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Hilbert’s 14th problem over finite fields and a

conjecture on the cone of curves

Burt Totaro

Abstract

We give the first examples over finite fields of rings of invariants that are not finitely
generated. (The examples work over arbitrary fields, for example the rational numbers.)
The group involved can be as small as three copies of the additive group. The failure
of finite generation comes from certain elliptic fibrations or abelian surface fibrations
having positive Mordell–Weil rank. Our work suggests a generalization of the Morrison–
Kawamata cone conjecture on Calabi–Yau fiber spaces to klt Calabi–Yau pairs. We prove
the conjecture in dimension two under the assumption that the anticanonical bundle is
semi-ample.

Introduction

Hilbert’s 14th problem asks whether the ring of invariants of any representation of a linear algebraic
group is finitely generated over the base field. Nagata gave the first counterexample, using a repre-
sentation of (Ga)13, where Ga denotes the additive group [Nag58]. In his example, the representation
is defined over a field of large transcendence degree over the prime field (of any characteristic). Mukai
simplified Nagata’s construction, showing that there are representations of (Ga)3 over the complex
numbers whose ring of invariants is not finitely generated [Muk01].

Mukai relates the problem of finite generation of rings of invariants to a natural question in
algebraic geometry: when is the total coordinate ring of a projective variety finitely generated? The
deepest known result is the Birkar–Cascini–Hacon–McKernan theorem that the total coordinate ring
of a Fano variety in characteristic zero is finitely generated [BCHM06, Corollary 1.3.1]. Nagata and
Mukai give counterexamples to finite generation for certain varieties (blow-ups of projective space)
just outside the realm of Fano varieties. The precise border between finite and infinite generation
remains to be understood.

Mukai’s construction yields representations whose coefficients are ‘general’ complex numbers.
In this paper, we show that Mukai’s three best examples can all be realized over finite fields and
over the rational numbers, in fact with simple explicit coefficients. We give examples over all fields,
including the field of order two. These are the first published counterexamples to Hilbert’s 14th
problem over finite fields. (In retrospect, some examples over finite fields can be constructed using
the work of Manin [Man64], Tate [Tat65], or Shioda [Shi72] on elliptic surfaces.) For some classes
of examples, we characterize exactly when finite generation holds and when it does not.

Theorem 0.1. Let k be any field. Then there are linear representations over k of (Ga)3 on A18,
of (Ga)4 on A16, and of (Ga)6 on A18 whose rings of invariants are not finitely generated. The
representations are defined explicitly.
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Hilbert’s 14th problem

Here is the geometric idea. The basic ingredient of Nagata’s examples (especially as simplified
by Steinberg [Ste97]) is the existence of non-torsion line bundles of degree zero on an elliptic curve.
There are no such line bundles on curves over finite fields, but the generic fiber of an elliptic
fibration over a finite field can have infinite Mordell–Weil group, and that turns out to be enough.
Precisely, we encounter known elliptic fibrations of blow-ups of P2 and P3, and what seems to be
a new fibration of a blow-up of P5 by abelian surfaces (§ 6). It would be interesting to describe the
geometry of these rational abelian fibrations of P5 in more detail. For example, are these fibrations
completely integrable systems with respect to some Poisson structure?

Our main results (Theorems 5.2 and 7.2) relate finite generation of the total coordinate ring,
in some situations, to finiteness of a certain Mordell–Weil group. We conclude with a more general
conjecture, saying that the cone of curves of any variety with semi-ample anticanonical bundle is
controlled by a group, which may be infinite. This would follow from a generalization of the con-
jectures of Kawamata and Morrison on Calabi–Yau fiber spaces to allow klt pairs (Conjecture 8.1).
We prove the conjecture for smooth projective surfaces with semi-ample anticanonical bundle, the
new case being that of rational elliptic surfaces (Theorem 8.2).

1. Another example

The smallest known representation of an algebraic group for which finite generation fails is Freuden-
burg’s 11-dimensional representation of a unipotent group (Ga)4 � Ga over the rational num-
bers [Fre07], based on an example by Kuroda [Kur04]. It would be interesting to know whether
there are such low-dimensional examples over finite fields.

There are broader forms of Hilbert’s 14th problem, for example about actions of algebraic groups
on arbitrary affine varieties. Since even the most specific form of the problem, regarding linear
representations, has a negative answer, we focus on that case.

2. Mukai’s method

In this section, we summarize Mukai’s geometric approach to producing counterexamples to Hilbert’s
14th problem.

We use the following result by Mukai [Muk01]. (He works over the complex numbers, but his
proof is elementary and works over any field.)

Theorem 2.1. For any n � r � 3, let X be the blow-up of projective space Pr−1 at n distinct
rational points p1, . . . , pn, not contained in a hyperplane, over a field k. Let G ∼= (Ga)n−r be the
subgroup of (Ga)n which is the kernel of a linear map An → Ar corresponding to the points pi. Let
(Ga)n act on V = A2n by

(t1, . . . , tn)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn, y1 + t1x1, . . . , yn + tnxn).

Then the ring of invariants O(V )G is isomorphic to the total coordinate ring of X,

TC (X) :=
⊕

a,b1,...,bn∈Z

H0(X,aH − b1E1 − · · · − bnEn) ∼=
⊕

L∈Pic X

H0(X,L),

where H is the pullback of the hyperplane line bundle on Pr−1 and E1, . . . , En are the exceptional
divisors in X.

Therefore, to give examples of rings of invariants which are not finitely generated, it suffices
to exhibit arrangements of points on projective space such that the total coordinate ring of the
blow-up X is not finitely generated.
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Define a pseudo-isomorphism between smooth projective varieties to be a birational map which
is an isomorphism outside subsets of codimension at least two. This notion can be useful for singular
varieties, but our applications only involve smooth varieties. (For example, a pseudo-isomorphism
between smooth projective surfaces is an isomorphism.) A pseudo-isomorphism X ��� Y induces
an isomorphism Pic(X) → Pic(Y ) by taking the proper transform of divisors. Define a (−1)-
divisor D on a projective variety X to be the proper transform under some pseudo-isomorphism
X ��� X ′ of the exceptional divisor for a morphism X ′ → Y which is the blow-up of a smooth point.
(For example, a (−1)-curve on a surface is simply a curve isomorphic to P1 with self-intersection −1,
by Castelnuovo.) Mukai observes that every (−1)-divisor is indecomposable in the monoid of effective
line bundles on X (line bundles L with H0(X,L) �= 0). Also, two different (−1)-divisors represent
different elements of Pic(X). Therefore, if a variety X contains infinitely many (−1)-divisors, then
the monoid of effective line bundles on X is not finitely generated, and so the total coordinate ring
of X is not finitely generated [Muk01, Lemma 3].

Lemma 2.2 gives a way to ensure that a blow-up X of projective space contains infinitely many
(−1)-divisors. To state it, define a birational map Ψ : Pr−1 ��� Pr−1 by

[x1, . . . , xr] �→
[

1
x1

, . . . ,
1
xr

]
.

It contracts the r coordinate hyperplanes to the r coordinate points. A birational map between two
projective spaces which is projectively equivalent to Ψ is called a standard Cremona transformation.
We note that Ψ lifts to a pseudo-isomorphism from the blow-up of Pr−1 at the r coordinate points
to itself. In modern terms, this pseudo-isomorphism can be described as a composite of several flops.

We say that an arrangement of n points in Pr−1, n � r � 3, is in linear general position if
no r of the points are contained in a hyperplane. (In particular, the points are all distinct.) Given
n points in linear general position, we can perform the standard Cremona transformation on any
r of the n points; this gives a different arrangement of n points in a projective space. They need
not be in linear general position. We say that an arrangement of n points in Pr−1 is in Cremona
general position if they are in linear general position and this remains true after any finite sequence
of standard Cremona transformations on r-tuples of the points.

The key point of Mukai’s method is the following result.

Lemma 2.2. Let p1, . . . , pn, n � r � 3, be points in projective space Pr−1 over a field k which are
in Cremona general position. If

1
2

+
1
r

+
1

n − r
� 1,

then the blow-up X of Pr−1 at p1, . . . , pn contains infinitely many (−1)-divisors. Therefore, the
total coordinate ring of X is infinitely generated, and the corresponding representation of (Ga)n−r

of dimension 2n over k has infinitely generated ring of invariants.

For clarity, we recall the proof of Lemma 2.2. Clearly X contains n (−1)-divisors over the
n points p1, . . . , pn. However, since p1, . . . , pn are in Cremona general position, we can perform
Cremona transformations on r-tuples of points in p1, . . . , pn any number of times. This shows that
X is pseudo-isomorphic to a blow-up of Pr−1 in many other ways, and so we find other (−1)-divisors
on X. The inequality on n ensures, by a purely combinatorial argument, that the resulting (−1)-
divisors on X have arbitrarily large degrees (when projected down to divisors on Pr−1), and so
there are infinitely many of them. To describe this argument in more detail, define a symmetric
bilinear form on Pic(X) by H2 = r − 2, E2

i = −1, H · Ej = 0, and Ei · Ej = 0 for i �= j. We have
a canonical identification of Pic(X) with Zn+1 = ZH ⊕ ZE1 ⊕ · · · ⊕ ZEn for every blow-up X of
an (r − 1)-dimensional projective space at an ordered set of n points. So the standard Cremona
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� � � � � � �

�

s1 s2 sr−1 sr sr+1 sn−2 sn−1

sn

Figure 1. T2,r,n−r Dynkin diagram.

transformation at the points p1, . . . , pr determines a well-defined automorphism of Zn+1, which we
compute to be the reflection sn orthogonal to H −E1 − · · · −Er. Switching points pi and pi+1 acts
on Zn+1 by the reflection si orthogonal to Ei − Ei+1 for 1 � i � n − 1. We compute (it is also
clear geometrically) that the Cremona action on Pic(X) = Zn+1 fixes the anticanonical class of X,
−KX = rH − (r−2)E1−· · ·− (r−2)En. Together the reflections s1, . . . , sn−1, sn generate the Weyl
group with Dynkin diagram T2,r,n−r (see Figure 1), and the inequality in Lemma 2.2 is just what is
needed to ensure that this Weyl group is infinite.

It is clear that very general n-tuples of points in projective space (that is, n-tuples outside of
countably many proper subvarieties of (Pr−1)n) are in Cremona general position. Thus, Lemma 2.2
gives counterexamples to Hilbert’s 14th problem over the complex numbers (or any uncountable
field). However, this argument leaves it unclear whether there are any arrangements in Cremona
general position over the rational numbers or over finite fields. In the next section we construct such
arrangements. These occur in the most interesting cases of Lemma 2.2, where 1/2+1/r+1/(n−r) =
1, corresponding to the affine Weyl groups of type E

(1)
8 (n = 9, r = 3 or 6) or E

(1)
7 (n = 8, r = 4).

As a historical note, in 1929 Coble found that the blow-up of P2 at nine very general points
contained infinitely many (−1)-curves [Cob29, § 9], but the first proof to modern standards was
given by Nagata in 1960 [Nag60, Lemma 2.5 and Theorem 4a].

3. The method, with elementary proofs

In this section we prove Theorem 0.1 over any sufficiently large finite field and over any infinite
field. This turns out to require only some simple geometry, following the ideas of Coble and Dol-
gachev.

By Lemma 2.2, Theorem 0.1 will follow if we can produce explicit examples of 9-tuples of points
in P2 in Cremona general position, or 8-tuples in P3, or 9-tuples in P5. The following lemmas do
this, over sufficiently large finite fields and over infinite fields. The idea is to use arrangements of
points which are special in one way (for example, we take nine points in P2 which are the intersection
of two cubics), but not too special.

In what follows, a cubic in P2 denotes an effective divisor of degree three; it is not assumed
to be irreducible (likewise for conics, quadrics in higher-dimensional projective spaces, and so on).
We say that a cubic is irreducible if it is irreducible and reduced (that is, the corresponding cubic
form is irreducible). A pencil of cubics in P2 means a linear system P1 of cubics; equivalently, it
is a two-dimensional linear subspace of the vector space of cubic forms in three variables. We say
that two cubics in P2 over a field k intersect in nine given points if those are all of the intersection
points over the algebraic closure of k.

Lemma 3.1. Let p1, . . . , p9 be nine distinct rational points in P2 over a field k. Suppose that there
are cubics C1 and C2 whose intersection is the set {p1, . . . , p9}. Then no three of p1, . . . , p9 lie on a
line if and only if all cubics in the pencil spanned by C1 and C2 are irreducible.

1179

https://doi.org/10.1112/S0010437X08003667 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003667


B. Totaro

Proof. Suppose that a cubic C1 in the pencil is reducible. Then we can write C1 = L + D for some
line L and conic D. For any other cubic C2 in the pencil,

{p1, . . . , p9} = C1 ∩ C2 = (L ∩ C2) ∪ (D ∩ C2).

Since C2 intersects C1 transversely, three of these points are on the line L. Conversely, suppose that
p1, p2, p3 lie on a line L. There is a unique cubic on L through p1, p2, p3. Since we have a pencil (a
P1) of cubics in P2 through p1, p2, p3, at least one cubic C1 in the pencil must contain L. Thus, C1

is reducible.

Corollary 3.2. Let p1, . . . , p9 be nine distinct rational points in P2 over a field k which are the
intersection of two cubics. Suppose that no three of p1, . . . , p9 lie on a line. Then p1, . . . , p9 are in
Cremona general position. Therefore the blow-up X of P2 at p1, . . . , p9 has infinitely generated total
coordinate ring, and the corresponding 18-dimensional representation of (Ga)6 over k has infinitely
generated ring of invariants.

The first part of Corollary 3.2 was proved first by Manin [Man64, Lemma 3].

Proof. The Cremona action on Pic(X) ∼= Z10 fixes the anticanonical class −KX = 3H − E1 −
· · · − E9. Therefore, performing a standard Cremona transformation on any three of p1, . . . , p9

transforms a cubic through p1, . . . , p9 into a cubic through the new points p′1, . . . , p′9. Since p1, . . . , p9

are the intersection of two cubics in P2, this remains true after performing a standard Cremona
transformation on any three of p1, . . . , p9. Since no three of p1, . . . , p9 lie on a line, all cubics in the
pencil of cubics through these points are irreducible by Lemma 3.1. The point is that this remains
true of the proper transforms of these cubics on the ‘new’ P2. Therefore, no three of p′1, . . . , p

′
9 lie

on a line. Thus, p′1, . . . , p
′
9 satisfy the same properties we assumed for p1, . . . , p9. We can repeat this

process any number of times. So p1, . . . , p9 are in Cremona general position. Lemma 2.2 gives the
rest.

Corollary 3.2 gives counterexamples to Hilbert’s 14th problem over all sufficiently large finite
fields, and over all infinite fields; we give explicit examples in § 4. The group involved is (Ga)6. To
get Mukai’s best example, with the group (Ga)3, to work over the same fields, we can use projective
duality, as follows.

Let q1, . . . , q9 be nine distinct points on P2 which are the intersection of two cubics. These points
can be represented by a linear map from A9 onto A3. The kernel has dimension 6, and so dualizing
gives a linear map from A9 onto a 6-dimensional vector space. This gives the dual arrangement of 9
points p1, . . . , p9 in a 5-dimensional projective space. Dolgachev gives an equivalent description of
this arrangement, under our assumption on q1, . . . , q9: p1, . . . , p9 are the image of q1, . . . , q9 under a
Veronese embedding P2 → P5 (see [Dol04, Proposition 5.4]).

Corollary 3.3. Let q1, . . . , q9 be nine distinct rational points in P2 over a field k which are the
intersection of two cubics. Suppose that no three of q1, . . . , q9 lie on a line. Let p1, . . . , p9 be the dual
arrangement of nine points in P5. Then p1, . . . , p9 are in Cremona general position. Therefore, the
blow-up X of P5 at p1, . . . , p9 has infinitely generated total coordinate ring, and the corresponding
18-dimensional representation of (Ga)3 over k has infinitely generated ring of invariants.

Proof. Since q1, . . . , q9 are in linear general position in P2, we check by hand that the dual
arrangement p1, . . . , p9 is in linear general position in P5. Performing the standard Cremona trans-
formation on q1, q2, q3 in P2 and then dualizing corresponds to performing the standard Cremona
transformation on p9, . . . , p4 in P5, as Dolgachev–Ortland computed [DO88, Theorem VI.4]. (This
is elementary: the assumption that q1, . . . , q9 are the intersection of two cubics is not needed for
this duality statement.) Since q1, . . . , q9 are in Cremona general position in P2 by Corollary 3.2, it
follows that p1, . . . , p9 are in Cremona general position in P5. Lemma 2.2 gives the rest.
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Thus, we have counterexamples to Hilbert’s 14th problem using an 18-dimensional representation
of (Ga)3 over all sufficiently large finite fields and all infinite fields. Finally, let us check that Mukai’s
final class of examples, using the group (Ga)4, also works over all sufficiently large finite fields and
all infinite fields. A net of quadrics in P3 means a linear system P2 of quadrics or, equivalently, a
three-dimensional linear subspace of the vector space of quadratic forms in four variables.

Lemma 3.4. Let p1, . . . , p8 be eight distinct points in P3 which are the intersection of three quadrics,
Q1 ∩Q2 ∩Q3. Then no four of the points p1, . . . , p8 lie on a plane if and only if every quadric in the
net spanned by Q1, Q2, Q3 is irreducible.

Proof. If some quadric Q in the net is reducible, then Q = S1∪S2 for some planes S1 and S2 in P3.
Then four of the points p1, . . . , p8 lie on S1 (and the other four lie on S2).

Conversely, suppose that p1, p2, p3, p4 lie on a plane S in P3. No three of the points p1, . . . , p8 lie
on a line L in P3; otherwise every quadric in the net would contain three points on L, hence would
contain L, contradicting that Q1 ∩Q2 ∩Q3 = {p1, . . . , p8}. So no three of the points p1, p2, p3, p4 lie
on a line. Therefore, these four points are the complete intersection of two conics in the plane S,
p1p2 ∪ p3p4 and p1p3 ∪ p2p4. It follows that there is only a pencil (a P1) of conics in S through
p1, p2, p3, p4. Since we have a net (a P2) of quadrics in P3 that contain p1, p2, p3, p4, at least one
quadric Q in the net must contain the whole plane S. Thus, Q is reducible.

Corollary 3.5. Let p1, . . . , p8 be eight distinct points in P3 which are the intersection of three
quadrics, and suppose that no four of the points p1, . . . , p8 lie on a plane. Then p1, . . . , p8 are in
Cremona general position. Therefore the blow-up X of P3 at p1, . . . , p8 has infinitely generated total
coordinate ring, and the corresponding 16-dimensional representation of (Ga)4 over k has infinitely
generated ring of invariants.

The first part of Corollary 3.5 was apparently known to Coble [Cob29, § 44, last paragraph].

Proof. The Cremona action on Pic(X) fixes half of the anticanonical class, −1
2KX = 2H − E1 −

· · · − E8. So performing a standard Cremona transformation on any four of p1, . . . , p8 transforms a
quadric through p1, . . . , p8 into a quadric through the new points p′1, . . . , p′8. Since p1, . . . , p8 are the
intersection of three quadrics, p′1, . . . , p′8 are also the intersection of three quadrics. By Lemma 3.4,
since no four of p1, . . . , p8 lie on a plane, all of the quadrics through p1, . . . , p8 are irreducible.
Therefore, their proper transforms, the quadrics through p′1, . . . , p

′
8, are also all irreducible. So no

four of p′1, . . . , p
′
8 lie on a plane. Thus, p′1, . . . , p

′
8 satisfy the same assumptions as p1, . . . , p8, and

so we can repeat the process any number of times. That is, p1, . . . , p8 are in Cremona general
position.

4. Examples over arbitrary fields

We now prove Theorem 0.1, showing that our three classes of representations with infinitely gen-
erated rings of invariants all exist over arbitrary fields. In later sections, we describe the geometry
behind these representations in more detail. One benefit will be to construct representations with
infinitely generated ring of invariants that are given by simpler formulas. Another benefit will be to
prove partial results about exactly when finite generation holds. For now, we just prove Theorem 0.1
as stated.

Theorem 2.1 associates a 2n-dimensional representation of (Ga)n−r over a field k to any arrange-
ment of n distinct k-points of Pr−1 not contained in a hyperplane. More generally, we can define
such a representation associated to a smooth zero-dimensional subscheme of degree n defined over
k, even if the individual points are not defined over k, using the standard technique of ‘twisting’
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in Galois cohomology [Ser94, § III.1.3]. Explicitly, given a Galois extension field K/k over which
the points are defined, let the Galois group Gal(K/k) act on Kn by permuting the basis vectors
as Gal(K/k) permutes the n points, and by σ(ax) = σ(a)σ(x) for a ∈ K. We can view Kn with
this Galois action as a ‘twisted form’ H of the group (Ga)n over k, but it is in fact isomorphic
to (Ga)n over k because H(k) = (Kn)Gal(K/k) is an n-dimensional vector space over k. A linear
map Kn → Kr associated to the n points in Pr−1 is evidently Galois-equivariant, and so (taking
Galois invariants) it gives a linear map H(k) ∼= kn → kr. The kernel is a vector space over k, which
canonically determines an algebraic group G over k, clearly isomorphic to (Ga)n−r. Likewise, the
2n-dimensional representation of (Ga)n in Theorem 2.1 gives a 2n-dimensional representation of its
twisted form H and, hence, of the subgroup G ∼= (Ga)n−r over k.

Moreover, whether a ring of invariants O(V )G for a representation V of an algebraic group G
is finitely generated does not change under extension of the base field, since the ring of invariants
over an extension field K/k is just the ring of invariants over k tensored with K. So we can apply
the previous section’s results. For example, given two plane cubics C1 and C2 over a field k whose
intersection is smooth of dimension zero, consider the associated 18-dimensional representation of
(Ga)6 over k. If no three points of C1 ∩ C2 over the algebraic closure of k lie on a line, then the
corresponding representation of (Ga)6 over k has infinitely generated ring of invariants, by Corollary
3.2. In practice, it is often easier to check the equivalent hypothesis that all cubics in the pencil
spanned by C1 and C2 are irreducible.

For example, consider the cuspidal cubics (y + z)3 +xz2 and x3 +y2z over a field Fp. For primes
p � 23 (not an optimal bound), we compute that the intersection of these two cubics in P2 is smooth
of dimension zero, and that all nonzero linear combinations of these two cubics are irreducible. (This
is particularly easy to check for p = 2 or 3, where the given cuspidal cubics are the only singular
cubics in the pencil.) By Corollary 3.2, for p � 23, the associated 18-dimensional representation of
(Ga)6 over Fp has infinitely generated ring of invariants. For fields of characteristic greater than 23
(or characteristic zero), we can apply Corollary 3.5 directly. Namely, the nine points in P2 which
form the columns of the following matrix are the base locus of a pencil of cubics, and are in linear
general position over Q and over Fp for all p > 23:

1 0 0 1 1 2 −3 −2 −7
0 1 0 1 −1 −1 4 −5 2
0 0 1 1 2 1 1 1 −1


 .

(One can look for such examples by choosing eight points in P2 and computing the ninth point on the
pencil of cubics through the eight points.) Thus, we have constructed 18-dimensional representations
of (Ga)6 with infinitely generated ring of invariants over an arbitrary field.

Now consider again the intersection of the cuspidal cubics (y + z)3 + xz2 and x3 + y2z over a
field Fp with p � 23. The projective dual of these nine points in P2 gives a smooth subscheme
of degree nine in P5 over Fp. Consider the associated representation of (Ga)3 over Fp. Since all
cubics in this pencil of cubics in P2 are irreducible when p � 23, Corollary 3.3 shows that the
ring of invariants for this 18-dimensional representation of (Ga)3 over Fp is infinitely generated. For
fields of characteristic greater than 23 or of characteristic zero, we can apply Corollary 3.3 directly,
using the previous paragraph’s arrangement of nine rational points. Thus, we have constructed 18-
dimensional representations of (Ga)3 with infinitely generated ring of invariants over an arbitrary
field.

We now construct analogous representations of (Ga)4. Over a field Fp, consider the quadrics
xy + y2 + z2, xw + y2 + w2, xz − zw + z2 + w2. We compute that for all primes p � 7 (not
an optimal bound), the intersection of these three quadrics is smooth of dimension zero, and all
nonzero linear combinations of these quadrics are irreducible. Therefore, for p � 7, the corresponding
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16-dimensional representation of (Ga)4 over Fp has infinitely generated ring of invariants. For fields
of characteristic greater than seven (or characteristic zero), we can apply Corollary 3.5 directly.
Namely, the eight points in P3 which form the columns of the following matrix are the base locus
of a net of quadrics, and are in linear general position over Q and over Fp for all p > 7:


1 0 0 0 1 −2 1 −6
0 1 0 0 1 2 −4 −8
0 0 1 0 1 1 −3 −7
0 0 0 1 1 −3 4 −4


 .

(One can look for such examples by choosing seven points p1, . . . , p7 in P3 and computing the
eighth point on the net of quadrics through p1, . . . , p7.) Thus we have proved the existence of 16-
dimensional representations of (Ga)4 with infinitely generated ring of invariants over an arbitrary
field, and thus proved Theorem 0.1.

5. Elliptic fibrations, and representations of (Ga)6 on A18

We now describe the geometry behind the representations of (Ga)6 in Theorem 0.1. It turns out
that finite generation depends on the Mordell–Weil group of a certain elliptic fibration of P2. For a
certain class of representations, we can say exactly when the ring of invariants is finitely generated
and when it is not. As a concrete application, we give examples of non-finite generation where the
coefficients of the representation are very simple (in particular, simpler than the examples in § 4).
As in § 4, we obtain examples of non-finite generation over all fields, even the field of order two.

The general problem here is to understand the border between finite generation and non-finite
generation (for rings of invariants, or for total coordinate rings). Section 3 shows that if we assume a
small amount of general position, we obtain examples of non-finite generation. In this section we find
that even for some more special arrangements of points, which do not satisfy the hypotheses of § 3,
we can still prove non-finite generation. This case of nine points in the plane has been intensely
studied, and many of the results of this section can be deduced from various earlier works, as we
will see. The main novelty is the precise characterization of finite generation in Theorem 5.2.

Corollary 5.1. Let (Ga)n act on V = A2n by

(t1, . . . , tn)(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn, y1 + t1x1, . . . , yn + tnxn).

Over any field k of characteristic not two or three, consider the subgroup G = (Ga)6 of (Ga)9 which
is the kernel of the following linear map A9 → A3:

−1 −1 −1 0 0 0 1 1 1
−1 0 1 −1 0 1 −1 0 1

1 1 1 1 1 1 1 1 1


 .

Consider the restriction of the above 18-dimensional representation of (Ga)9 to the subgroup (Ga)6.
The ring of invariants of this representation is not finitely generated over k.

There are other (almost equally simple) 18-dimensional representations of (Ga)6 over F2 or F3

for which the ring of invariants is not finitely generated.

Corollary 5.1 is a consequence of the following theorem, which characterizes exactly which in-
tersections of two cubics in P2 yield infinitely generated rings of invariants (or infinitely generated
total coordinate rings). We generalize this theorem to all rational elliptic surfaces in Theorem 8.2.

Theorem 5.2. Let p1, . . . , p9 be nine distinct rational points in P2 over a field k which are the
intersection of two cubics. Let a be the number of collinear triples of points p1, . . . , p9, let b be
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the number of partitions of p1, . . . , p9 into three collinear triples, and let

ρ = 8 − a + b.

Then ρ � 0.
If ρ > 0, then the blow-up X of P2 at p1, . . . , p9 has infinitely generated total coordinate ring,

and the corresponding 18-dimensional representation of (Ga)6 over k has infinitely generated ring
of invariants.

Conversely, if ρ = 0, then these rings are finitely generated.

Theorem 5.2 strengthens Corollary 3.2, which proves infinite generation assuming that there are
no collinear triples among p1, . . . , p9.

Proof. Let X be the blow-up of P2 at the points p1, . . . , p9. The pencil of cubics through p1, . . . , p9

makes the blow-up X an elliptic surface f : X → P1 (or perhaps quasi-elliptic, in characteristics two
and three). We want to give criteria for X to contain infinitely many (−1)-curves, without requiring
that no three of p1, . . . , p9 lie on a line (as in Corollary 3.2). There is, in fact, a complete classification
of the intersections of two plane cubics such that the blow-up X contains only finitely many (−1)-
curves (X is called an extremal rational elliptic surface), by Miranda–Persson in characteristic
zero [MP86] and Lang in positive characteristic [Lan91, Lan94]; see also Cossec–Dolgachev [CD89,
§ 5.6]. There is also more general work by Nikulin classifying certain types of varieties whose cone of
curves is finite polyhedral [Nik00, Nik04]. We do not use any of these classification results, but just
explain how to check whether a given rational elliptic surface X has infinitely many (−1)-curves.

The (−1)-curves in any surface can be described as the smooth rational curves C such that
(−KX) ·C = 1. Since the fibers of the elliptic fibration f : X → P1 are in the linear system |−KX |,
it follows that the (−1)-curves in X are precisely the sections of the elliptic fibration. Thus, to make
X have infinitely many (−1)-curves, it suffices to arrange that the Mordell–Weil group Pic0(E) of
the general fiber (an elliptic curve over the field k(t)) has rank at least one. We can define the
Mordell–Weil group as the group of sections of this elliptic fibration, with one section considered as
the zero section.

For each reducible fiber F of the elliptic fibration X → P1, let rF +1 be the number of irreducible
components of F . By Tate [Tat65, § 4.5] and Shioda [Shi72, Corollary 1.5], the Mordell–Weil rank
of E over k(t) is equal to 8 − ∑

rF . For the reader’s convenience, here is a proof. The Picard
group of the general fiber E over k(t) is the quotient of the Picard group of the surface X by the
classes of all irreducible divisors in X which do not map onto P1. So Pic(E) is the quotient of
Pic(X) ∼= Z10 by the class of −KX (the class of each irreducible fiber of f : X → P1) and by rF

classes for each fiber F with rF + 1 irreducible components. Moreover, if we write the reducible
fibers as F =

∑rF +1
j=1 mFjDFj, then the divisors DFj for all F and all 1 � j � rF , together with

−KX , are linearly independent in Pic(X)Q (even modulo numerical equivalence). This is a fact
about any morphism from a surface to a curve [Bea96, pp. 122–123]. Therefore, Pic(E)Q has rank
10 − 1 − ∑

rF and the Mordell–Weil group Pic0(E)Q has rank 8 − ∑
rF , as required.

The only possible reducible cubics in the given pencil are the sum of a line and a conic, or
the sum of three lines. By the proof of Lemma 3.1, the lines occurring in these reducible cubics
are precisely the lines through collinear triples among the points p1, . . . , p9. Therefore,

∑
rF is

equal to the number a of collinear triples, minus the number b of partitions of p1, . . . , p9 into three
disjoint collinear triples. (The second term comes in because a cubic in the pencil which consists of
three lines contributes only two, not three, to

∑
rF .) So the Mordell–Weil rank of E over k(t) is

ρ = 8−a+ b, which is therefore nonnegative. If ρ is greater than zero, then the blow-up X contains
infinitely many (−1)-curves. It follows that the total coordinate ring of X is infinitely generated,
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and that the corresponding ring of invariants for an 18-dimensional representation of (Ga)6 over k
is infinitely generated.

It remains to show that when ρ = 0, then the total coordinate ring of X is finitely generated. Our
main tools will be the cone and contraction theorems, proved for log surfaces in any characteristic
by Kollár and Kovács [KK94, Theorems 2.1.1 and 2.3.3], and Hu and Keel’s notion of a Mori
dream space [HK00]. In particular, for any klt pair (X,∆) of dimension two, we can contract any
(KX + ∆)-negative extremal face of the closed cone of curves NE (X), yielding a projective variety.
Kollár and Kovács only state this for contractions of extremal rays, but the result for higher-
dimensional extremal faces is a consequence. The point is that for any (KX + ∆)-negative extremal
face F , if the contraction f : X → Y of one ray of F is birational, then the pair (Y, f∗∆) is klt and
the image of F is a (KY +f∗∆)-negative extremal face [KK94, Lemma 2.3.5]. Then the cone theorem
(including the contraction theorem) for higher-dimensional extremal faces follows by induction on
the Picard number of X.

The assumption ρ = 0 tells us that the subspace (KX)⊥ ∼= Q9 of Pic(X)⊗Q is spanned by the
curves in X which are contained in fibers of the morphism X → P1. The sum of all of the curves
in a reducible fiber, with multiplicities, is numerically equivalent to a general fiber −KX ; so (KX)⊥

is spanned just by the finitely many irreducible components of reducible fibers of X → P1. We can
also describe these curves as the (−2)-curves on X (curves isomorphic to P1 with self-intersection
−2), using the fact that −KX has degree zero on any (−2)-curve.

Another consequence of the assumption ρ = 0 is that the Mordell–Weil rank of the elliptic
surface X → P1 is zero. Since the sections of X → P1 are exactly the (−1)-curves, this means that
X contains only finitely many (−1)-curves. By the cone theorem, the extremal rays of the closed
cone of curves in the KX -negative half space (KX)<0 are all spanned by (−1)-curves, and so there
are only finitely many extremal rays in (KX)<0. Since −KX is semi-ample (corresponding to the
contraction X → P1), we know that the closed cone of curves is contained in (KX)�0.

Moreover, for any curve C on X which is not one of the finitely many (−2)-curves DFj, we have
C · DFj � 0 for all F and j. As the curves DFj span (KX)⊥ and are divided into subsets with∑

j mFjDFj ∼ −KX , where mFj > 0, the cone

{x ∈ N1(X) : x · DFj � 0 for all F, j}
is a finite polyhedral subcone of (KX)�0 whose intersection with (KX)⊥ is just R�0 · (−KX). Since
all curves except the (−2)-curves belong to this cone, it follows that the closed cone of curves is
finite polyhedral, spanned by the (−1)-curves and (−2)-curves. (This consequence of ρ = 0 was
proved already by Nikulin [Nik00, Example 1.4.1].)

By a result of Hu and Keel, a projective variety has finitely generated total coordinate ring if
and only if it is a ‘Mori dream space’ [HK00, Proposition 2.9]. For a smooth projective surface, this
means that the first Betti number is zero, the closed cone of curves is finite polyhedral, and every
codimension-one face of the cone can be contracted.

Thus, it remains to show that every codimension-one face of the closed cone of curves NE(X)
can be contracted. A face in the KX -negative half space (equivalently, a face spanned by (−1)-
curves) can be contracted by the cone theorem. On the other hand, because the (−2)-curves span
the hyperplane (−KX)⊥, the intersection NE(X) ∩ (KX)⊥ is a codimension-one face (the span of
all of the (−2)-curves). We can contract this face using the line bundle −KX , corresponding to the
contraction X → P1.

It remains to contract a codimension-one face A of NE(X) spanned by some (−1)-curves and
some (−2)-curves. Let C1, . . . , Cr be the (−2)-curves in the face A. These cannot include all of
the irreducible components of any fiber F of X → P1, because then −KX ∼ ∑

j mFjDFj would
belong to the face A. However, −KX is a positive linear combination of all of the (−2)-curves.
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Therefore, −KX belongs to the interior of the codimension-one face (KX)⊥ ∩ NE(X), and so it
cannot belong to any other face.

Since the (−2)-curves C1, . . . , Cr do not include all of the irreducible components of any fiber of
X → P1, the intersection pairing on

⊕r
i=1 QCi is negative definite [Bea96, pp. 122–123]. So there

are rational numbers ai such that (
∑

aiCi) · Cj = −1 for all j = 1, . . . , r. By Kollár–Mori [KM98,
Lemma 3.41], it follows that ai � 0 for all i.

Let ∆ = ε
∑

aiCi for some small positive number ε. The pair (X,∆) is klt [KK94, Defini-
tion 2.2.6] since X is smooth and ε is small; so we can apply the contraction theorem. Clearly
KX + ∆ is negative on the (−1)-curves C in the face A, since KX · C = −1 and ε is small. Also,
KX + ∆ has degree −ε on the (−2)-curves C1, . . . , Cr in A. Thus, the face A is (KX + ∆)-negative.
By the cone theorem, we can contract the face A. This completes the proof that the total coordinate
ring of X is finitely generated.

Proof of Corollary 5.1. For any field k of characteristic not two or three, consider the nine points in
P2(k) given in affine coordinates by (x, y) where x and y run through the set {−1, 0, 1}. These points
are the intersection of the two cubics x3 = xz2 and y3 = yz2, each consisting of three lines through
a point in P2. We count (using the assumption on the characteristic) that there are eight collinear
triples among these points p1, . . . , p9, and two partitions of p1, . . . , p9 into three collinear triples.
(The two partitions into three collinear triples correspond to two cubics x3 − xz2 = x(x− z)(x + z)
and y3 − yz2 = y(y − z)(y + z) in our pencil which are unions of three lines, and the other two
collinear triples correspond to two other reducible cubics in the pencil, (x3 − xz2) − (y3 − yz2) =
(x−y)(x2+xy+y2−z2) and (x3−xz2)+(y3−yz2) = (x+y)(x2−xy+y2−z2).) So ρ = 8−8+2 = 2
is greater than zero. By Theorem 5.2, the blow-up X of P2 at this set of nine points has infinitely
many (−1)-curves. Thus, we obtain an 18-dimensional representation of (Ga)6 over Fp for p � 5 (or
over Q) whose ring of invariants is not finitely generated. More precisely, the Mordell–Weil group
has rank two in this case.

We refer to Appendix A for simple examples of 18-dimensional representations of (Ga)6 over F2

or F3 whose rings of invariants are not finitely generated.

6. A new fibration of P5 by abelian surfaces, and representations of (Ga)3 on A18

We now give a richer geometric explanation for the infinitely generated rings of invariants for (Ga)3

constructed in Corollary 3.3: they are explained by a fibration of a blow-up of P5 by abelian surfaces.

Theorem 6.1. Let q1, . . . , q9 be nine distinct rational points in P2 over a field k which are the
intersection of two cubics. Suppose that no three of p1, . . . , p9 lie on a line. Let p1, . . . , p9 be the dual
arrangement of nine points in P5. Then the blow-up X of P5 at p1, . . . , p9 is pseudo-isomorphic to
a smooth projective variety W which is an abelian surface fibration over P3 with a section. The
Mordell–Weil group of W over P3 has rank eight. The translates by the Mordell–Weil group of
the (−1)-divisors E1, . . . , E9 yield infinitely many (−1)-divisors on W or, equivalently, on X. As a
result, the total coordinate ring of X is not finitely generated, and the corresponding 18-dimensional
representation of (Ga)3 over k has infinitely generated ring of invariants.

Proof. We recall Dolgachev’s equivalent description of the dual arrangement, under our assumption
on q1, . . . , q9: p1, . . . , p9 are the image of q1, . . . , q9 under a Veronese embedding P2 → P5 (see [Dol04,
Proposition 5.4]).

There is a natural homomorphism from the group Z8
� Z/2 to the automorphism group of the

blow-up Y of P2 at q1, . . . , q9 (see [DO88, p. 124]). Explicitly, Y is an elliptic surface, with the Z8

subgroup giving translations by differences of sections, and the Z/2 giving the map z �→ −z with
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respect to some zero-section. The construction of p1, . . . , p9 by duality gives a corresponding action
of Z8

� Z/2 by pseudo-automorphisms of the blow-up X of P5 at p1, . . . , p9, by Dolgachev [Dol04,
§ 5.12]. Moreover, these pseudo-automorphisms are defined on the blown-up Veronese surface Y
inside X and give the action we mentioned of Z8

� Z/2 on Y . Our goal is to give a more geometric
interpretation of these pseudo-automorphisms of X.

The linear system of −1
2KX = 3H−2E1−· · ·−2E9 (that is, cubics on P5 singular at p1, . . . , p9)

is a P3, with base locus a union of 45 curves: the 36 lines through pairs of points pi and the nine
rational normal curves through any eight of the points p1, . . . , p9. Indeed, the base locus of the
linear system |−1

2KX |, viewed on P5, is an intersection of four cubics. One checks that the base
locus has dimension one, which is easy in a particular example (and therefore holds for a general
9-tuple p1, . . . , p9 as above). Thus, the base locus is a complete intersection of four cubics in P5 and
hence has degree 81. The 45 curves mentioned have total degree 81, and they are all in the base
locus, because −1

2KX has degree −1 on these curves. So the base locus is precisely the union of
these 45 curves, each with multiplicity one.

We can describe the rational map X ��� P3 associated to −1
2KX . The base locus of this linear

system consists of 45 disjoint curves isomorphic to P1 in X, all with normal bundle O(−1)⊕4.
Using the linear system | − 1

2KX |, we can perform an inverse flip on these 45 curves, giving another
smooth projective five-fold W in which the 45 P1 with normal bundle O(−1)⊕4 have been replaced
by P3 with normal bundle O(−1)⊕2. Explicitly, W can be described as Proj of the ring R(X,L) =⊕

a�0 H0(X,aL) for any line bundle L which is a positive linear combination of H + 5(−1
2KX) and

−1
2KX . On this pseudo-isomorphic variety W , the linear system |− 1

2KW | (= |− 1
2KX |) is basepoint-

free, giving a morphism W → P3. The generic fiber of W → P3 is a principally polarized abelian
surface. The (−1)-divisors E1, . . . , E9 on W all induce the same polarization of the generic fiber,
which is two times a principal polarization. (Geometrically, each divisor Ei intersects the general
fiber in a curve of genus five.) The 45 P3 we have produced in W are sections of the fibration,
and their differences generate only a rank-eight subgroup of the Mordell–Weil group, for p1, . . . , p9

general as above.
To check that the smooth fibers of W → P3 are abelian surfaces, note that the canonical bundle

KW is trivial on all fibers, since −1
2KW is pulled back from P3. So the smooth fibers have trivial

canonical bundle and hence (say, in characteristic not two or three) are either K3 surfaces or abelian
surfaces. To see that they are abelian surfaces, it suffices to compute that c2(W )(−1

2KW )3 = 0,
since K3 surfaces have Euler characteristic c2 equal to 24 while abelian surfaces have c2 = 0. To
do that calculation, one can compute that c2(X)(−1

2KX)3 = 45 and that performing an inverse
flip (replacing a P1 with normal bundle O(−1)⊕4 by a P3 with normal bundle O(−1)⊕2) lowers
c2(X)(−1

2KX)3 by one.
The following result helps to show what is going on.

Lemma 6.2. Let f : X → S be a proper morphism of smooth varieties over a field such that KX

has degree zero on all curves C with f(C) = point. Suppose that the smooth locus of the generic
fiber has a group structure (for example, the generic fiber could be an abelian variety, or a cuspidal
cubic curve in characteristic two or three). Then for any sections S1 and S2 of f over the generic
point of S, there is a pseudo-automorphism of X over S that maps S1 to S2.

Proof. We use a basic fact of minimal model theory: for any proper morphisms fi : Xi → S,
i = 1, 2, such that Xi is smooth and KXi has nonnegative degree on all curves that map to a
point in S, every birational map from X1 to X2 over S is a pseudo-isomorphism. The proof works
in any characteristic [KM98, Theorem 3.52], and applies more generally to varieties with terminal
singularities. Any section of the morphism f : X → S over the generic point of S automatically
lies in the smooth locus of the generic fiber, which we assume has a group structure. Therefore,
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for any sections S1 and S2 over the generic point, adding S2 − S1 using the group structure is a
pseudo-automorphism of X over S.

Since the Mordell–Weil group of the generic fiber of W → P3 has rank eight, it is in particular
infinite. By the fact of minimal model theory just stated, the Mordell–Weil group acts on W or,
equivalently, on X, by pseudo-automorphisms. These pseudo-automorphisms of X map the (−1)-
divisor E1 to infinitely many other (−1)-divisors. It follows that the total coordinate ring of X is
not finitely generated, and that the corresponding representation of (Ga)3 has infinitely generated
ring of invariants, as we already knew from Corollary 3.3.

7. An elliptic fibration of P3, and representations of (Ga)4 on A16

We now describe the geometry behind the representations of (Ga)4 in Theorem 0.1 in more detail.
As in Theorem 5.2, the key concept is the Mordell–Weil group of an elliptic fibration, in this case an
elliptic fibration of a blow-up of P3. For a certain class of representations, we can show that the ring
of invariants is infinitely generated except in a very special situation. As a concrete application, we
give examples of non-finite generation where the coefficients of the representation are very simple (in
particular, simpler than the examples in § 4). As in § 4, we obtain examples of non-finite generation
over all fields, even the field of order two.

Corollary 7.1. Over any field k of characteristic not two, start with Nagata’s representation of
(Ga)8 on A16 as in Theorem 2.1, and restrict to the subgroup (Ga)4 spanned by the rows of the
following 4 × 8 matrix: 


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1


 .

Then the ring of invariants is not finitely generated over k. There are other (almost equally simple)
16-dimensional representations of (Ga)4 over F2 for which the ring of invariants is not finitely
generated.

Corollary 7.1 is a consequence of the following theorem. Combined with Prendergast-Smith’s
results discussed below, Theorem 7.2 characterizes exactly which intersections of three quadrics in
P3 yield infinitely generated rings of invariants (or infinitely generated total coordinate rings).

Theorem 7.2. Let p1, . . . , p8 be eight distinct rational points in P3 over a field k which are the
intersection of three quadrics. Let a be the number of coplanar quadruples of points p1, . . . , p8, and
define

ρ = 7 − a

2
.

Then ρ � 0. If ρ is greater than zero, then the blow-up X of P3 at p1, . . . , p8 has infinitely generated
total coordinate ring, and the corresponding 16-dimensional representation of (Ga)4 over k has
infinitely generated ring of invariants.

Theorem 7.2 strengthens Corollary 3.5, which proves infinite generation assuming that there are
no coplanar quadruples among p1, . . . , p8. Prendergast-Smith has classified the intersections of three
quadrics in P3 with ρ = 0 over an arbitrary field, and strengthened Theorem 7.2 to show that finite
generation holds if and only if ρ = 0 (see [Pre08]).

Proof. It is classical that, after blowing up eight points in P3 which are a complete intersection
of three quadrics, we have an elliptic fibration f : X → P2; a suitable reference is Dolgachev–
Ortland [DO88, Theorem VI.9]. Let us prove this. We have a net of quadrics through the given
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eight points. So the vector space of sections of −1
2KX = 2H − E1 − · · · − E8 has dimension three,

and it gives a rational map f from X to P2 which is clearly defined outside E1, . . . , E8. As our three
quadrics intersect in eight distinct points, their intersection must be transverse at each of the eight
points, and so f is in fact a morphism X → P2, with f∗H ∼= −1

2KX . It follows that the canonical
bundle KX is trivial on all fibers of f , and so all smooth fibers are curves with trivial canonical
bundle, that is, elliptic curves. (Explicitly, all fibers are complete intersections of two quadrics in
P3.) This construction also shows that the exceptional divisors E1, . . . , E8 are sections of f .

By Lemma 6.2, for any two sections S1 and S2 of the minimal elliptic fibration f over the general
point of P2, adding S2−S1 using the group structure on the general fiber is a pseudo-automorphism
of X which takes S1 to S2. Since the exceptional divisor E1 is a section of f and also a (−1)-divisor
in Mukai’s sense, it follows that all sections of f over the generic point of Y are (−1)-divisors in X.

Thus, suppose that we can check that the general fiber E over k(P2) of our elliptic fibration
has infinite Mordell–Weil group. Then X has infinitely many (−1)-divisors, and so the total coordi-
nate ring of X is not finitely generated. Equivalently, the ring of invariants for the 16-dimensional
representation of (Ga)4 we are considering is not finitely generated.

The Picard group of the general fiber E over the function field k(P2) is the quotient of the Picard
group of the three-fold X by the classes of all irreducible divisors in X which do not map onto P2.
Since f∗(H) = −1

2KX and Pic(P2) = ZH, the pullback under f : X → P2 of every irreducible
divisor in P2 is a multiple of −1

2KX . So Pic(E) is the quotient of Pic(X) ∼= Z9 by the class of −1
2KX

together with rF classes for each irreducible divisor in P2 whose inverse image in X has rF + 1
irreducible components, say

∑rF +1
j=1 mFjDFj. Moreover, the divisors DFj for all F and 1 � j � rF ,

together with −1
2KX , are linearly independent in Pic(X)Q (even modulo numerical equivalence).

This follows from the corresponding fact about morphisms from a surface to a curve [Bea96, pp. 122–
123] by restricting the morphism X → P2 to the inverse image of a general line in P2. Therefore
Pic(E)Q has rank 9 − 1 − ∑

rF , and the Mordell–Weil group Pic0(E)Q has rank 7 − ∑
rF .

Let us analyze the subset of P2 over which f : X → P2 has reducible fibers. Suppose that some
fiber (the intersection of two quadrics Q1 and Q2 in our net) contains a line L. Let Q3 be a quadric
in our net which is not in the pencil spanned by Q1 and Q2. Since Q1 ∩ Q2 ∩ Q3 = {p1, . . . , p8} is
smooth of dimension zero, Q3 must intersect L transversely in two points; so L must be the line
through two of the points p1, . . . , p8. Since Q3 does not contain L, the pencil spanned by Q1 and
Q2 is the unique pencil in our net whose base locus contains L. Thus, there are at most

(8
2

)
= 28

fibers of P3 ��� P2 that contain a line.

So, apart from finitely many fibers, every fiber F of P3 ��� P2 must be a union of irreducible
curves of degree at least two, with some multiplicities, and with total degree four. The only reducible
possibility is for F to be a union of two irreducible conic curves (curves of degree two), each with
multiplicity one. Since every conic in P3 is contained in a plane, F is contained (at least as a set)
in a reducible quadric Q1, the union of the two planes. Since the fiber F contains {p1, . . . , p8}, Q1

belongs to the net of quadrics through {p1, . . . , p8}. It is clear that the intersection of Q1 with ev-
ery other quadric in our net is reducible. Equivalently, Q1 corresponds to a line in P2 over which
every fiber of X → P2 is reducible.

Thus, we find something not at all clear a priori: the elliptic fibration X → P2 has reducible
fibers over the union of a finite set and finitely many lines. These lines are in one-to-one correspon-
dence with the reducible quadrics through p1, . . . , p8. Over a general point of each line, the fiber has
exactly two irreducible components. Thus, the number

∑
rF is equal to the number of reducible

quadrics through p1, . . . , p8.

Since a reducible quadric is the union of two planes, the number
∑

rF is one half the number
of coplanar quadruples among p1, . . . , p8. (Recall from the proof of Lemma 3.4 that p1, . . . , p4 are
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coplanar if and only if p5, . . . , p8 are coplanar.) Thus, the Mordell–Weil rank of the elliptic fibration
X → P2 over the generic point of P2 is ρ = 7 − a/2. Therefore, ρ is nonnegative. If ρ is greater
than zero, then the Mordell–Weil group is infinite, X contains infinitely many (−1)-divisors, and
the total coordinate ring of X and the corresponding ring of invariants are infinitely generated.

Proof of Corollary 7.1. Let k be any field of characteristic not two. By Theorem 2.1, the ring of
invariants in Corollary 7.1 is the total coordinate ring of the blow-up X of P3 at eight points,
namely the eight points given in affine coordinates w = 1 by (x, y, z) with x, y, z ∈ {0, 1}. These
eight points are the intersection of three (very simple) quadric surfaces, x2 = xw, y2 = yw, and
z2 = zw. To be precise, it might appear that the above representation of (Ga)4 corresponds to the
dual of this arrangement of eight points in P3, but in fact the dual arrangement is projectively
isomorphic to the given one. That is a general property of complete intersections of 3 quadrics in
P3, by Coble [Cob29] and Dolgachev–Ortland [DO88, Theorem III.3, Example III.6].

Using that the field k has characteristic not two, we count that there are exactly 12 coplanar
quadruples among these eight points, corresponding to six reducible quadrics in our net: x(x − w),
y(y−w), z(z−w), (x2−xw)−(y2−yw) = (x−y)(x+y−w), (x−z)(x+z−w), and (y−z)(y+z−w).
Since ρ = 7 − 1

2(12) = 1 is greater than zero, Theorem 7.2 shows that the Mordell–Weil group of
the general fiber E of X over k(P2) is infinite, and therefore the ring of invariants for the given
16-dimensional representation of (Ga)4, over Fp for p � 3 or over Q, is not finitely generated.

Appendix A gives a simple example of a 16-dimensional representation of (Ga)4 over F2 whose
ring of invariants is not finitely generated. Corollary 7.1 is thus proved.

8. A generalization of the Kawamata and Morrison conjectures on
Calabi–Yau varieties

Theorems 5.2 and 7.2 relate finite generation of the total coordinate ring, in some situations, to
finiteness of a certain Mordell–Weil group. In this section, we make a more general conjecture: the
cone of curves of any variety with semi-ample anticanonical bundle should be controlled by a certain
group, which may be infinite. (A line bundle is semi-ample if some positive multiple is basepoint-
free.) This would follow from a generalization of the conjectures of Kawamata and Morrison on
Calabi–Yau fiber spaces to allow klt pairs (Conjecture 8.1). We prove the conjecture for smooth
projective surfaces with semi-ample anticanonical bundle, the new case being that of rational elliptic
surfaces (Theorem 8.2).

For a projective morphism f : X → S of normal varieties with connected fibers, define N1(X/S)
as the real vector space spanned by Cartier divisors on X modulo numerical equivalence on curves
on X mapped to a point in S. Define a small Q-factorial modification (SQM) of X over S to be
a birational map f : X ��� X ′ over S, with X ′ projective over S and Q-factorial, which is an
isomorphism in codimension one. A Cartier divisor D on X is called f -nef (respectively f -movable,
f -effective) if D · C � 0 for every curve C on X which is mapped to a point in S (respectively,
if codim(supp(coker(f∗f∗OX(D) → OX(D)))) � 2, if f∗OX(D) �= 0). For an R-divisor ∆ on a
Q-factorial variety X, the pair (X,∆) is klt if, for any resolution π : X̃ → X with a simple normal
crossing R-divisor ∆̃ such that K

X̃
+∆̃ = π∗(KX +∆), the coefficients of ∆̃ are less than one [KM98,

Definition 2.34].
The f -nef cone A(X/S) (respectively the closed f -movable cone M(X/S)) is the closed con-

vex cone in N1(X/S) generated by the numerical classes of f -nef divisors (respectively f -movable
divisors). The f -effective cone Be(X/S) is the convex cone, not necessarily closed, generated by
f -effective Cartier divisors. We call Ae(X/S) = A(X/S) ∩ Be(X/S) and Me(X/S) = M(X/S) ∩
Be(X/S) the f -effective f -nef cone and the f -effective f -movable cone, respectively. Finally, a finite
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rational polyhedral cone in N1(X/S) means the closed convex cone spanned by a finite set of Cartier
divisors on X.

Conjecture 8.1. Let f : X → S be a projective morphism with connected fibers, (X,∆) a Q-
factorial klt pair with ∆ effective. Suppose that KX +∆ is numerically trivial over S. Let Aut(X/S)
and PsAut(X/S) denote the groups of automorphisms or pseudo-automorphisms of X over the
identity on S. Then we have the following.

(1) The number of Aut(X/S)-equivalence classes of faces of the cone Ae(X/S) corresponding to
birational contractions or fiber space structures is finite. Moreover, there exists a finite rational
polyhedral cone Π which is a fundamental domain for the action of Aut(X/S) on Ae(X/S) in
the sense that:

(a) Ae(X/S) =
⋃

g∈Aut(X/S) g∗Π;
(b) IntΠ ∩ g∗ IntΠ = ∅ unless g∗ = 1.

(2) The number of PsAut(X/S)-equivalence classes of chambers Ae(X ′/S, α) on the cone Me(X/S)
corresponding to marked SQMs X ′ → S of X → S is finite. Equivalently, the number of
isomorphism classes over S of SQMs of X over S (ignoring the birational identification with
X) is finite. Moreover, there exists a finite rational polyhedral cone Π′ which is a fundamental
domain for the action of PsAut(X/S) on Me(X/S).

Note that Conjecture 8.1 would not be true for Calabi–Yau pairs (pairs (X,∆) with KX +∆ ≡ 0)
that are log-canonical (or dlt) rather than klt. Let X be the blow-up of P2 at nine very general
points. Let ∆ be the proper transform of the unique smooth cubic curve through the nine points;
then KX+∆ ≡ 0, and so (X,∆) is a log-canonical Calabi–Yau pair. The surface X contains infinitely
many (−1)-curves by Nagata [Nag60], and so the nef cone is not finite polyhedral. However, the
automorphism group Aut(X) is trivial and, hence, does not have a finite polyhedral fundamental
domain on the nef cone.

The conjecture also fails if we allow the R-divisor ∆ to have negative coefficients. Let Y be a
K3 surface whose cone of curves is not finite polyhedral, and let X be the blow-up of Y at a very
general point. Then (X,−E) is a klt Calabi–Yau pair, where E is the exceptional curve. Here the
cone of curves of X is not finite polyhedral, but Aut(X) is trivial.

For X terminal and ∆ = 0, Conjecture 8.1 is exactly Kawamata’s conjecture on Calabi–Yau fiber
spaces, generalizing Morrison’s conjecture on Calabi–Yau varieties [Kaw97, Mor93, Mor96]. (The
group in part (2) can then be described as Bir(X/S), since all birational automorphisms of X over
S are pseudo-automorphisms when KX is numerically trivial over S.) Assuming the base field has
characteristic zero, Kawamata’s conjecture is known for X of dimension at most two, for X of di-
mension three with S of positive dimension, and for a few classes of Calabi–Yau three-folds [Kaw97,
Remark 1.13]. Some evidence for Conjecture 8.1 in the case ∆ �= 0 is provided by Coble surfaces,
smooth projective rational surfaces such that the linear system |−KX | is empty but |−2KX | is not
empty. If there is a smooth divisor D equivalent to −2KX , then (X,D/2) is a klt Calabi–Yau pair.
Then Conjecture 8.1 is true for (X,D/2). Indeed, the double cover of X ramified over D is a K3
surface with at most ordinary double points [DZ01, Lemma 6.2], and the conjecture for X follows
from Oguiso and Sakurai [OS01, Corollary 1.9].

Conjecture 8.1 would have strong consequences for varieties with −KX semi-ample, as considered
in this paper. Let X be a Q-factorial klt variety with −KX semi-ample. For any m > 1 such that
−mKX is basepoint-free, let ∆ be 1/m times a general divisor in the linear system | −mK X |; then
(X,∆) is klt [KM98, Lemma 5.17]. Moreover, KX + ∆ ≡ 0, and so (X,∆) is a klt Calabi–Yau pair.
Thus, Conjecture 8.1 implies that conclusions (1) and (2) hold whenever −KX is semi-ample. If −KX

is ample, then the conjecture is known in characteristic zero: the nef cone is finite rational polyhedral
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by the cone theorem [KM98], and the movable cone is finite rational polyhedral, partitioned into
the nef cones of the finitely many SQMs of X, by Birkar–Cascini–Hacon–McKernan [BCHM06].

We can now prove Conjecture 8.1 when X is a rational elliptic surface; this completes the
proof for all smooth projective surfaces with −KX semi-ample. For rational elliptic surfaces with
no multiple fibers and Mordell–Weil rank eight (the maximum possible), Theorem 8.2 was already
known, by Grassi and Morrison [GM93, Theorem 2.3].

Theorem 8.2. Let X be a rational elliptic (or quasi-elliptic) surface over an algebraically closed
field. That is, X is a smooth projective surface with −KX semi-ample such that T := Proj
R(X,−KX) has dimension one. Then the number of Aut(X/T )-equivalence classes of faces of the
nef effective cone Ae(X) corresponding to birational contractions or fiber space structures is finite.
(In this case the nef effective cone is closed, thus equal to the nef cone.) Moreover, there exists
a finite rational polyhedral cone Π which is a fundamental domain for the action of Aut(X/T )
on Ae(X).

Also, the following are equivalent.

(1) The total coordinate ring of X is finitely generated.

(2) The nef cone of X is finite rational polyhedral.

(3) The Mordell–Weil group, Pic0 of the generic fiber of X over T , is finite. (The Mordell–Weil
group is automatically a finite-index subgroup of Aut(X/T ).)

Note that we only have to consider statement (1) in Conjecture 8.1; statement (2) in the conjec-
ture is vacuous for surfaces, because every movable divisor on a surface is nef. (Or, related to this:
minimal models of surfaces are unique.)

Proof. The basic point is to show that the group Aut(X/T ) has only finitely many orbits on the
set of (−1)-curves in X.

The generic fiber of X → T is a curve Xη of genus 1 over the function field of T . The class in
Pic(X) of a general fiber of X → T is −mK X for some positive integer m. Here −KX is effective by
Riemann–Roch, and so (if m > 1) there is a multiple fiber of X → T , a curve in the class of −KX .
(Here m = 1 if and only if X → T has a section [CD89, ch. 5, § 6].) The irreducible components of
the reducible fibers of X → T , if any, are exactly the (−2)-curves on X (smooth curves C of genus
zero with KX ·C = 0). The Picard group Pic(Xη) is the quotient of Pic(X) by −KX together with
all the (−2)-curves. The degree of a line bundle on X on a general fiber of X → T is given by the
intersection number with −mK X , and so the Mordell–Weil group G := Pic0(Xη) is the subquotient
of Pic(X) given by

G = (KX)⊥/(−KX , (−2)-curves).

An element x of the group G acts by a translation on the curve Xη of genus one and hence
by an automorphism ϕx on X, by Lemma 6.2. This gives an action of G on Pic(X). We know
how translation by an element x of Pic0(Xη) acts on Pic(Xη): by ϕx(y) = y + deg(y)x. Since
−mKX ∈ Pic(X) is the class of a general fiber of X → T , this means that ϕx acts on Pic(X)
by ϕx(y) = y − (mK X · y)x (mod − KX , (−2)-curves). Using that the action of G preserves the
intersection product, we compute the action of certain elements of G on Pic(X) by

ϕx(y) = y − (mK X · y)x + [y · (−x + (1/2)(x · x)mKX)](−mK X)

for all x ∈ K⊥
X with x · Ci = 0 for all (−2)-curves Ci, and all y ∈ Pic(X).

Now let E1 and E2 be any two (−1)-curves on X such that E1 ·Ci = E2 ·Ci for all (−2)-curves
Ci and such that E1 ≡ E2 (mod m Pic(X)). Let x = (E2 − E1)/m ∈ Pic(X). Then x is in K⊥

X , we
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have x · Ci = 0 for all (−2)-curves Ci, and

ϕx(E1) = E1 − (mK X · E1)x + [E1 · (−mx + (1/2)(mx · mx )KX)](−KX ) = E2.

Every (−1)-curve E has E · (−mK X) = m, which says that E is a multisection of degree m of
X → T . Therefore, 0 � E · Ci � m for each (−2)-curve Ci. So the (−1)-curves E are divided into
finitely many classes according to the intersection numbers of E with all (−2)-curves and the class
of E in Pic(X)/m. By the previous paragraph, the (−1)-curves on X fall into finitely many orbits
under the action of G. A fortiori, Aut(X/T ) has finitely many orbits on the set of (−1)-curves.

We now describe all of the extremal rays of the cone of curves NE(X). By the cone theo-
rem [KK94, Theorems 2.1.1 and 2.3.3], all of the KX -negative extremal rays of NE(X) are spanned
by (−1)-curves. Since −KX is nef, it remains to describe NE(X)∩K⊥

X . It is a general fact, for any
smooth projective surface X, that any extremal ray R>0 · x of NE(X) with x2 < 0 is spanned by
a curve C with C2 < 0, and that such an extremal ray is isolated. Both statements follow from the
fact that any two distinct curves C and D on X with C2 < 0 and D2 < 0 have C ·D � 0 and hence
are ‘far’ from each other.

For the rational elliptic surface X, the Hodge index theorem gives that the intersection pairing
on K⊥

X is negative semidefinite, with x2 = 0 only on the line spanned by −KX . Therefore, using
the fact in the previous paragraph, all extremal rays of NE(X) ∩ K⊥

X are spanned by either −KX

or a (−2)-curve. There are only finitely many (−2)-curves (the irreducible components of reducible
fibers of X → T ), and so the cone NE(X)∩K⊥

X is finite rational polyhedral. We conclude that every
extremal ray of NE(X) is spanned by either a (−1)-curve or one of the finitely many (−2)-curves
(or −KX , if X contains no (−2)-curve).

Since Aut(X/T ) has only finitely many orbits on (−1)-curves, it follows that Aut(X/T ) has
only finitely many orbits on the extremal rays of NE(X). Moreover, if X contains infinitely many
(−1)-curves, then the only possible limit ray of (−1)-rays is R>0(−KX). Indeed, every (−1)-curve
E has −KX ·E = 1 and E2 = −1, while there are only finitely many (−1)-curves E with any given
degree H · E (a natural number), where H is a fixed ample divisor on X. Any limit ray R>0x of
(−1)-rays has 0 < H · x < ∞, and so it must have (−KX) · x = 0 and x2 = 0. Since the intersection
form is negative semidefinite on (KX)⊥ with kernel spanned by −KX , it follows that x is a multiple
of −KX , as claimed.

We can deduce that the nef cone A(X) is finite rational polyhedral near any point x in A(X) not
in the ray R�0(−KX). First, such a point x has x2 � 0 and also (−KX) · x � 0, since x and −KX

are nef. If (−KX) · x were equal to zero, these properties would imply that x is a multiple of −KX ;
hence we must have (−KX) ·x > 0. As a result, there is a neighborhood V of x and a neighborhood
W of −KX such that V · W > 0. Since the only possible limit ray of (−1)-rays is R>0(−KX),
almost all (all but finitely many) (−1)-curves are in the cone R>0W . So almost all (−1)-curves
have positive intersection with the neighborhood V of x. Since almost all extremal rays of NE(X)
are spanned by (−1)-curves, we conclude that the nef cone A(X) is finite rational polyhedral near
x, as claimed.

In particular, for each (−1)-curve E, the face A(X) ∩ E⊥ of the nef cone is finite rational
polyhedral, since it does not contain −KX . So the cone ΠE spanned by −KX and A(X) ∩ E⊥ is
finite rational polyhedral.

Let x be any nef R-divisor on X. Let c be the maximum real number such that y := x + cKX

is nef. Then x and y have the same degree on all (−2)-curves, and so there must be some (−1)-curve
E with y ∈ E⊥. Therefore, x is in the cone ΠE. That is, the nef cone A(X) is the union of the finite
rational polyhedral cones ΠE . Moreover, for two distinct (−1)-curves E and F on X, the intersection
IntΠE ∩ IntΠF is empty, since E and F are linearly independent in N1(X). Since Aut(X/T ) has
only finitely many orbits on the set of cones ΠE , there is a finite rational polyhedral cone Π which
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is a fundamental domain for the action of Aut(X/T ) on Ae(X). (We can construct such a domain
using the Dirichlet construction for the hyperbolic metric on {x ∈ N1(X) : x2 > 0,H ·x > 0}/R>0,
restricted to the nef cone. That is, given a point x in the interior of the nef cone, we define a
fundamental domain as the set of points of the nef cone whose distance to x, in the nef cone modulo
scalars, is at most their distance to any other point in the Aut(X/T )-orbit of x.)

Any rational point x in the nef cone A(X) is effective. This is clear from the Riemann–Roch
theorem χ(X,nL) = χ(X,O) + ((nL)2 − KX · nL)/2, since for a nef divisor x on our surface X,
either x2 > 0, x2 = 0 and (−KX) · x > 0, or x is a multiple of −KX . Since the cone ΠE is finite
rational polyhedral for each (−1)-curve E, ΠE is contained in the nef effective cone Ae(X). Since
the whole nef cone A(X) is the union of the cones ΠE, the nef effective cone Ae(X) is equal to its
closure, the nef cone A(X). This proves another statement of Theorem 8.2.

Next, we have to show that the number of Aut(X/T )-orbits of faces of the nef effective cone
Ae(X) corresponding to birational contractions or fiber space structures is finite. Dually, it suffices
to show that there are only finitely many Aut(X/T )-orbits of faces in the cone of curves NE(X).
Since there are only finitely many orbits of (−1)-curves, and almost all extremal rays of NE(X)
are spanned by (−1)-curves, it suffices to show that each (−1)-curve E lies on only finitely many
faces of NE(X). This follows from the dual statement that the cone A(X) ∩ E⊥ is finite rational
polyhedral, which we have proved.

Finally, let us prove the equivalence of statements (1), (2) and (3) in Theorem 8.2. That state-
ment (1) implies statement (2) is easy; it is also part of Hu and Keel’s characterization of varieties
with finitely generated total coordinate ring [HK00, Proposition 2.9]. Also, statement (2) easily im-
plies statement (3), as follows. Suppose that the Mordell–Weil group Pic0(Xη) is infinite. We know
that X contains at least one (−1)-curve since X is a rational elliptic surface. The Mordell–Weil
group Pic0(Xη) acts on X, and only a finite subgroup of it can map any given (−1)-curve into itself,
since a (−1)-curve is a multisection of X → T of degree a positive integer m. Thus, if Pic0(Xη) is
infinite, then X has infinitely many (−1)-curves, and so NE(X) is not finite rational polyhedral. So
the dual cone A(X) is not finite rational polyhedral. That is, statement (2) implies statement (3).

Conversely, suppose that statement (3) holds, that is, that Pic0(Xη) is finite. This is a finite-
index subgroup of Aut(X/T ), and so Aut(X/T ) is finite. By the earlier parts of this theorem, it
follows that the nef effective cone Ae(X) is finite rational polyhedral. Statement (2) is proved.
It remains to prove statement (1), that the total coordinate ring of X is finitely generated. By
Hu–Keel’s theorem [HK00, Proposition 2.9], it suffices to show that every codimension-one face of
NE(X) can be contracted. This follows from the cone theorem (including the contraction theorem),
by the same argument as in the proof of Theorem 5.2.
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Appendix A. Infinitely generated rings of invariants over F2 or F3

In this appendix we complete the proof of Corollaries 5.1 and 7.1 by giving simple examples of
18-dimensional representations of (Ga)6 over F2 or F3, and 16-dimensional representations of (Ga)4

over F2, whose rings of invariants are not finitely generated.
Take the nine points in P2(F4) given in affine coordinates by (x, y) where x and y run through

the nonzero elements of a field F4 of order four. These points are the intersection of the two
cubics x3 = z3 and y3 = z3, each consisting of three lines through a point in P2. There are nine
collinear triples among these points, and three partitions of them into disjoint collinear triples.
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(These partitions correspond to three cubics in the pencil which are unions of three lines, x3 + z3,
y3 + z3, and (x3 + z3) + (y3 + z3) = x3 + y3.) Therefore, ρ = 8 − 9 + 3 = 2 is greater than
zero. By Theorem 5.2, the blow-up X of P2 at these nine points has infinitely many (−1)-curves.
(More precisely, this count shows that the Mordell–Weil rank is two.) Thus, we get an 18-dimensional
representation of (Ga)6 over F4 such that the ring of invariants is not finitely generated.

Since this pencil of cubics is defined over F2, even though the nine individual points are not,
this pencil gives an 18-dimensional representation of (Ga)6 over F2 such that the ring of invariants
is not finitely generated, as explained in § 4. We write out this representation explicitly, although
the reader might be satisfied to know that it can be done. Let ζ be a primitive cube root of unity in
F4. Our representation of (Ga)6 on A18 := A9

1 ⊕A9
2 over F4 can be defined by six commuting linear

maps 1 + Ai, 1 � i � 6, where Ai ∈ Hom(A9
2, A

9
1) are given by the following diagonal matrices:

diag(1, ζ, ζ2, 0, 0, 0, 0, 0, 0), diag(1, 0, 0, ζ, ζ2, 0, 0, 0, 0),

diag(1, 0, 0, 0, 0, ζ, ζ2 , 0, 0), diag(0, 1, 1, 1, 1, 1, 1, 0, 0),

diag(0, 0, 0, 0, 0, 1, 1, 1, 1), diag(1, 1, 1, 0, 0, 0, 0, ζ, ζ2).

These six vectors are chosen as a basis for the kernel of the linear map A9 → A3 corresponding
to our nine points in P2 over F4, in the order [1, 1, 1], [1, ζ, 1], [1, ζ2, 1], [ζ, 1, 1], [ζ2, 1, 1], [ζ, ζ, 1],
[ζ2, ζ2, 1], [ζ, ζ2, 1], [ζ2, ζ, 1]. We can define a form of this representation over F2 by six commuting
linear maps 1 + Ai, 1 � i � 6, where Ai ∈ Hom(A9

2, A
9
1) are given by the following matrices:

diag
(

1,
(

0 1
1 1

)
, 0, 0, 0, 0, 0, 0

)
, diag

(
1, 0, 0,

(
0 1
1 1

)
, 0, 0, 0, 0

)
,

diag
(

1, 0, 0, 0, 0,
(

0 1
1 1

)
, 0, 0

)
, diag(0, 1, 1, 1, 1, 1, 1, 0, 0),

diag(0, 0, 0, 0, 0, 1, 1, 1, 1), diag
(

1, 1, 1, 0, 0, 0, 0,
(

0 1
1 1

))
.

This is an 18-dimensional representation of (Ga)6 over F2 with infinitely generated ring of invariants.

A similar example works over F3. Take the nine points of P2(F9) given in affine coordinates
by (x, y) where x and y run through the set of fourth roots of unity in F9 other than one. These
points are the intersection of the two cubics x3 + x2z + xz2 + z3 and y3 + y2z + yz2 + z3. There are
seven lines through these points, and two partitions of them into disjoint collinear triples. (The two
partitions correspond to two cubics in the pencil which are unions of three lines, x3 +x2z +xz2 + z3

and y3 + y2z + yz2 + z3, and the other collinear triple corresponds to another reducible cubic in the
pencil, (x3 + x2z + xz2 + z3) − (y3 + y2z + yz2 + z3) = (x − y)(x2 + xy + y2 + xz + yz + z2).) So
ρ = 8 − 7 + 2 = 3. By Theorem 5.2, the blow-up X of P2 at these nine points has infinitely many
(−1)-curves. This gives an 18-dimensional representation of (Ga)6 over F9 whose ring of invariants
is not finitely generated.

Since this pencil of cubics is defined over F3, we can define a form of the above representation over
F3. Explicitly, let i be a square root of −1 in F9. Then our representation of (Ga)6 on A18 := A9

1⊕A9
2

over F9 can be defined by six commuting linear maps 1 + Aj , 1 � j � 6, where Aj ∈ Hom(A9
2, A

9
1)

are given by the following diagonal matrices:

diag(1, 1 + i, 1 − i, 0, 0, 0, 0, 0, 0), diag(1, 0, 0, 1 + i, 1 − i, 0, 0, 0, 0),
diag(1, 0, 0, 0, 0, 1 + i, 1 − i, 0, 0), diag(1, 1, 1, 1, 1,−1,−1, 0, 0),

diag(0, 0, 0, 0, 0, 1, 1,−1,−1), diag(0,−1,−1, 1, 1,−1,−1, 1 + i, 1 − i).
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These six vectors are chosen as a basis for the kernel of the linear map A9 → A3 corresponding to
our nine points in P2 over F9, in the order [−1,−1, 1], [−1, i, 1], [−1,−i, 1], [i,−1, 1], [−i,−1, 1],
[i, i, 1], [−i,−i, 1], [i,−i, 1], [−i, i, 1]. We can define a form of this representation over F3 by six
commuting linear maps 1 + Aj, 1 � j � 6, where Aj ∈ Hom(A9

2, A
9
1) are given by the following

matrices:

diag
(

1,
(

0 1
1 −1

)
, 0, 0, 0, 0, 0, 0

)
, diag

(
1, 0, 0,

(
0 1
1 −1

)
, 0, 0, 0, 0

)
,

diag
(

1, 0, 0, 0, 0,
(

0 1
1 −1

)
, 0, 0

)
, diag(1, 1, 1, 1, 1,−1,−1, 0, 0),

diag(0, 0, 0, 0, 0, 1, 1,−1,−1), diag
(

0,−1,−1, 1, 1,−1,−1,
(

0 1
1 −1

))
.

This is an 18-dimensional representation of (Ga)6 over F3 with infinitely generated ring of invariants.
Corollary 5.1 is proved.

We now finish the proof of Corollary 7.1 by exhibiting a simple example of a 16-dimensional
representation of (Ga)4 over F2 whose ring of invariants is not finitely generated.

Let ζ be a primitive cube root of unity in F4, and consider the eight points in P3(F4) defined in
affine coordinates w = 1 by (x, y, z) where z is ζ or ζ2, y is 0 or z, and x is zero or one. These points
are the complete intersection of the three quadrics x2+xw = 0, y2+yz = 0, and z2+zw+w2 = 0. Let
X be the blow-up of P3 at these eight points. We have an elliptic fibration X → P2. We count that
there are exactly 10 coplanar quadruples among the eight points, corresponding to five reducible
quadrics in our net: x(x+w), y(y + z), z2 + zw +w2 = (z + ζw)(z + ζ2w), y2 + yz + z2 + zw +w2 =
(y + w + ζz)(y + w + ζ2z), and x2 + xw + z2 + zw + w2 = (x + z + ζw)(x + z + ζ2w). Since
ρ = 7 − 1

2(10) = 2 is greater than zero, Theorem 7.2 shows that the Mordell–Weil group of the
general fiber E of X over k(P2) is infinite (in fact, of rank two), and therefore the ring of invariants
for the given 16-dimensional representation of (Ga)4 over F4 is not finitely generated.

Since this net of quadrics is defined over F2, even though the eight individual points are not, we
can define a form of the above representation over F2. Our representation of (Ga)4 on A16 := A8

1⊕A8
2

over F4 can be defined by 4 commuting linear maps 1+Ai, 1 � i � 4, where Ai ∈ Hom(A8
2, A

8
1) are

given by the following diagonal matrices:

diag(0, 0, 1, 1, 0, 0, 1, 1), diag(0, 0, 0, 0, ζ, ζ2, ζ, ζ2),

diag(ζ, ζ2, ζ, ζ2, ζ, ζ2, ζ, ζ2), diag(1, 1, 1, 1, 1, 1, 1, 1).

These four vectors are chosen as a basis for the kernel of the linear map A8 → A4 corresponding to
our eight points in P2 over F4, in the order [0, 0, ζ, 1], [0, 0, ζ2, 1], [1, 0, ζ, 1], [1, 0, ζ2, 1], [0, ζ, ζ, 1],
[0, ζ2, ζ2, 1], [1, ζ, ζ, 1], [1, ζ2, ζ2, 1]. We can define a form of this representation over F2 by four
commuting linear maps 1 + Ai, 1 � i � 4, where Ai ∈ Hom(A8

2, A
8
1) are given by the following

matrices:

diag(0, 0, 1, 1, 0, 0, 1, 1), diag
(

0, 0, 0, 0,
(

0 1
1 1

)
,

(
0 1
1 1

))
,

diag
((

0 1
1 1

)
,

(
0 1
1 1

)
,

(
0 1
1 1

)
,

(
0 1
1 1

))
, diag(1, 1, 1, 1, 1, 1, 1, 1).

This is a 16-dimensional representation of (Ga)4 over F2 with infinitely generated ring of invariants.
That completes the proof of Corollary 7.1.
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