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ON A CLASS NUMBER FORMULA FOR
REAL QUADRATIC NUMBER FIELDS

DAVID M. BRADLEY, ALI E. OZLUK AND C. SNYDER

For an even Dirichlet character tp, we obtain a formula for L(l,ip) in terms of a
sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent
numerical series involving the central binomial coefficients. We then derive a class
number formula for real quadratic number fields by taking L(s, ip) to be the quadratic
L-series associated with these fields.

1. INTRODUCTION

In [1], acceleration formulae are derived for Catalan's constant L(2,Xi)- (Here X4 is
the non-principal Dirichlet character of modulus 4.) In some of these formulae L(2, X4)
is given as the sum of two terms: one involving a rapidly convergent series and the
other involving the natural logarithm of a unit in the ring of integers of a finite Abelian
field extension of the rational number field Q. The existence of the logarithmic terms
suggested to the authors that these terms should somehow be related to the values of
Dirichlet L-series at the argument s = 1. This leads to the general question of whether
or not there exist relations between the value of L-series at s — 1 and values of L-series
at integer arguments larger than 1.

The purpose of this note is to exhibit such a relation between values of L-series.
For an even Dirichlet character xj>, we obtain a formula for L(l,ip) in terms of a sum of
Dirichlet series evaluated at s = 2 and s — 3 and a convergent numerical series involving

powers of twice special values of the sine function divided by I In3. See Theorem 1
\nj

below for a precise statement. (It is perhaps interesting to notice that not much is known
about number theoretic properties of the values of the L-series on the right-hand side
of the formula given in this theorem.) We then deduce a class number formula for real
quadratic number fields by letting tp be the quadratic character associated with a real
quadratic number field; see Corollary 1. This class number formula seems new to us and
is perhaps an interesting curiosity.
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To derive our results, we employ a formula of Zucker [5] that expresses

(i) ^ T ^

in terms of periodic zeta functions. Proposition 1 below shows how periodic zeta functions
may be expressed in terms of Dirichlet L-series. Thus, we can rewrite (1) in terms of
L-series values, thereby obtaining our result.

2. PRELIMINARIES

Let m be a positive integer. We denote the group of Dirichlet characters of modulus
m by Um. The Dirichlet L-series associated with \ € Um is

^ ' Re(s)>l.
n=l

Similarly, for real /? we define the periodic zeta function (a special case of the Lerch
transcendent) by

n=l

Let Cm = e2i"/m. Throughout, the sum over a complete set of residues modulo m is
denoted by J2 a n d t n e s u m o v e r t n e positive integer divisors of m is denoted by £] .

a mod in d\fn

Thus, Ramanujan's sum is

cm{k)= x ; c*.
v mod m
(",m)=l

and likewise the Gaussian sum attached to \ is

r(x)=
v mod m

Also, x denotes the inverse—or equivalently, the complex conjugate—of the character x-
Finally, as customary, /*(), <p(), and CO denote the Mobius, Euler totient, and Riemann
zeta functions, respectively.

Our immediate goal is to represent periodic zeta functions in terms of L-series. It
turns out to be easier to do the reverse first. The following result is well known, so we
omit the proof.

LEMMA 1 . Let m be a positive integer, let x be a Dirichlet character of modulus
m, and let L(s, x) be the associated Dirichlet L-series. Then

(a) E C**M/m), Re(S)>l.
a mod m b mod m
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[3] Real quadratic number fields 261

LEMMA 2 . Let a and m be positive integers. Then

- r ^ £ x(a)T(x)L(s, X) = ̂  E *(s' blm) ^ a " 6)' Re(s) > h

PROOF: First recall that

E _. . , . I (p(m) if (ac, m) = 1 and a = c mod m,
X{c)x{a) = \ 0 otherwise.

We claim that if (c, m) = 1, then

(2) ^
b mod m

By Lemma 1,

X(c) L{s, X) = —
mod m 6 mod m

E e
m

o mod m
On the other hand, if {c,m) > 1, then clearly

We now multiply equation (2) by ££,c with (a, m) — 1, and then sum over all c modulo
m, obtaining

^r E E cr"c*M/m)= E cE^w^'X)
6 mod m c mod m c mod m

= E
c mod m

- E E x(c)ĉ (
c m o d m

x(a)r(x)L(s,x)-

Rewriting this latter equation in terms of Ramanujan sums completes the proof. D

We now state the main proposition of this section.

PROPOSITION 1. Let a and m be coprime positive integers. Then

m°$(s, a/m) = E ^ E *(°)T(x) L(s> *), Re(s) > L

d\m
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Before proving Proposition 1, we state and prove two lemmata which are used in the

proof of Proposition 1.

LEMMA 3 . Let f : Z -* C be multiplicative and such that for all positive integers

m,

d\m

is non-zero. Furthermore, let

Then for all positive integers k and m such that k divides m,

d\m
k\d

In particular,
2(d) m

j£ <p(d) <p(m) k
k\d

PROOF: First, let us define F(x) = f(x) = 0 if x is not an integer. Next, observe

that F(p") = F(p) for all positive primes p and positive integers a. We may write

m as YIP"" a n d ^ as TIP*' where p ranges over all positive primes and ap and bp are
p p

non-negative integers with bp ^ ap. Since F is multiplicative, we have

=n (
d\m p\m

"

Notice that the final product in (3) vanishes if any bp ^ 2, for then F(pbp~1) — F(p) —

F(pa"). Hence if k is not square-free, then the lemma is trivially true as both sides are
equal to 0. Therefore, we may assume henceforth that k is square-free. Now if bp = 0,
then 1 — F(pb'~1)/F{pa") = 1, and thus (under the assumption that k is square-free), we

https://doi.org/10.1017/S000497270002030X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002030X


[5] Real quadratic number fields 263

may restrict the final product in (3) to primes p for which bp — 1. This yields

d\m p|fc
k\d

rid)

= F(m)g(k).

Thus, in general, we have

d\m
k\d

The special case is obtained by taking F(m) — m/<p(m), so that if A; is square-free, then

d\k " p|t v y ' v\k
 P

This completes the proof of Lemma 3. D

LEMMA 4 . Let m be a positive integer and let 0 be any real number. Then

n = l dim
(n,m)=l

PROOF: Let x be any complex number with |x| ^ 1. Then

o o n o o n

l l d|(n=l d|(n,m) n=l d|n d\m k=l
d|m

d|m fc=l

Replacing a; by e2"1^ completes the proof. D

PROOF OF PROPOSITION 1: First, recall (see for example [4, p. 238]) that Ra-
manujan's sum has the explicit representation

,,v , »(rn/{mk))
Cm (k) = <p{m — - ( .

m/(m,k))
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Hence, we have

D.M. Bradley, A.E. Ozliik and C. Snyder

ft mod m fcmodm

m d|m 6 mod m
(a—b,m)=m/d

<p{m)

l\m rK ' v mod ,

oo

v/d

m
n=\ i/modd

dim

By Lemma 4 the final expression in (4) can be rewritten as

[6]

Now transform (5) by changing the variable / to d/f, then letting k — fd (noticing that
the only non-zero terms occur when d is square-free), then observing that ^2f{f) — k,
and finally replacing d by kd. Thus, from (4) and (5), "*

6 mod m d|m /|d <S|(d//)

d|m k\d f\k

|
A:|d
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By applying Lemma 3 to (6) and then replacing m/k by d, we find that

—
b m o d m Jfcjm

(7) ±
d\m

Hence by (7) and Lemma 2, we see that

^ V ( / ) ( , a A Q = -ms *—' m
d\m o mod m

An application of Mobius inversion now completes the proof. D

3. MAIN RESULTS

We are now in a position to derive our class number formula. To this end, for |x| < 2
and 2 ^ k € Z, put

°^ x2n

Let 0 < 6 < 7r and x = 2 sin 0/2. Then [3, p. 61 (2)] 2s(2,x) = 62 and by formula (2.7)
of [5],

» = i

(8) -26>Im$(2I0/27r)-2Re $(3,(9/2^),

where Re and Im denote the real and imaginary parts of a complex number, respectively.
Now substitute 0 = 2na/m with (a, m) = 1 and 0 < a < m/2 in (8) to obtain

2 m2 ^-^ (2sin7ra/m)2"

E Jlog (2 sin ^ ) = ^ " « • ^ ^ ( 2 S 1

(9)

7 1 = 1

n

27r2a2

In our main result, character sums of consecutive integer powers arise, and it is
convenient to fix some notation for these.
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DEFINITION 1. Let m be a positive integer. If x is a Dirichlet character of modulus

m and j is any integer, put

(10) Bj(X) :=
0<o<m/2

We now state and prove our main result.

THEOREM 1. Let m be a positive integer, let tp be an even primitive character of

modulus TO, and let Bj be as in (10). Then

d2 x r - . ,

xodd
it

E
{IX

TOT(^) ^ 1

. n=l V n / 0<a<m/2

PROOF: We start with (9) and write Im $(2,a/m) and Re $(3, a/m) in terms of
L-series via Proposition 1. First observe that

X mod d

since r(x) = X(~l)T(x)- Now split the sum over the two terms and in the second sum
replace x by X- The even characters cancel and we obtain

Similarly, we see that

xeud
()
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[9] Real quadratic number fields 267

Thus by (9) and Proposition 1,

m2 ^ (2 sin ira/m)2n

4n2a? ^
n=l

xodd

xdxeven

Next, recall (see for example [2, p. 336]) that if rp is an even primitive character of
modulus m, then

0<o<m/2

Substituting (12) into (11) completes the proof. D

Let D be a (positive fundamental) discriminant of a real quadratic number field.
Let h(D) denote its class number, e — ep its fundamental unit > 1, and \D — (D/-), the
Kronecker symbol, that is, the Dirichlet character associated with the quadratic field of
discriminant D. Then by Dirichlet (see for example [2, p. 343]), we know that

Hence by Theorem 1, using the fact that T(XD) — VD, we obtain the following class
number formula.

COROLLARY 1 . Class Number Formula

h(D)logeD = £ ;
<*|D xd

xodd

E £jj E s-

XD(O)

a2

0<a<D/2
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3.1. A COMPUTATION. AS an amusing conclusion, we now show how to use our class
number formula to compute h(5), the class number of the quadratic field Q(V5). Since
the discriminant D — 5, the only relevant moduli of characters are m = 1 and m = 5.
For m = 1, the unique character is the even constant character 1. For m = 5, we have
four characters determined by the homomorphisms from (Z/5Z)X into Cx , namely Xv for
v = 0,1, 2,3 determined by Xf(2) = V. Notice that X\ — Xz a n d that %i — (5/0 = Xs>
the Kronecker character modulo 5.

By Corollary 1, we have h(5) = {A+B + C + S)/ log£5, where

B =

C = - ^ 2 ( X 5 ) C ( )

^ ( ) 2 "= " S S / 2 ^ - (x5(l)(2sin7r/5)2

"=i ( In3 ^
n)

and

*-.(*.) = 1 + 5 = 5

r(l) = 1

r(Xo) = -1

. . y/E-l\ /5 + V5

In order to evaluate L(s, Xv) for t- = 0,1,2,3 and s — 2,3 we write

4

r=l
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where £(s,a) = Y^(n + a) s is the Hurwitz zeta function. Hence to evaluate these L-

series, it suffices to evaluate the Hurwitz zeta functions. The following table gives the

appropriate approximations.

r

1
2

3
4

C(2,r/5)

26.26737720...
7.27535659...
3.63620967...
2.29947413...

C(3,r/5)

125.73901805...
16.1195643...
4.98141576...
2.21505785...

Thus, we find that

L{2, xi) = 0.95871612... + (0.14556587.. .)i

L{2, xs) = 0.95871612... - (0.14556587.. .)i

s) = 0.85482476...

Furthermore, C(3) = 1.20205690..., so that

A = 1.24907310...

B = 0.48248793...

C = -1.14181713...

5 =-0.10853146. . . .

Finally, the fundamental unit

£5 =
\/5

(which generally can be computed efficiently by continued fractions).

From all of this we obtain h{5) = 1.0000000... + (0.0000000.. .)i, whence /i(5) = 1.
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