposition 3.7, U is FI-lifting.

A module M is called a *duo* module provided that every submodule of M is fully invariant.

PROPOSITION 3.10. Let M be a module. Consider the following statements:

- (ii) M is \oplus -supplemented;
- (iii) *M* is FI-lifting.

Then (i) \Rightarrow (ii) \Rightarrow (iii). If M is a duo module, then (iii) \Rightarrow (i).

⁽i) *M* is lifting;

PROOF. (i) \Rightarrow (ii) This is clear.

(ii) \Rightarrow (iii) This is clear by Proposition 3.7.

The rest is clear from the definitions.

REMARK. (1) Consider the \mathbb{Z} -module $M = \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p^3\mathbb{Z}$. It is well known that M is not lifting, but it is FI-lifting by [6, Theorem 3.4].

(2) Consider \mathbb{Q} the additive group of rational numbers. Let *f* be any nonzero \mathbb{Z} -endomorphism of \mathbb{Q} . Let *r* be a nonzero element of \mathbb{Q} such that f(1) = r. Let *a* and *b* be two nonzero integers. Then $f(1) = f((1/b) \times b) = f(1/b)b = r$. So f(1/b) = r/b. Thus, f(a/b) = f(1/b)a = (r/b)a = (a/b)r. Now let *N* be a nonzero fully invariant submodule of \mathbb{Q} . Let *s* be a nonzero element of *N*. Let *g* be the endomorphism of \mathbb{Q} defined by g(x) = (1/s)x for every $x \in \mathbb{Q}$. Since *N* is fully invariant, $g(s) \in N$. Thus, $1 \in N$. Hence, $\mathbb{Q} \leq N$ since $h(1) \in N$ for every $h \in \text{End}_{\mathbb{Z}}(\mathbb{Q})$. Consequently, the only fully invariant submodules of \mathbb{Q} are 0 and \mathbb{Q} . Therefore, \mathbb{Q} is strongly FI-lifting. On the other hand, \mathbb{Q} is not \oplus -supplemented since \mathbb{Q} is an indecomposable \mathbb{Z} -module which is not hollow.

THEOREM 3.11. Let M be a T-noncosingular module and X a fully invariant submodule of M. Then M is (strongly) FI-lifting if and only if $M = M_1 \oplus M_2$ such that M_1 and M_2 are (strongly) FI-lifting and M_1 is the unique fully invariant direct summand of M with $M_1 \subseteq X$ and $X/M_1 \ll M/M_1$.

PROOF. (\Rightarrow) Since X is fully invariant in M and M is FI-lifting, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq X$ and $X/M_1 \ll M/M_1$. By Proposition 2.16, M_1 is unique and fully invariant in M. Then by Proposition 3.9, M_1 and M_2 are FI-lifting. The remainder of the proof is a consequence of Propositions 2.3 and 3.1.

 (\Leftarrow) This follows from [6, Theorem 3.4] and Proposition 3.1.

PROPOSITION 3.12. Let $M = M_1 \oplus M_2$. Then M_2 is FI-lifting if and only if for every fully invariant submodule N/M_1 of M/M_1 , there exists a direct summand K of M such that $K \leq M_2$, M = K + N and $N \cap K \ll M$.

PROOF. Suppose that M_2 is FI-lifting. Let N/M_1 be any fully invariant submodule of M/M_1 . It is easy to see that $N \cap M_2$ is fully invariant in M_2 . Since M_2 is FI-lifting, there exists a decomposition $M_2 = K \oplus K'$ such that $M_2 = (N \cap M_2) + K$ and $N \cap K \ll K$. Clearly, M = N + K.

Conversely, suppose that M/M_1 has the stated property. Let H be a fully invariant submodule of M_2 . It is easy to see that $(H \oplus M_1)/M_1$ is fully invariant in M/M_1 . By hypothesis, there exists a direct summand L of M such that $L \leq M_2$, $M = L + H + M_1$ and $L \cap (H + M_1) \ll M$. By modularity, $M_2 = L + H$. It follows easily that L is a supplement of H in M_2 . Therefore, M_2 is FI-lifting by Proposition 3.7.

471

Acknowledgement

This paper was written during a visit by the second author to the Department of Mathematics, Hacettepe University, and he thanks the first author and her family for their hospitality.

References

- G. F. Birkenmeier, B. J. Müller and S. T. Rizvi, 'Modules in which every fully invariant submodule is essential in a direct summand', *Comm. Algebra* 30(3) (2002), 1395–1415.
- [2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, 'Lifting modules', in: Supplements and Projectivity in Module Theory, Frontiers in Mathematics (Birkhäuser, Basel, 2006).
- [3] L. Ganesan and N. Vanaja, 'Modules for which every submodule has a unique coclosure', *Comm. Algebra* **30**(5) (2002), 2355–2377.
- [4] T. Inoue, 'Sum of hollow modules', Osaka J. Math. 20 (1983), 331–336.
- [5] D. Keskin, 'Discrete and quasi-discrete modules', Comm. Algebra 30(11) (2002), 5273–5282.
- [6] T. Kosan, 'The lifting condition and fully invariant submodules', *East–West J. Math.* **7**(1) (2005), 99–106.
- [7] S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, London Mathematical Society Lecture Note Series, 147 (Cambridge University Press, Cambridge, 1990).
- [8] S. T. Rizvi and C. S. Roman, 'On *K*-nonsingular modules and applications', *Comm. Algebra* 35 (2007), 1–22.
- [9] D. W. Sharpe and P. Vamos, Injective Modules (Cambridge University Press, Cambridge, 1972).
- [10] Y. Talebi and N. Vanaja, 'Torsion theory cogenerated by *M*-small modules', *Comm. Algebra* 30(3) (2002), 1449–1460.
- [11] R. Wisbauer, *Foundations of Module and Ring Theory* (Gordon and Breach, Philadelphia, PA, 1991).
- [12] H. Zöschinger, 'Komplementierte Moduln über Dedekindringen', J. Algebra 29 (1974), 42–56.

DERYA KESKIN TÜTÜNCÜ, Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey e-mail: keskin@hacettepe.edu.tr

RACHID TRIBAK, Département de Mathématiques, Faculté des Sciences de Tétouan, B.P. 21.21, Tétouan, Morocco e-mail: tribak12@yahoo.com