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Summary

We reconsider deterministic models of mutation and selection acting on populations of sequences,

or, equivalently, multilocus systems with complete linkage. Exact analytical results concerning such

systems are few, and we present recent and new ones obtained with the help of methods from

quantum statistical mechanics. We consider a continuous-time model for an infinite population of

haploids (or diploids without dominance), with N sites each, two states per site, symmetric

mutation and arbitrary fitness function. We show that this model is exactly equivalent to a so-

called Ising quantum chain. In this picture, fitness corresponds to the interaction energy of spins,

and mutation to a temperature-like parameter. The highly elaborate methods of statistical

mechanics allow one to find exact solutions for non-trivial examples. These include quadratic

fitness functions, as well as ‘Onsager’s landscape’. The latter is a fitness function which captures

some essential features of molecular evolution, such as neutrality, compensatory mutations and flat

ridges. We investigate the mean number of mutations, the mutation load, and the variance in

fitness under mutation–selection balance. This also yields some insight into the ‘error threshold’

phenomenon, which occurs in some, but not all, examples.

1. Introduction

Models of mutation and selection as the only

evolutionary forces (i.e. acting on a population of

infinite size, without recombination and migration)

have been considered in very different contexts,

depending on what the unit of selection is supposed to

be. In classical population genetics, there is a long

tradition of one-locus K-allele models, as well as

multilocus models with complete linkage; for review,

see Bu$ rger (1998) or Bu$ rger (2000). Whereas absence

of recombination is adequate for one-locus models,

this is not so in the multilocus case; but even here,

complete linkage serves as an important reference case

for the evaluation of recombination effects.

A molecular variant of one-locus K-allele models is

obtained when the alleles are identified with sequences,

and an appropriate mutation model is formulated.

Deterministic mutation–selection models based on

* Corresponding author. Present address : Inst. fu$ r Mathematik
und Informatik, Univ. Greifswald, Jahnstr. 15 a, 17487 Greifs-
wald, Germany. e-mail : ebaake!uni-greifswald.de

sequences (as opposed to the stochastic models for

finite populations, which will not be our concern here)

were first considered in the context of prebiotic

evolution, and became known under the name of

sequence space models (for review, see Eigen et al.,

1989). More recently, similar models have also been

considered in molecular population genetics (e.g.

O’Brien, 1985; Li, 1987). Due to the sequential

structure of the ‘alleles’ involved, these models are, at

the same time, equivalent to multilocus models with

complete linkage. (Actually, sequence space models

have arisen and evolved independently and only later

(Higgs, 1994; Baake, 1995) been identified with

mutation–selection models of population genetics. As

a consequence, a special terminology was created

(divergent evolution), and many results were dupli-

cated (convergent evolution).)

Depending on the context, different mutation

models and fitness functions have been used. In

multilocus models, mutation is usually assumed

unidirectional at every site (from wild-type to mutant).

In the sequence context, on the other hand, symmetric
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Fig. 1. Mutation–selection balance in a sharply peaked landscape (left) and under a quadratic fitness function with
positive epistasis (right). In the sharply peaked landscape, the reference type has a selective advantage α over all others,
which are equally unfit, i.e. R

!
¯1, R

k
¯1®α for k&1, where k is the number of mutated sites. Shown is the numerical

solution of (1) for N¯ 30, and selective advantage α¯ 0±03 of the favourable type. Relative frequencies p
k

of
configurations with k mutant sites are represented as grey scales in the plane with k (0%k% 30) in the horizontal
direction, and the mutation rate per site, µ (0%µ% 0±002), in the vertical direction (type frequencies increase with
darkness of shading). For mutation rates above the error threshold (µ

c
Dα}N¯ 0±00l), the population is evenly

distributed over type space, i.e. p
k
¯ (N

k
)}2N. For the quadratic fitness function, R

k
¯®(ak­ck#}2N ) with N¯ 30, c¯

®0±004, and a¯®0±002­2¬10−', which corresponds to the Hamiltonian (26) with γ¯ 0±001 and α¯10−' (this breaks
the symmetry). Here, the type distribution broadens and moves away from the optimum gradually, until the agreement
with the fittest type (i.e. the surplus) vanishes at µ

c
Dγ¯ 0±001. For both fitness functions, this transition becomes

sharp in the limit N!¢.

mutation at every nucleotide site is more adequate. As

to the fitness function, one common mode of selection

is directional (we will not consider stabilizing selection

here), with a unique fittest genotype and fitness a

decreasing function of the number of deleterious

mutations. In multilocus models, this is often a

quadratic or Gaussian (cf. Kimura & Maruyama,

1966; Charlesworth, 1990), or a step function (trun-

cation selection; e.g. Kondrashov, 1988). The pro-

totype fitness function of sequence space models has a

single sharp peak, i.e. one type has a selective

advantage over all others, which are equally unfit.

This is an extreme case of truncation selection which

seems highly artificial from the biological point of

view (see the discussion in Charlesworth, 1990).

The questions addressed with both types of model

are fairly similar. Most are related to aspects of

mutation–selection balance : How many mutations

(relative to the wild-type) do individuals carry on

average? What is the mutation load, i.e. the loss in

fitness caused by the production of maladapted

individuals due to mutation, under various fitness

schemes? How large is the genetic variation within the

population?

The interest in the mutation load lies in its

significance for the evolution of mutation rates,

genome sizes and recombination. In spite of decades

of experimental research, it is still not clear whether

the mutation load is a small nuisance or a weighty

factor in nature (for review, see Crow, 1993; and

Kondrashov, 1998). From the theoretical point of

view, one cornerstone is the well-known Haldane

Principle : If organisms are haploid or diploid without

dominance, reproduce without recombination, and

mutation is unidirectional at every site, the mutation

load at equilibrium equals the genomic mutation rate,

independently of the fitness function; for other

mutation schemes, this is still true to first order in the

mutation rate (Kimura & Maruyama, 1966; Bu$ rger,

1998). However, this is no longer true in diploids with

dominance, or with recombination. The effect of

epistasis in this case was analysed in the classical

paper by Kimura & Maruyama (1966) and, more

recently, by Charlesworth (1990) and Higgs (1994).

For quadratic fitness functions and various breeding

systems, the general picture emerged that positive (i.e.

diminishing returns) epistasis enhances the mutation

load (with respect to the case without epistasis),

whereas negative (i.e. synergistic) epistasis decreases it.

In the context of sequence space models, popu-

lations are usually haploid, and much attention has

been paid to the mutation load in the disguise of the

error threshold phenomenon. This may be generally,

but vaguely, circumscribed as a critical mutation rate

beyond which mutation can no longer be controlled

by selection and leads to genetic degeneration. More

specifically, it was originally described for the sharply

peaked landscape (see Fig. 1) and defined as a critical

mutation rate above which the fittest genotype is lost

from the population (for a review see Eigen et al.,

1989). In this setting, an inverse relationship between

mutation rate and the (maximum) genome size is
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predicted. Such a relationship is, indeed, observed

over a large variety of organisms (see the recent survey

by Drake et al., 1998). Further, a threshold mutation

rate above which the population goes extinct has been

observed in mutagenesis experiments with certain

RNA viruses – but not, or not so far, for organisms

with larger genomes (see Holland et al., 1990; and

Domingo & Holland, 1997, for a review). Such

observations have been taken as evidence for the

existence of error thresholds (e.g. Maynard Smith &

Szathma! ry, 1995). But the argument relies on the

unnatural fitness function assumed, and may therefore

be irrelevant (e.g. Charlesworth, 1990).

This was corroborated by Charlesworth (1990) and

Higgs (1994) who noted that, in line with the results

on mutation loads, error thresholds may occur for

certain fitness functions with positive epistasis, but are

absent if epistasis is negative. A similar observation

was made by Wiehe (1997). Clearly, the results

obtained, as well as the conclusions drawn (on the

relevance of mutation loads, or error thresholds),

hinge on the assumptions on the fitness functions.

Since fitness landscapes are hard to access exper-

imentally (but, for current knowledge and approaches,

see Whitlock et al., 1995), an important contribution

of theory would be to give answers as general as

possible, for large families of fitness functions. As

noted already, the sharply peaked and quadratic (or

the closely related Gaussian) fitness functions have

been prominent examples. They all come from what

we would like to call the permutation-invariant family,

where fitness is a function of the number of deleterious

mutations, independently of their position in the

genome. Usually, this function is decreasing, which

rules out the existence of compensatory mutations in

the sense that an additional mutation can never

recover fitness.

Even these well-established fitness functions are

hard to treat. Exact solutions are rare ; one relies on

approximate or numerical treatment. The main reason

is that the usual tools from dynamical systems theory

are inadequate to handle the large numbers of types

involved. Recently, methods of statistical physics

(which, by definition, deals with large numbers of

particles) have been employed to arrive at exact

solutions of certain mutation–selection models (Baake

et al., 1997; Wagner et al., 1998). The purpose of the

present paper is to make this toolbox (originally

published in condensed form for the physics com-

munity) available to a population genetic readership,

and to extend the results. We shall illustrate these

methods by tackling the quadratic fitness functions, as

well as a novel fitness landscape which is outside the

permutation-invariant family, and allows for com-

pensatory mutations. For simplicity, we shall restrict

ourselves to fitness schemes without dominance. We

shall focus on symmetric mutation since it has

attracted much recent interest (e.g. McVean &

Charlesworth, 2000) due to its relevance for molecular

population genetics, but is less well explored than the

(simpler) unidirectional case. More general fitness

functions as well as mutation models (including

asymmetric mutation) will be tackled in a forthcoming

publication.

The article is organized as follows. In Section 2, we

shall discuss the mutation–selection model, along with

our choice of fitness functions. To avoid duplication,

we shall discuss multilocus and sequence space models

in a unified framework, subsuming both types of

model under a common terminology. In Section 3, we

shall establish the equivalence between the mutation–

selection model and a model of quantum statistical

mechanics. A short interlude, Section 4, is concerned

with the population averages (‘observables’) which we

employ to characterize mutation–selection balance.

Section 5 is devoted to the limit of an infinite number

of sites. This is performed with a scaling uncon-

ventional in the population genetics literature and

provides the key to much of our analysis. In Section 6,

the method is applied to the fitness functions described

in Section 2, where most of our effort will go into

exact solutions of the quadratic fitness scheme. The

results will be discussed in Section 7.

2. The mutation–selection model

(i) General considerations

Haploid genotypes are identified with linear arrange-

ments of N sites. Each site i is equipped with a variable

s
i
which may take values from the set ²®1, ­1´. A

configuration (or type) may be denoted by s¯
s
"
s
#
… s

N
` ²®1, ­1´N. In the multilocus context,

‘sites’ are identified with ‘loci’, ‘variables’ s
i

with

‘alleles’, and ‘­’ (or ­1) and ‘®’ (or ®1) with ‘wild-

type’ and ‘mutant’, respectively. This way, s is the

configuration of one gamete; the corresponding

gametic space was introduced and visualized by

Wright (1932). In the molecular context, con-

figurations are DNA (or RNA) sequences, and we

assume the lumping of nucleotides into purines (­)

and pyrimidines (®), which is common in molecular

evolution (cf. Swofford et al., 1995; or Li, 1997). The

set ²®1, ­1´N is sometimes called sequence space. (A

four-letter alphabet is tackled by Hermisson et al.,

2001.) Although genetic information is finite in

principle, the limit N!¢ is often appropriate thanks

to the large number of sites.

Let us now consider an infinite population of

haploids, or diploids without dominance, which

experience mutation and selection, but no recom-

bination. We shall assume overlapping generations in

continuous time t, and use the parallel (or decoupled)

mutation–selection model (see, for example, Crow &
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Kimura, 1970; or Hofbauer, 1985) to describe the

dynamics of relative frequencies ps of types s, that is

pd s(t)¯ (Rs®Ra (t))ps(t)­3
s«

mss« ps«(t), s ` ²®1, ­1´N.

(1)

Here, Rs denotes the Malthusian fitness of type s,

and Ra (t) :¯3sRsps(t) is the mean fitness of the

population (note that 3
s
ps(t)31). Further, ms«s ¯

ms«"s & 0 is the rate at which s mutates to s« for s«1 s,

and mss ¯®3s«1s ms«s. That is, the matrix (ms«s) is a

Markov generator (Rozanov, 1977). Finally, the dot

denotes derivative with respect to time. If, instead of

haploid genotypes, one has diploid ones, ss«, with

genotypic fitness Rss«, absence of dominance (in fitness)

is assumed, i.e. Rss« ¯ "

#
(Rss­Rs«s«), and the Rs are

defined as Rs :¯ "

#
Rss.

It is well known (Thompson & McBride, 1974;

Moran, 1976) that the transformation

xs(0) :¯ ps(0), xs(t) :¯ ps(t)exp
E

F
& t

!

Ra (τ)dτ
G

H

, (2)

turns (1) into a linear system of differential equations,

namely

xd s(t)¯Rsxs(t)­3
s«

mss«xs«(t) or xd (t)¯ (-­2)x(t),

(3)

where, with a suitable enumeration of types, x may be

understood as the vector of absolute frequencies, from

which the relati�e frequencies ps may be retrieved

through normalization, ps(t)¯xs(t)}(3s«xs«(t)). - is

the mutation matrix with entries mss«, and 2 is the

diagonal matrix which holds the Rs. The latter may be

understood as a reproduction matrix (we avoid the

term ‘fitness matrix’ here since this is reserved for the

fitness values of diploid genotypes). Due to the usual

argument of positive invariance (Amann, 1990, Thm.

16.5), solutions of (1) cannot leave the positive cone,

i.e. xs(t)& 0 for all times if xs(0)& 0 for all s.

The general solution of the linear system (3) reads

x(t)¯ exp (t(-­2))x(0). (4)

However, (4) remains a somewhat formal expression

as long as the matrix exponential is not evaluated

explicitly, which is rarely possible for large numbers of

types. Since the matrix obtained from - by setting its

diagonal entries to zero will be assumed to be primitive

(i.e. some power of it has strictly positive entries only),

the system will converge towards an equilibrium

(mutation–selection balance). This is a consequence of

the Perron–Frobenius theorem: The equilibrium is

given by the eigenvector belonging to the largest

eigenvalue of -­2 if supplied with positive sign and

correct normalization (cf. Thompson & McBride,

1974; Moran, 1976).

In the sequence space context, the coupledmutation–

selection equation,

pd s(t)¯
E

F

3
s«

�ss«Rs«ps«(t)
G

H

®Ra (t)ps(t), (5)

has been more popular so far ; it was studied in the

classical context by Akin (1979), Hadeler (1981), and

others. Here, �ss« :¯ �s" s« is the probability of s«
producing offspring of type s on the occasion of a

reproduction event (3s�ss« ¯1). Unlike the parallel

model, where reproduction and mutation proceed

independently of each other, mutations are coupled to

reproduction here. As a consequence, the number of

mutation events is proportional to time in the parallel

version but proportional to the number of repro-

duction events (and, hence, ‘generations’) in the

coupled one. With an appropriate choice of para-

meters, however, the two versions display very similar

behaviour. This is due to the fact that the parallel

version emerges from the coupled one in the limit of

weak selection and mutation, as shown by Hofbauer

(1985). In a similar way, the mutation–selection model

with discrete generations converges to the parallel

version in the limit of short generation times (see the

Appendix and Fig. 4) ; this is equivalent to weak

selection and mutation through a rescaling of time.

(ii) Mutation model and fitness functions

Let us now specify mutation rates and fitness

functions. We start with mutation because the choice

is straightforward and dealt with quickly. We shall

restrict ourselves to symmetric mutation at every site.

If, in the parallel model (1), every site mutates

independently at rate µ, the elements of the mutation

matrix read

ms«s ¯

1

2
3

4

µ, D(s, s«)¯1

®Nµ, s¯ s«
0, otherwise

(6)

where D(s«, s) is the Hamming (or mutational ) distance

of s and s«, i.e. the number of sites where s and s« differ.

Clearly, this mutation matrix (plus Nµ times the

identity) is primitive. Note that we have specified a

fixed mutation rate per site, which implies that the

overall mutation rate increases linearly with N, in line

with the molecular mutation mechanism. However,

constant genomic mutation rate (as often assumed in

multilocus theory) may be considered as well by

keeping Nµ constant and reinterpreting µ accordingly.

We shall discuss the general issue of scaling in a

separate section, after we have introduced the various

fitness functions.

Due to its intuitive appeal, we shall sometimes use

the notion of fitness landscape in the way introduced

by Kauffman & Levin (1987) as synonymous with

‘fitness function’, i.e. for the mapping from (geno)types
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into (indi�idual ) fitness �alues ; this is not to be

confused with the mapping from population com-

position into mean fitness, as often referred to as an

adapti�e landscape in the sense of Wright (1932). We

shall be concerned with two fitness landscapes, the

first of which is from the permutation-invariant family.

1. Quadratic fitness functions: Let

‘­­­­­ I ­’ be the reference (mutation-free)

type and k the number of ‘®’ sites, i.e. the number of

sites which carry mutations, or the mutational distance

from the reference genotype. We shall consider the

family of quadratic fitness functions

R
k
¯®

E

F

ak­
c

2N
k#

G

H

(7)

with parameters a and c, where R
k
may be understood

as deficit in fitness of a type with k mutations, relative

to the reference type (note that Malthusian fitnesses

need only be specified up to an additive constant, since

this cancels out of (1) ; in particular, Malthusian

fitnesses do not suffer from being negative).

Quadratic fitness functions provide a good fit to the

mutation accumulation data in Drosophila (Crow &

Simmons, 1983), and have been used, for example, by

Kimura & Maruyama (1966) to study the effect of

epistasis on mutation–selection balance; so has the

corresponding Gaussian fitness function as used by

Charlesworth (1990). c" 0 implies synergistic (or

negative) epistasis, whereas c! 0 means diminishing

returns (or positive) epistasis. (We shall, in what

follows, use the terms of ‘positive’ and ‘negative’

epistasis rather than ‘diminishing returns’ and ‘syn-

ergistic’, since the former do not depend on whether

deleterious or beneficial mutations are considered.

Note that positi�e cur�ature of the fitness function

(c! 0) is identified with positi�e epistasis because it

induces positi�e linkage disequilibria, and vice versa.

For a very transparent dissection of these notions, see

Phillips et al. (2000).) With c¯ 0, one has additive

fitness, which corresponds to independent action of

sites, i.e. absence of epistasis. If Wrightian instead of

Malthusian fitness is considered, one obtains the more

familiar multiplicative fitness scheme, W
k
¯ exp (R

k
)

¯ (1®α)k, where α :¯1®exp (®a) with a from (7),

and generations of unit length have been implied (see

also (A6) in the Appendix).

Our definition (7) differs from previous ones

(Kimura & Maruyama, 1966; Charlesworth, 1990) by

the factor 1}2N in the scaling of the quadratic term.

While, for any finite N, this may just be understood as

the redefinition of the quadratic coefficient, this point

is important to get the scaling right in the limit

N!¢. Again, this issue is deferred to the section on

scaling; let us only note here that our choice ensures

that, for a given fraction d :¯k}N of mutated sites,

fitness scales linearly with N, since R
k
may be written

as R
d
¯®(ad­cd#}2)N.

Some concerns have been raised about quadratic

fitness functions since, with certain combinations of a

and c, fitness first decreases and then rises again with

increasing k, which is an artefact introduced by the

symmetry of the fitness function (Charlesworth, 1990).

Various remedies are possible. In Charlesworth (1990)

and Hermisson et al. (2001), the fitness function is cut

off explicitly, i.e. R
k
is replaced by its minimum value

for k beyond the position of the minimum; it was

observed that the results are very similar whether

or not this measure is taken (Charlesworth, 1990;

Hermisson et al., 2001), at least for most combinations

of the parameters.We shall adopt a somewhat different

point of view here which is based on the limit N!¢.

We shall see that, in this limit, there are two branches

of the equilibrium solution whenever the fitness

function has a secondary maximum – each branch is

derived from one of the maxima (and, in fact, there is

a third branch derived from the minimum between

them). For N!¢, the branch derived from the larger

fitness peak is globally attracting, irrespective of the

height (or shape) of a possible secondary peak. To a

very good approximation, this also holds for large N ;

in fact, even the tiniest symmetry-breaking suffices to

depopulate the ‘lower’ branch in numerical simu-

lations (cf. Fig. 1). To make this plausible, consider

the situation without mutation. Then, the whole

population will finally arrive at the higher peak, no

matter how minute its selective advantage, provided

the fittest genotype is at all present initially. With

mutation, some leakage will occur to the second peak,

but it will become less pronounced with increasing

distance of the peaks, which is of order N for the

quadratic fitness function. Hence, the lower peak

will be effectively empty for large N. By cutting off

the fitness function, one therefore makes sure that the

population is located near the primary maximum (at

the wild-type). Alternatively, this may be realized by

just ‘picking’ the corresponding branch and ignoring

an artificial second one if present, whether or not the

secondary maximum to which it belongs is lower than

the primary one.

2. Onsager’s landscape: All landscapes discussed so

far are in the permutation-invariant family. They have

been standard landscapes in population genetics since

large simplifications result from this property. How-

ever, permutation invariance cannot seriously be

considered a reasonable biological property. First, the

fact that a permutation-invariant function can fit the

data does not imply that the function is a good

description of how genes interact. This was pointed

out by Phillips et al. (2000), who further demonstrated

that many other models, from within and without the

permutation-invariant class, fit the data equally well.

We go one step further here and also consider

compensatory mutations, which, by construction, can

never occur in a permutation-invariant model, as long
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as the fitness function is monotonic. As a first attempt

to introduce compensatory mutations, we borrow

from physics what we would like to call ‘Onsager’s

landscape’. Here, ­­­­ I ­­ is the fittest type,

and the fitness deficit is 2γ times the number of

‘domain walls’ (i.e. changes in sign) in the con-

figuration, e.g.

s Rs

­­­­­­­­ 0

­®®­­­­­ ®4γ

­®®­­®®­ ®8γ

] ]

(8)

Note that the fitness values are invariant under

reversal of all signs ; i.e. the landscape has a ‘mirror

image’ with ®®®® I ®® as a second fitness

maximum. As with quadratic landscapes, however, we

shall just ignore the solution branch derived from the

secondary maximum, thus effecting a cutoff of the

landscape beyond its minimum. This is a valid

procedure for reasons similar to those discussed for

the quadratic fitness function, which we shall cast in

more mathematical terms here. For finite N, the two

symmetric fitness peaks will be equally populated due

to the uniqueness and symmetry of the Perron–

Frobenius eigenvector. For N!¢, however, this

eigenvector becomes asymptotically degenerate (the

difference between the leading and the second-largest

eigenvalue is of order 1}N). Since the eigenvector

corresponding to the second-largest eigenvalue is

antisymmetric (i.e. its components change sign under

reversal of signs in the configuration), any small

symmetry breaking (of the landscape, or of the initial

conditions away from u¯ 0, see below) is sufficient to

restrict the population to one of the branches. This is

a traditional key to the properties of the physical

system (Yang, 1952; see also Wagner, 1998). At the

same time, it provides the justification to ignore the

solution branch derived from the second maximum,

thus effecting the (biologically reasonable) cutoff of

the landscape beyond its minimum.

The interactions underlying this fitness function are

those of the well-known Ising model (see the Ap-

pendix), more precisely, of the version solved by

Onsager (see Thompson, 1972), hence the name of this

setting. As with the quadratic landscape, there is no

justification for Onsager’s landscape at the level of

genetic interactions. However, it bears a few properties

which may be considered typical of molecular evol-

ution, namely

(a) a large degree of neutrality: i.e. the presence

of configurations with the same fitness (e.g.

­­­­­®®­­­ is selectively equivalent to

­­­­­­®­­­). For configurations not too

far from the peak, the degree of neutrality increases

with the distance from the peak, for simple com-

binatorial reasons.

(b) path structure: the number of paths uphill

dwindles the closer one gets to the peak (e.g. there are

many ways uphill from ­®­®­®­®­®, but

only one from ­­­­­­®­­­).

(c) flat ridges: i.e. regions from where immediate

improvement is only possible after intermediate steps

which do not change fitness. For example, the

type ­­­®®®®­­­ allows deterioration

in several ways, e.g. ­®­®®®®­­­ and

­­­®­®®­­­, but to achieve an improve-

ment, intermediate steps must be accomplished,

e.g. ­­­­®®®­­­, ­­­­­®®­­­
and ­­­­­­®­­­ before, finally,

­­­­­­­­­­ may be reached. There are no

strict local maxima, however, that is, climbing

downhill is never required to access a higher peak.

(The relevance of strict local maxima in molecular

evolution is under debate. Judging from models with

random assignment of fitness values to genotypes, it

seems to be characteristic of high dimensions that

there are flat ridges connecting most local peaks (cf.

Gavrilets, 1997). Similarly, strict local maxima have

been found to be rare for most combinations of

parameters in the so-called multiple quantitative traits

model (Taylor & Higgs, 2000), where every site

randomly affects a number of traits.)

(d) compensatory mutations: fitness is not a mono-

tonic function of the distance from the refer-

ence genotype; for example, improvement of

­­®­®­­­­­ is possible by introducing one

further mutation, to arrive at ­­®®®­­­­­.

Whereas properties (a) and (b) are shared with the

quadratic landscape, (c) and (d) rely on the lack of

permutation invariance. It goes without saying that

Onsager’s landscape is an unrealistic toy model and

has too high a degree of symmetry. But, just as with

the popular quadratic fitness function, it is the

symmetries which make exact solutions possible.

Onsager’s landscape may be considered as dis-

playing positive epistasis, where we use the following

definition (which generalizes the situation for

permutation-invariant models) : Let RW
k
be the average

fitness of types with k ‘®’ sites, where the average is

taken over all possible configurations (not over a

population). In line with the definition in Phillips et al.

(2000), epistasis is then positive (negative), if RW
k

is

convex (concave). With increasing distance from the

maximum of Onsager’s landscape, a larger fraction of

additional mutations either do no further harm, or

even act in a compensatory manner. As a consequence,

the average fitness clearly decreases less than linearly

as a function of distance from the fittest type. This

verbal argument will be made precise in Section 6,

where we shall come back to the collection of fitness

functions and work out solutions for them.
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3. Mutation–selection model and quantum chain

In 1986, Leutha$ usser put forward an exact equivalence

between a coupled mutation–selection model in

discrete time, and the Ising model of classical statistical

mechanics, but exploiting it proved difficult. This

equivalence, along with its limitations and the re-

lationship with the present approach, is discussed in

the Appendix. We shall, instead, work with the

equivalence between the mutation–reproduction

matrix of the parallel model in continuous time, and

the Hamiltonian of a so-called Ising quantum chain,

which was established by Baake et al. (1997). It is

related to the classical Ising model described in the

Appendix, but now the spins are quantum-mechanical

objects. Let us anticipate that the equivalence is a

mathematical one, and we shall, at no stage, require

the physical concepts of quantum mechanics ; as a

consequence, we need not worry about its mysteries,

either.

First of all, we need some vector space structure.

Let us start with N¯1, i.e. a single site, which may be

­ or ®. The composition of a population may then

be represented as a vector in 2#, p¯ (p
+
, p

−
)T ¯

p
+
e
+
­p

−
e
−
, where e

+
:¯ (1, 0)T and e

−
¯ (0, 1)T are

the canonical unit vectors which belong to the

homogeneous (i.e. monomorphic) populations, and T

denotes transpose. Since p
+
­p

−
¯1, p is restricted

to the unit simplex. We now introduce single-site

mutation and reporting operators,

σx :¯
E

F

0 1

10

G

H

and σ z :¯
E

F

1 0

0®1

G

H

. (9)

σx and σz are known as Pauli’s matrices in quantum

mechanics ; they flip or measure a spin, respectively.

Let us consider their action on the genotype. One

verifies immediately that

σxe³ ¯ ey, σze³ ¯³e³. (10)

l

è1 +

–

è1 è2 è3 è4 è5

è12 è345

Fig. 2. A biological population and a collection of quantum-mechanical spins may both be identified with a vector
in 2#

N, and with each other. Left : N¯1. A vector in the unit simplex under the competing actions of mutation (at
rate µ) and selection (at rate η

"
" 0). The dashed line indicates the direction of mutation (the transverse field), whereas

the horizontal direction corresponds to selection (the longitudinal field). Right : Chain of length N¯ 5. The marginal
frequencies at each of the sites may be represented by a vector in the unit simplex (the vectors are drawn to have unit
one-norm each). Fitness is decomposed into additive (η

"
, … , η

&
) and epistatic (η

"#
, η

$%&
) components. The additive

components act separately at the sites (longitudinal field), as does mutation (transverse field). The epistatic components
introduce interactions within the chain.

Clearly, σx flips the site variable, i.e. results in a

mutation. The matrix σz, on the other hand, does not

change the variable but reports its sign, which may be

used to assign selective differences : η1­η
"
σ z, 1 the

identity matrix, assigns fitness η­η
"

to a ­ site and

η®η
"
to a ® site. (The subscript 1 refers to the single

site considered here, in order to be consistent with the

more general indexing to follow.) Thus, the linearized

parallel mutation–selection equation for a single site

(i.e. for two types) may be written as

xd (t)¯ (-­2)x¯ (µσx­η
"
σz­(η®µ)1)x(t). (11)

Note that only fitness differences (¯ 2η
"
) will matter

for the final, normalized result. The relative strengths

of mutation and selection determine the direction of

the vector p, where µ ‘draws’ the population into the

45° direction, and η
"
draws it into the horizontal one

(Fig. 2). This is where the physical picture comes in:

a quantum-mechanical spin experiencing the com-

peting action of a transverse field of strength µ in

x direction, and a longitudinal field of strength η
"

in z direction (hence the symbols for the Pauli

matrices), is described by the energy operator (or

Hamiltonian) (¯®(µσx­η
"
σz), which differs from

our -­2 only by a sign, and a trivial multiple of the

identity. Hence, the biological population corresponds

to the quantum-mechanical spin. The strength of the

transverse field (µ) is known as a temperature-like

parameter in physics, in the sense that it counteracts

the orientation order of the spins with respect to the z

direction. This also fits our intuition of mutation as a

randomizing force.

Now, for N sites, every type s¯ s
"
… s

N
may be

identified with a unit vector es in 2#
N :

es :¯ e
s
"

Ce
s
#

C I Ce
sN

, (12)

where ‘C’ symbolizes the tensor (or Kronecker)

product ; readers unfamiliar with this formalism may

consult Horn & Johnson (1991, chapt. 4.2) as a very
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readable introduction. Correspondingly, p and x may

be understood as vectors p¯3spses, and x¯3sxses.

We now require a mutation operator which introduces

a mutation at site i while leaving all other sites

unchanged. Bearing in mind that tensor products of

operators act on the sites independently, the required

operator is

σx

i
:¯ 1CIC1

knnlnnm
i−" copies

CσxC1CIC1
knnlnnm
N−i copies

, (13)

i.e. σx

i
flips the ith site and leaves all others unchanged.

Hence, we can write down the overall mutation

operator as

-¯µ3
N

i="

(σx

i
®1). (14)

Note that, by abuse of notation, we use 1 for the

identity on 2# and 2#
N alike, since there is no danger

of confusion. It is easily verified that the entries of -
are, indeed, ms«s

as given in (6).

Likewise, the operator reporting the sign at site i

reads σz

i
:¯1C I C1CσzC1C I C1 with σz at the

ith position. Let us now construct reproduction

operators from single-site reporters. In the absence of

epistasis, every site has its individual contribution

to fitness, independently of all other sites. Thus,

Malthusian fitness is additive, and Rs simply reads Rs

¯ η­3N

i="
η
i
s
i
, with constants η and η

i
. Put differently,

the reproduction matrix may be written as

2¯ η1­3
N

i="

η
i
σz

i
. (15)

This time, the population may be described by a linear

arrangement of directions (spins), one for each

site – hence the name quantum chain. Sites are in-

dependent of each other ; each one experiences the

competing action of a longitudinal field of strength η
i
,

and a transverse field of strength µ (cf. Fig. 2).

If epistasis is included, sites interact. Interaction

may involve two, three, or even more sites. It is easy

to see that any fitness landscape may be represented in

terms of multiple-site interactions, i.e. as

Rs ¯ η­3
i

η
i
s
i
­3

i! j

η
ij
s
i
s
j
­ 3

i! j!k

η
ijk

s
i
s
j
s
k

­(terms up to Nth order). (16)

This is known as the Walsh function expansion

(Stadler et al., 2000). Alternatively, the subscripts may

be collected into index sets I, and (16) may be written

more compactly as Rs ¯3
I
η
I
0

i `I
s
i
, where I ranges

over all subsets of ²l, 2, … , N ´, and η¯ η!.

Let us now recast this into operator (or matrix)

form. Interaction between sites i ` I is described by the

product 0
i `I

σz

i
, which has σz’s at all sites in I (note

that tensor products multiply sitewise ; as a conse-

quence, the effect of 0
i `I

σz

i
is to multiply the signs

reported for sites in I ). Therefore, the operator

version of the fitness function (16) reads

2¯3
I

η
I
0
i `I

σz

i
. (17)

In the quantum chain picture, the new terms represent

interactions of the spins with each other, as opposed

to interactions with external fields (Fig. 2).

Summarizing, the mutation–reproduction matrix is

equivalent to the Hamiltonian of an Ising quantum

chain, with a transverse field which corresponds to

mutation, a collection of longitudinal fields which

correspond to the additive part of fitness, and arbitrary

spin–spin interaction which corresponds to the epi-

static part of fitness. More precisely, (¯®(-­2) ;

therefore, the smallest eigenvalue of the Hamiltonian

(the ground-state energy) corresponds to the Perron–

Frobenius (PF) eigenvalue of the mutation–

reproduction matrix (the equilibrium mean fitness).

Often, however, fitness functions are not, in the first

place, defined in terms of such interactions, since these

are not known (see our discussion in Section 2). We

must then determine the interactions from a fitness

function given otherwise. It is easy to see that η
i
is the

average fitness contribution of site i, averaged over all

configurations; η
ij

gives the average contribution of

the correlation between i and j, and, in general,

η
I
¯

1

2N
3
s

E

F

0
i `I

s
i

G

H

Rs. (18)

Note that these coefficients may be understood as

averages over the configuration space as opposed to

averages over the current population; in particular,

η¯ η! is the fitness of a population of random

configurations, i.e. the fitness of a population at

mutation equilibrium. We shall often choose η! ¯ 0 as

a convenient reference point of the fitness scale.

The composition of the fitness function into

interaction coefficients according to (18) is closely

related to the decomposition into selection coefficients

introduced by Barton & Turelli (1991). The latter are

based on Wrightian fitness and result from an

expansion around any convenient reference point (see

Turelli & Barton, 1994), e.g. the current composition

of the population, and may therefore change with

time. In contrast, our point of expansion is a random

population (i.e. equidistributed in the type space, ps ¯
1}2N), wherefore the η

I
are constants.

4. Population averages

With large numbers of types as involved here, one

aims at a few averaged quantities rather than the

complete distribution of genotypes, like the mutation

load, the mean number of mutations, and the variance
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of these quantities. We shall subsume them under the

name obser�ables because they are, at least in principle,

accessible to experiment, although their measurement

may be a formidable task in practice. The mutation

load is L(t) :¯R
max

®Ra (t), where R
max

is the largest

fitness value. Its equilibrium value is obtained from

the physical picture in a straightforward way, since

lim
t!¢ Ra (t)¯λ

max
, where λ

max
is the largest eigen-

value of -­2, and λ
max

corresponds to the ground

state energy of the spin chain (up to a sign). (From

now on, we shall suppress the notation of time

dependence where there is no danger of confusion,

and mention it explicitly if equilibrium values, i.e.

t!¢, are referred to.)

Unlike the mean fitness, the mean mutational

distance from the reference type has no direct

counterpart in the physical picture. The closest relative

is the surplus (or excess) of ‘­’ sites, Ua :¯3sUsps,

where Us :¯3N

i="
s
i
. Ua corresponds to the mag-

netization of a classical Ising system, but differs

from the corresponding quantum-mechanical quantity

(for more on this issue, see Section 6(ii)). We shall use

Ua to characterize the genetic composition of a

population, but it is, of course, trivially converted into

the mean number of mutations: If ­­­ I ­ is the

fittest type (which will be assumed without loss of

generality), the mean mutational distance is Da ¯
(1}2)(N®Ua ).

As to the variability of the population, we shall

concentrate on the �ariance in fitness,

V
R
:¯3

s
(Rs®Ra )#ps; (19)

after all, this is what selection acts on. Before

embarking on specific fitness functions, let us state a

fairly general result here. Assuming that the fitness

landscape is homogeneous in the sense that only n-site

interactions occur, i.e.

Rs ¯ 3
rIr=n

η
I
0
i `I

s
i

(20)

for a certain n, one has

V
R
¯ 2µnRa (21)

at mutation–selection balance. To see this, consider

the change in mean fitness under selection and

mutation according to (1) :

d

dt
Ra ¯3

s
Rs pd s ¯3

s
Rs

E

F

(Rs®Ra )ps­3
s«

mss«ps«
G

H

¯V
R
­3

s

Rs 3
s«

mss«ps«. (22)

Here, the first term represents the increase in mean

fitness due to selection, as is familiar from Fisher’s

Fundamental Theorem. The second term is the loss in

fitness due to mutation. At equilibrium, therefore,

V
R
¯®3sRs 3

s«
mss« ps« To evaluate the right-hand

side we use (16), (6) and (20) to obtain

3
s
Rsmss« ¯3

s
mss«3

I

η
I
0
i `I

s
i

¯µ
E

F

3
N

j="

3
I

(®1)r²j´LIrη
I
0
i `I

s«
i

G

H

®Nµ
E

F

3
I

η
I
0
i `I

s«
i

G

H

¯®2µ3
N

j="

3
I ¢ j

η
I
0
i `I

s«
i
¯®2nµRs«. (23)

The second step reflects the fact that mutation at site

j of sequence s«, by ‘flipping’ s«
j
, changes the sign of

those fitness contributions η
I
0

i `I
s«
i

for which I

contains j (consequently, summation in (23) is over all

sets I which contain j). Due to homogeneity, every set

I may be ‘hit’ by n different mutations, which is

reflected in the last step. With (23), the loss in fitness

due to mutation becomes

3
s
Rs 3

s«
mss«ps« ¯®2nµRa . (24)

At equilibrium, the loss in fitness due to mutation

must be balanced by the gain in fitness due to

selection, hence (21) holds.

The homogeneity assumption holds for a number of

fitness landscapes, of which we shall meet represen-

tatives shortly. In general, however, it is a restrictive

assumption. Nevertheless, it provides some flavour of

how genetic variation is created by interaction of sites.

(Note that, in the trivial case n¯ 0, one has Rs 3 η

and V
R
¯ 0, i.e. neutral evolution. For n" 0, the

homogeneity assumption enforces η¯ 0, which is no

restriction since only fitness differences matter.)

5. Scaling and limits

Often, the limit N!¢ is employed (and will be used

here), for two reasons. First, it is a way to make life

simpler (and a good one at that, because in genetic

applications, 100 is usually closer to infinity than to

1), or to make a solution possible at all. But even if a

finite-size solution is available, the limit is often

required to characterize the behaviour in a clear-cut

way (e.g. to produce a sharp transition between two

regimes instead of just a very steep one).

The limit may be performed in various ways, and it

is crucial to get the scaling of the model parameters

right. This is reminiscent of the diffusion approxi-

mation (cf. Ewens, 1979) to models of mutation,

selection and drift in finite populations, where the

strengths of mutation and selection must scale

inversely with population size to ensure that the

differential equation is a valid approximation of the

finite system. Similarly, in our infinite population

model, scaling of mutation rates and fitness values

should be chosen such that, for N!¢, the solution
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of the differential equation converges to a well-defined

limiting form. To be more precise, the solution itself

(i.e. the probability distribution of genotypes) cannot

be expected to converge, since one cannot find a space

in which this might be possible. What can converge (at

best) is the distribution of quantitative properties of

genotypes (such as the surplus per site).

The options for the scaling are extensi�e versus

intensi�e, where extensi�e scaling means that quantities

such as the mutation rate, or fitness, or any of the

observables, are constant per site (and, hence, pro-

portional to N ), whereas intensi�e scaling implies that

a quantity is independent of N. A standard approach

for mutation–selection models is the infinite sites limit

N!¢ under Nµ¯ const as introduced by Kimura &

Maruyama (1966), where it is further assumed that

the deleterious effect of a mutation is independent of

N ; i.e. mutation is intensive, and fitness is extensive.

In this limit, the number of mutated sites per type is

approximately Poisson distributed, and the mutation

load scales intensi�ely. For additive fitness, the Poisson

distribution is even exact (see the very clear recent

article by Johnson (1999) and references therein).

The limit provides meaningful results as long as the

mutation rate is so low that only a vanishing fraction

of all sites will carry mutations, as is often assumed in

population genetics. It breaks down, however, when

mutations become so frequent that a sizeable fraction

of the sites is affected (which also implies that sites

may be hit more than once). Since we set out to study

mutation–selection models without any restriction to

the mutation rates, we need a limiting procedure

which is more generally applicable. For this purpose,

we borrow from the physical literature the wisdom

that, for systems of statistical mechanics, extensi�e

scaling of the Hamiltonian (i.e. of mutation rates and

fitness) is required for a meaningful result in the

thermodynamic limit ; for quantum chain examples,

see Lieb et al. (1961).

To translate this into the biological context, consider

a mapping from our type space into a compact

interval I of 2 which associates with every element

s ` ²®1, 1´N a value ys ` I. Given p(t), the time

evolution of the probability distribution on ²®1, 1´N,

the mapping s* ys induces a (time-dependent) prob-

ability measure ω
N
(y, t) on I. Let further f (y) be any

continuous function on I. We then demand, as our

convergence criterion, that ω
N
(y, t) converges towards

a limiting measure ω(y, t) in the weak sense (i.e.

convergence in distribution; cf. Bauer, 1996), namely

! f (y)dω
N
(y, t)MNN!¢ ! f (y)dω(y, t), with uniform (as

opposed to pointwise) convergence in t, i.e.

lim
N!¢

sup
t `2+

!

)& f (y)dω
N
(y, t)®& f (y)dω(y, t))¯ 0. (25)

Here, ys and f (y) may be arranged such that

! f (y)dω
N

(y, t) represents any intensi�ely scaled ob-

ser�able (i.e. the mean fitness, the mean surplus, or the

variance in fitness, per site). As an example, for the

quadratic landscape, one might choose ys :¯Us}N

with values in [®1, 1], and f (y) as the mean fitness per

site of a sequence with Us}N¯ y. For later use, note

that, for permutation-invariant initial conditions, the

alternative choice ys ¯ s
"
is equivalent. For, due to the

symmetry, the population averages of Us}N and s
"
are

the same and equal to the mean surplus per site : ua :¯
(1}N )3sUs ps ¯3ss

"
ps. For Onsager’s landscape, one

could choose as ys the fraction of domain walls in the

sequence, and as f (y) the mean fitness of a sequence

with a fraction y of domain walls. For both landscapes,

! f (y)dω (y, t) then gives the time evolution of the

mean fitness per site. Equation (25) then implies that

the time evolution of the observable converges to a

well-defined limiting form. It can be shown (Wagner,

1998; Wagner et al., 1998) that the only meaningful

choice that achieves (25) is extensive scaling of both

mutation and fitness, and (25) indeed holds for the

fitness landscapes considered here, provided the initial

conditions are compatible with the symmetries of

the landscape. However, (25) does not hold for the

sharply peaked landscape, which does not have a

reasonable scaling limit – another of its weaknesses.

Using, instead, intensive scaling for both mutation

and fitness is equivalent to a rescaling of (continuous)

time, i.e. dt is replaced by Ndt (see the discussion in

Wagner et al., 1998) ; in the limit, then, evolution

becomes infinitely slow. This reflects the fact that,

whereas the absolute number of mutational steps per

time unit remains constant in this limit, the loss or

gain in fitness they bring about vanishes. As a

consequence, even though the resulting model has the

same equilibrium properties as the all-extensive one,

this equilibrium will never be reached. This is often

overlooked since only few investigations consider

dynamical aspects at all. The time evolution of the

mean fitness per site in Onsager’s landscape is

illustrated in Fig. 3, for extensive and intensive scaling.

These figures are modified versions of those given in

Wagner (1998) and Wagner et al. (1998), where

explicit expressions are also derived. Finally, the

choice of extensive mutation together with intensive

fitness scaling (or vice versa) is not an option either

since, in this case, changing N changes the relative

strengths of mutation and selection. For N!¢, the

system is dominated solely by mutation, which is not

what one aims at with a mutation–selection model.

Convergence of the time evolution according to (25)

is immediately clear for additive fitness and all-

extensive scaling, where sites are independent, and

neither the surplus nor the mean fitness per site

depends on N at all, provided initial conditions are the

same at all sites. (If there are any doubts about this

argument, they will be removed in the next section.)

But, even for general fitness landscapes, it can be
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Fig. 3. Time evolution of the mean fitness in Onsager’s
landscape with γ¯ 0±001 and µ¯ 0±00025 for N¯10
(dotted), N¯100 (dashed) and N¯1000 (solid
line). The initial conditions are a pure wild-type
distribution (ua ¯1), and equidistribution of sequences (ua
¯ 0), respectively. The latter is not meant to be a realistic
initial condition, but illustrates the properties of the
scaling. Furthermore, any intermediate value on the curve
may be taken as initial condition due to the semigroup
property of the flow. Top: Extensive scaling of mutation
and fitness (as in (6) and (8)) yields uniform convergence.
If reproduction and mutation rates have the unit 1}year,
then convergence to equilibrium occurs roughly within
2000 years, even from the most extreme initial condition.
Bottom: Intensive scaling (obtained through Rs !Rs}N,
µ!µ}N ) slows evolution down. Then, one has only
pointwise convergence to zero for every value of t.

made plausible that the all-extensive scaling is the

only one consistent with similarity of the time

evolution in systems with different N. To see this,

consider the dependence on N of (22) for the time

evolution of the mean fitness, Ra . Without mutation,

(d}dt)Ra (t)¯V
R
(t) ; this elementary version of Fisher’s

Fundamental Theorem holds for any gi�en model,

independently of any scaling considerations. But we

further demand that Ra and V
R

scale in the same way

in a family of models with different N (this may be

considered a refined Fisher Property, which mimics

the Fundamental Theorem for the model family) :

If both quantities scale with Nα (α" 0), then

(d}dt)(Ra }Nα) is of order 1, i.e. the time scale of Ra }Nα

is independent of N, as required for similarity of the

models within the family. Since a change of the fitness

scale by a factor Nα changes Ra by Nα, but V
R

by N #
α,

there is only one scaling compatible with our refined

Fisher Property.

Unfortunately, however, it is difficult to determine

the scaling of V
R

for a given fitness function. But we

can check for consistency with mutation. If mutation

is present, one has (d}dt)Ra ¯V
R
­3

s
Rs3s« mss«ps« : see

(22). Clearly, the second term on the right-hand side

(the change in fitness due to mutation) must also have

the same scaling as Ra , and as V
R
. Since the mixed

scalings, i.e. extensive mutation and intensive fitness

and vice versa, have already been excluded (since they

imply a change in the relative strengths of mutation

and selection), we have to check whether one of the

two remaining options is consistent. Equation (24)

shows that intensive scaling of mutation and fitness

makes the change in fitness due to mutation scale

with l}N ; but Ra is of order 1, hence this scaling is

inconsistent. For extensive mutation and extensive

fitness, on the other hand, both Ra and 3sRs 3s« mss«ps«

scale with N. Therefore, this is the only consistent

candidate for scaling. It then remains to be checked

(possibly numerically) whether convergence of the

dynamics actually occurs for a given model ; this is the

case for all fitness functions considered in this article.

If this scaling is to be interpreted in the biological

picture, it implies that µ is constant per site, as

anticipated in (6), and the mutation rate per genome,

G :¯Nµ, increases linearly with N. As to (Malthusian)

fitness, extensive scaling implies that the fitness effects

of single mutations remain constant, and the difference

between the largest and the smallest fitness value,

R
max

®R
min

, increases linearly with N. It is, however,

important to stress that it is not required to ascribe

any biological meaning to the scaling chosen, as long

as we do not aim at comparisons of species (or

sequences) with different N. In particular, there is no

point in worrying about mean fitness becoming infinite

for N!¢. It must be kept in mind that any real

sequence is finite, and the limit is a technical process

which aims at an approximation of the finite system

by an infinite one with very similar properties. This is

much as with the aforementioned diffusion approxi-

mation to models of finite populations, where selective

differences and mutation rates are required to scale

inversely with the population size, although there is

no reason to assume that these forces are weaker in

larger populations.

Recapitulating, with extensi�e scaling for mutation

and fitness, the intensi�ely scaled obser�ables, namely

per site fitness, surplus and variance of fitness, will

converge in the limit N!¢. We shall therefore work

with the quantities ra :¯Ra }N, F¯L}N, ua :¯Ua }N,

d b :¯Da }N, and �
R
:¯V

R
}N, as well as the correspond-

ing quantities for N!¢. (Note that we use capital

letters for extensive quantities and lower-case letters

for the corresponding intensive ones.)

The surplus ua may be interpreted as mean agreement

with ­­­ I ­ (which may be chosen to be the

fittest sequence without loss of generality), averaged
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over all sites of the configuration, and all members of

the population. Specifically, ua ¯1 for a pure ‘wild-

type’ population, and ua ¯ 0 for a population of

random configurations.

We have, so far, mainly talked about average

quantities. Let us anticipate here that the underlying

distributions for r (the fitness per site) and u (the

surplus per site) will turn out to be delta distributions,

i.e. point measures, in the limit N!¢. This is not

surprising in view of the following example: Consider

N independent sites which read ­ and ® with

probability p and 1®p, respectively. Then, N+, the

number of ­ sites, is binomially distributed with

expectation Np and variance Np(1®p) ; on the other

hand, the fraction of ­ sites, N+}N, has variance

p(1®p)}N. Consequently, the distribution of the

fraction of ­ sites converges (in the weak sense) to

a delta distribution located at p. Put differently, in

the topology underlying the notion of weak conver-

gence (i.e. probability measures ω(x) and ω«(x) are

different if, for some continuous function f (x),

! f (x)dω(x)1! f (x)dω«(x), cf. Bauer 1996), the limiting

distribution cannot be distinguished from a delta

distribution. Hence, no information about the varia-

bility of the population may be gained from this

limiting distribution alone. However, (1}N )Var (N+)

¯ p(1®p) for our binomially distributed N+. In the

same vein, (21) provides us with independent in-

formation about the variance through �
R
¯V

R
}N, the

�ariance per site in fitness ; note that this is different

from the variance in fitness per site, which would read

V
R
}N #. According to (21), there is positive variance as

long as the mean fitness is positive (for homogeneous

landscapes).

6. Worked examples

(i) Additi�e fitness

Let us, as a warm-up exercise which does not require

any limiting procedure, practise the use of mutation–

reproduction matrices with tensor-product structure.

To this end, we reconsider the case of additive fitness,

as also tackled by O’Brien (1985). Here, R
k
¯®ak,

or, equivalently (i.e. up to the irrelevant constant

term) and to comply with homogeneity, R
k
¯

a(N}2®k). In site notation, this may be written as Rs

¯α3
i
s
i
(where α¯ a}2), and thus 2¯α3N

i="
σz

i
. The

operator 3N

i="
σz

i
adds up the variables at the sites, i.e.

it assigns the value Us to configuration s. Hence, the

mutation–reproduction operator may be written as

(¯-­2¯µ3
i

(σx

i
®1)­α3

i

σz

i
¯3

i

H
i
, (26)

where H
i
:¯1C I C1CBC1C I C1 with the one-

site Hamiltonian

B :¯µ(σx®1)­ασz (27)

in the ith place. (Here, and in what follows, we shall

work with the definition (¯-­2 instead of

the physical convention (¯®(-­2).) The

one-site Hamiltonian B has eigenvalues λ
",#

¯³
o(α#­µ#)®µ and corresponding eigenvectors v

"
¯

(µ,®α­o(α#­µ#))T and v
#
¯ (µ,®α®o(α#­µ#))T.

Recalling the spectral properties of tensor products (if

an n¬n matrix A has eigenvalues λ
"
, … ,λ

n
and

corresponding eigenvectors v
"
, … ,v

n
, and an m¬m

matrix B has eigenvalues γ
"
, … ,γ

m
and corresponding

eigenvectors w
"
, … ,w

m
, then ACB has eigenvectors

v
i
Cw

j
with corresponding eigenvalues λ

i
γ
j
, i¯

1, … ,n, j¯1, … ,m), one first observes that H
i
has

eigenvalues λ
",#

with multiplicity 2N−" each. Further,

since the H
i

mutually commute, i.e. [H
i
, H

j
]¯

H
i
H

j
®H

j
H

i
¯ 0, they may be diagonalized simul-

taneously, and the spectrum of their sum composed

from that of the one-site Hamiltonian. More precisely,

( has eigenvectors v
i
"

Cv
i
#

C I Cv
iN

with corre-

sponding eigenvalues λ
i
"

­ I ­λ
iN

, where i
j
is either

1 or 2 for every site j. In particular, the PF eigen-

vector of ( is CNv
"
, with eigenvalue λ

max
¯

N(o(α#­µ#)®µ). (A similar structure pertains in the

transfer matrix of the corresponding quasispecies

model, as exploited by Rumschitzky (1987).) The

corresponding stationary distribution is obtained by

replacing v
"
by vh

"
:¯ v

"
}sv

"
s
"
, where s[s

"
denotes the

one-norm. Note that the tensor product structure

expresses (statistical) independence of sites (i.e. the

sites are in linkage equilibrium), with the components

of vh
"

holding the marginal probabilities of ­ and ®
at every site. Hence, at equilibrium, the surplus per

site reads

ua ¯®h­o(1­h#)¯
1

h­o(1­h#)
, (28)

and the mean fitness per site is

ra ¯λ
"
¯αua (29)

where we have set h :¯µ}α. Further, since the

landscape is homogeneous with n¯1, the variance in

fitness (again per site) is �
R
¯ 2µαua , according to (21).

Finally, the mutation load reads F¯α®λ
"
¯

µ­α®o(α#­µ#)¯µ®µ#}(2α)­O(µ$). Not sur-

prisingly, due to back-mutations, this is less than the

value µ from Haldane’s Principle.

Even if we only give the equilibrium properties here,

it is clear that knowledge of the eigensystem is

complete, and allows explicit expressions for the time

evolution of the system via (4), given any initial value.

Note that, obviously, the solution procedure goes

through if sites have different effects on fitness, i.e. Rs

¯3
i
α
i
s
i
, but we will not spell this out here (the

corresponding situation with unidirectional mutation

has been tackled by Johnson (1999) in the infinite-sites

limit).
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Fig. 4. Mean fitness, surplus, and variance in fitness per
site at equilibrium, in the limit N!¢, as a function of
the mutation rate per site. Dotted: additive fitness (with
α¯ 0±001) ; solid line : quadratic fitness function
(with α¯ 0, γ¯ 0±002) ; dashed: Onsager’s landscape (with
γ¯ 0±001). The parameters are chosen such that, for
N¯1000 sites, the intensive quantities translate into the
extensive ones R

!
¯1 (fittest type), R

"
D 0±998 or

R
"
D 0±996 (second-best type in the case of additive

fitness, or in the case of quadratic and Onsager landscape,
respectively), R

N/#
¯ 0 (randomized genotype), and V

R
is

in the range of 10−$.

The observables are illustrated in Fig. 4. Not

surprisingly, both fitness and surplus decline smoothly

with increasing mutation rate, but never vanish; this is

accompanied by a steady increase in variance in

fitness. For small µ, the results are in agreement with

the infinite sites limit which predicts that the number

of mutated sites, N−, is Poisson distributed with ex-

pectation (and variance) G}s, where G¯Nµ is the

overall mutation rate, and s¯ 2α is the fitness effect

per mutation (cf. Johnson, 1999). As a consequence,

the mutation load is G, and the variance in fitness

equals the variance of the mutation load, namely

s#Var (N−)¯Gs. For larger µ, deviations from the

linear increase (in mutation load, and variance)

become obvious – they are due to the fact that a

sizeable fraction of the sites then carries mutations, so

the Poisson approximation to the binomial distri-

bution breaks down.

(ii) Quadratic fitness functions

We are now ready to embark on quadratic fitness

landscapes with epistasis. Again, instead of R
k
¯

®(ak­ c

#N
k#), fitness may equivalently be expressed as

a function of Us, i.e. Rs ¯αUs­
γ

#N
U#

s , where α¯
a}2®c}4, γ¯®c}4, and an additive constant is

again suppressed. Recalling that 3
i
σz

i
measures Us

of configuration s, and, hence, (3
i
σz

i
)#¯3

i,j
σz

i
σz

j

measures U#
s , we obtain the mutation–production

matrix

(¯-­2¯µ3
i

(σx

i
®1)­α3

i

σz

i
­

γ

2N
3
i,j

σz

i
σz

j
. (30)

For γ10, sites are, of course, no longer independent.

In fact, (30) shows that every site interacts with every

other site, with the same interaction strength

γ}(2N ) – hence the name mean field for such a setting

in physics. What we need to solve the model is the

theory of quantum mean field systems, which is highly

developed (Gerisch, 1993; Raggio & Werner, 1989,

1991). We shall see that, in the limit N!¢, the

largest eigenvalue (but not the corresponding eigen-

vector) may again be obtained through a one-site

Hamiltonian, which acts equally and independently at

every site. In contrast to the additive case, however,

this is anything but obvious, and the theory is fairly

subtle, so that we can make it plausible but cannot

prove it rigorously here ; we must, instead, refer to the

mathematical literature. To be more precise, we shall

follow two parallel approaches. The first one uses the

quantum-chain formalism and is mathematically

rigorous, but must be accepted without proof here.

Since it may seem difficult to the uninitiated, we shall

use a second route with a more heuristic calculation,

which uses elementary tools only and arrives at the

same result. Let us set out in the first direction.

(a) Using the quantum statistical formalism

In the quantum-mechanical formalism, the classical

probability measure ω(x) (with !dω(x)¯1), which

associates with a real-valued, continuous function f (x)

an expectation ! f (x)dω(x), is replaced by a so-called

density matrix k (which is self-adjoint, has non-

negative spectrum, and tr(k)¯1) which associates

with an operator / a real (or complex) expectation

#(/) via

#(/) :¯ tr(/k). (31)
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For a very readable introduction, see Balian (1991).

Classical (discrete) probability distributions are con-

tained as the special case of diagonal k (the elements

representing the probabilities) and diagonal / (repre-

senting the values of the random variable). Weak

convergence of a probability measure then general-

izes to weak convergence of a sequence #
N
, i.e.

#
N
(/)MNN!¢

#¢(/) for all /, or

tr(/k
N
)MNN!¢

tr(/k¢). (32)

Here, / must refer to a fixed set of sites (i.e.

independent of N ), and be compatible with the

symmetries of the system (cf. Section 5) ; for

definiteness, think of /¯σ z

"
.

To establish the connection with the evolution

model, we now identify the density matrix with the

(normalized) time-evolution operator,

k
N
(t) :¯

exp(t(
N
)

tr(exp(t(
N
))
, (33)

where we have renamed ( as (
N

to emphasize the

dependence on system size. (Our time variable

corresponds to minus the inverse temperature, i.e. t¯
®β :¯®1}(kT ), of the physical system, where T is

the absolute temperature, and k is Boltzmann’s

constant, cf. the Appendix; note the formal similarity

with the Boltzmann distribution, (A1) and (A2).

Indeed, (32) is its quantum-mechanical generalization,

where the Hamiltonian measures the energy of the

system. Note that, in our system, we have two notions

related to temperature: time corresponds to the in�erse

temperature, whereas the mutation rate corresponds

to the temperature-like parameter which we have met

in (11).)

It may now be shown (Gerisch, 1993; Raggio &

Werner, 1989, 1991) that (32) holds if k¢ is chosen

to be

k¢ :¯C¢ exp(tB)

tr(exp(tB))
. (34)

Here, C¢ is a sloppy but self-explanatory shorthand

notation indicating that the limiting distribution

is a product measure. As before, B is the one-site

Hamiltonian

B¯µσx­(α­γm)σz, (35)

where the parameter m must be determined such that

m(t)¯
tr(σz exp (tB))

tr(exp (tB))
. (36)

Equation (36) is the so-called self-consistency equation.

It determines m, the quantum-mechanical magnet-

ization, i.e. the expectation of the operator σz (which

measures the spin) of a system governed by the

Hamiltonian B. The quantity m relies on a different

notion of probability than does u. . As an example,

consider a single-site system with PF eigenvector v¯
(�

"
, �

#
)T of the Hamiltonian B ; then, at equilibrium,

one has m¯ (�#
"
®�#

#
)}svs

#
as opposed to u. ¯

(�
"
®�

#
)}svs

"
, the classical magnetization, which we

have termed surplus to avoid ambiguities. Geo-

metrically, quantum-mechanical probabilities are

represented by unit vectors in the two-norm (with

components �
i
}svs

#
), whereas classical probabilities

are represented by unit vectors in the one-norm (with

components �
i
}svs

"
.) For more on this subject, see

Baake et al. (1998), and a forthcoming publication.

We now intend to use the above to determine the

behaviour of the system at equilibrium, t!¢. To this

end, we need a little interlude to establish that the PF

eigenvector is permutation-invariant. Indeed, this is

true due to the uniqueness of the PF eigenvector,

together with the invariance of the Hamiltonian under

permutations of sites, and may be seen as follows:

Define 0 as the operator which symmetrizes any given

configuration, i.e. 0 :¯ (1}N!)3g `SN

g, where S
N

is

the set of possible permutations of N sites. Clearly, 0
is idempotent, i.e. 0#¯0. Further, since both - and

2 are permutation-invariant, one has -0¯0-,

20¯02, and hence

exp(t(-­2))0x(0)¯ exp(t(-­2))0#x(0)

¯0exp(t(-­2))0x(0). (37)

This reflects the plausible fact that a population, once

symmetrized through the action of 0 (that is, with ­
and ® distributed evenly across sites), remains

symmetric under the time evolution defined by

exp(t(-­2)). Now, uniqueness of the PF eigenvector

tells us that convergence towards it is independent of

the initial conditions (if they are in the positive cone

excluding the origin), and will hold for a symmetric

initial vector in particular. Since we know that its time

evolution will never leave the symmetric sector, the PF

eigenvector must be permutation-invariant itself.

Since we only seek to determine the equilibrium be-

haviour here, we shall, therefore, assume permutation-

invariance for all times to simplify matters.

After this interlude, we now proceed to determine

the leading eigenvalue of (
N

(or the mean fitness,

respectively) to leading order in N. To this end, first

observe that, in the limit t!¢, k
N

from (33) becomes

a projector on the PF eigenvector of (
N
. Now,

application of (
N

to the projector onto its PF

eigenvector yields the largest eigenvalue of (
N

(times

the projector). Note further that, due to permutation

invariance and up to a term of order O(N−")1, N−"(
N

may be replaced by /¯µ(σx

"
®1)­ασz

"
­(γ}2)σz

"
σz

#

for all N& 2. Therefore :

rb ¯ lim
t!¢

lim
N!¢

1

N
tr((

N
k
N
(t))¯ lim

t!¢

lim
N!¢

tr(/k
N
(t)),

(38)
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where the limiting processes t!¢ and N!¢ may

be interchanged due to the uniform convergence

established in (25).

Due to the structure of / and k¢, consideration of

two sites is sufficient. One calculates

lim
N!¢

1

N
tr(/k

N
(t))¯

tr[(µ(σxC1®1)­ασz C1­γ

#
(σzCσz))(exp(tB))C(exp(tB))]

(tr(exp(tB)))#
(39)

with B as in (35). The key to the evaluation of this

expression now lies in the algebraic properties of

Pauli’s matrices. It is easily verified that

(σx)#¯ (σz)#¯1

σxσz ¯®σzσx,
(40)

i.e. these operators are involutions, and they

anticommute. We further note that

tr(σx)¯ tr(σz)¯ 0,

and

tr(σxσz)¯ tr(σzσx)¯ 0.

(41)

With the help of (41), one first calculates B#¯
(µ#­(α­γm)#)1. Then, with the abbreviation ν :¯
o(µ#­(α­γm)#) (ν is the larger eigenvalue of B),

evaluation of the exponential series yields

exp(tB)¯ cosh(νt)1­
sinh(νt)

ν
(µσx­(α­γm)σz). (42)

With the help of (41), this leads to

tr(exp(tB))¯ 2cosh(νt). (43)

Plugging (42) and (43) into (39), and observing (41)

and (43), one arrives at

lim
N!¢

1

N
tr((

N
k
N
(t))¯

µ#­α(α­γm)

ν
tanh(νt)

­
γ(α­γm)#

2ν#
¯ tanh(νt))#®µ. (44)

In the limit t!¢, this becomes

ra ¯ ν®
γm(α­γm)

ν
­

γ(α­γm)#

2ν#
®µ, (45)

where we have also used the definition of ν in the form

µ#}ν#¯ν®(α­γm)#}ν. With similar arguments, the

self-consistency equation (36) becomes, for t!¢,

m¯
α­γm

ν
­

α­γm

o((α­γm)#­µ#)
. (46)

With the above, the mean fitness reads

rb ¯ ν®
γ

2
m#®µ, (47)

where m must be determined from the self-consistency

equation (46).

However, (46) may have multiple solutions. As we

have discussed already in Section 2, we choose the one

derived from the relevant maximum (i.e. located at the

wild-type). Since the wild-type is characterized by

m¯1, the relevant solution is that solution of (46)

which is closest to 1 (since no solution is larger than 1,

this is simply the largest solution).

Recapitulating our derivation, we note that the one-

site Hamiltonian only appeared in the expression

exp(tB)}tr(exp(tB)). But

exp(tB)}tr(exp(tB))¯ exp(tBh )}tr(exp(tBh )) (48)

for any B4 which differs from B only by a constant term,

i.e. B4 ¯ B­c1. Let us now observe that r. differs from

ν, the leading eigenvalue of B, only by the constant

term ®(γ}2)m#®µ. We may, therefore, alternatively,

work with

Bh :¯ B®
E

F

γ

2
m#­µ

G

H

1, (49)

of which r. in (47) is the leading eigenvalue. In physical

terms, this corresponds to the choice of the energy

scale so that the free energy equals the internal energy

of the system at zero temperature (note that t!¢
corresponds to T! 0), i.e. the entropy vanishes at

zero temperature.

Therefore, cutting a long derivation short, the

determination of the mean fitness boils down to

determining the leading eigenvalue of (49), with m the

largest solution of (46). Put differently, the largest

eigenvalue of the mutation–reproduction matrix,

λ
max

((
N
), is approximated by

1

N
λ
max

((
N
)¯

1

N
λ
max

E

F

3
i

H
i

G

H

­o(1)

¯λ
max

(Bh )­o(1). (50)

Here, H
i
:¯1C I C1CB4 C1CIC1 with B4 in the

ith place, in analogy with the additive case. In contrast

to the latter, however, the relationship (50) is strictly

limited to the largest eigenvalue (since it relies on k
N

projecting onto the PF eigenvector of (
N

for

t!¢) – it does not hold for the remainder of the

spectrum. Therefore, we may obtain the mean fitness

at equilibrium (t!¢) this way, but not for finite

times.

We have, so far, drawn on the physical formalism

because it can be made mathematically rigorous, and

finally provides an easy-to-use recipe to calculate the

largest eigenvalue, i.e. the equilibrium mean fitness, to
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leading order. For those who find the derivation

difficult, we shall use another route to arrive at the

same result in a less rigorous, more heuristic manner,

but with the help of elementary tools only.

(b) Using the Rayleigh coefficient

If the largest (in modulus) eigenvalue of a matrix A is

real (this is the case for our (, since the Perron–

Frobenius theorem holds), it may be determined via

the Rayleigh coefficient :

λ
max

(A)¯max
(z, Az)

(z, z)
. (51)

Here, (. , .) denotes the scalar product, and the

maximum is taken over all vectors in the space.

Equivalently, λ
max

is obtained by maximizing (z, Az)

over all vectors z with szs
#
¯o(z, z)¯1, which

comes down to the eigenvalue equation, and

normalization:

Az¯λ
max

z subject to (z, z)¯1. (52)

Of course, (52) is a large system of 2N equations; but,

due to the permutation invariance of the PF eigen-

vector, it may be reduced to N­1 equations: it is

sufficient to specify the number of ­ sites, regardless

of their position. This is a common approach in

population genetics : see Barton & Shpak (2000) for a

recent application. Actually, one often starts out with

this reduced representation right away. We shall see,

however, that reference to the larger space is essential

for finding the leading eigenvalue.

Since special emphasis must be put on normal-

ization, we shall perform all steps explicitly, starting

out from the original variables xs. We shall first

lump together all configurations with k ‘­’ sites,

irrespective of their position, i.e. y
k
:¯3s :N

+
s =k

xs,

where N+
s again is the number of ‘­’ sites in

configuration s. This corresponds to the change in

representation

x¯3
s

xses ¯ 3
N

k=!

y
k
b
k
, (53)

where

b
k
:¯

E

F

N

k

G

H

−"

3
s :N

+
s =k

es. (54)

b
k
is the average over all basis vectors with k ‘­’ sites,

of which there are (N
k
). Like the original es, the b

k
are

unit vectors in the one-norm. Likewise, since 3
k
y
k
¯

3sxs ¯1, it also follows that sys
"
¯ sxs

"
¯1. In this

representation, the eigenvalue equation (52) reads

(m
k,k

­R
k
)y

k
­m

k,k−"
y
k−"

­m
k,k+"

y
k+"

¯λ
max

y
k
, (55)

where m
k,k

¯®Nµ, m
k,k−"

¯µ(N­1®k), m
k,k+"

¯
µ(k­1), and R

k
¯α(N®2k)­ γ

#N
(N®2k)# is the

fitness of a type with N+
s ¯k. These coefficients may

be considered as the elements of a tridiagonal matrix

(where m
k,F

¯ 0 for F1k®1, k, k­1 is implied).

In order to keep track of the normalization

condition in (52), we now change the normalization of

the b
k

so that they become unit vectors in the two-

norm instead of in the one-norm. To this end, we

observe that (b
k
, b

k
)¯ (N

k
)−". We therefore choose

c
k
:¯ (N

k
)"/#b

k
, k¯ 0, … ,N, as our orthonormal basis

(i.e. (c
k
, c

j
)¯ δ

k,j
). With z

k
:¯ (N

k
)−"/#y

k
, one then has

x¯3N

k=!
y
k
b
k
¯3N

k=!
z
k
c
k
. Performing the corres-

ponding similarity transform for the elements of

the tridiagonal matrix in (55) (i.e. R
k
!R

k
, and

m
kj

! (N
k
)"/#m

kj
(N
j
)−"/#) leads to the modified eigenvalue

equation in the new basis

µo(k(N­1®k))z
k−"

­µo((k­1)(N®k))z
k+"

­(α(N®2k)­
γ

2N
(N®2k)#®Nµ)z

k
¯λ

max
z
k
, (56)

where γ
max

is extensive in N. Replacing k}N by ζ, z
k
by

f(ζ), expanding to leading order in N, and passing to

intensive scaling, one obtains

(®µ­2µo(ζ(1®ζ))­α(1®2ζ)

­
γ

2
(1®2ζ)#) f(ζ)­o(1)¯

λ
max

N
f (ζ). (57)

Replacing λ
max

}N by rb and taking the limit N!¢,

we see that f (ζ) can only differ from zero if

rb ¯®µ­2µo(ζ(1®ζ))­α(1®2ζ)­
γ

2
(1®2ζ)#. (58)

Defining m :¯1®2ζ and demanding that the right-

hand side be independent of m (and, hence, a

stationary point of (z, Az) in (51)), one finally arrives

at

¦
¦m

E

F

®µ­µo(1®m#)­αm­
γ

2
m#

G

H

¯®
µm

o(1®m#)
­γm­α¯ 0, (59)

which an elementary calculation shows to be equi-

valent to the self-consistency equation (46).

Equation (46) is quartic and can, in principle, be

solved for all parameter values. But even if one resorts

to approximate or numerical solutions, it is a vast

improvement over the original problem, since the

eigenvalue problem of a very large matrix boils down

to solving this one and only equation. In special cases,

(46) even reduces to a quadratic equation. To be

specific, let us consider α¯ 0, γ" 0 (for this choice,

the fitness function has its minimum at the mu-

tation equilibrium). Then, (46) may be rewritten as
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m#(m#­h#)¯m# (where we have used h :¯µ}γ), with

the solutions m
!
¯ 0, and m³ ¯³o(1®h#). For h!

1, m
+

is the largest (and, therefore, relevant) solution;

at h¯1, all solution branches coalesce, and for h"
1, m

!
¯ 0 is the only one left. Thus,

m¯
1

2
3

4

o(1®h#), h%1

0, h"1
(60)

in agreement with (46). This leads to

rb ¯

1

2
3

4

γ

2
(1®h)#,h%1

0, h"1,

(61)

in accordance with (47). Since the landscape is

homogeneous with k¯ 2 (up to terms of order l}N

which do not contribute in the limit), we can also write

down the variance of fitness immediately (cf. 21):

�
R
¯

1

2
3

4

2hγ#(1®h)#,h%1

0, h"1.
(62)

So we have finally managed to calculate our

observables.

So far, we have seen that the quantum chain

formalism provides a powerful method to determine

the leading eigenvalue of the mutation–reproduction

matrix, and can bemade plausible bymore elementary,

but less rigorous methods. Finding that eigenvalue is

the primary problem, and once the answer is known,

it may be used to determine the distribution of

genotypes from (55), i.e. in terms of our original

variables. We therefore put u :¯ (2k®N )}N and

ω
N
(u) :¯ y

k
in (55), pass to intensive scaling and let

N!¢ to obtain

γ

2
u#ω(u)¯ rb ω(u). (63)

With rb as obtained in (61), it follows that

ω(u)¯
1

2
3

4

δ(u®(1®h)), h%1

δ(u), h"1.
(64)

This is the limiting probability measure discussed in

Section 5. As was noted there, the fact that a delta

peak appears here (instead of a distribution with

positive variance) is a consequence of the ‘crude’ l}N

scaling and weak convergence (actually, the cal-

culation employed here is heuristic, but weak con-

vergence was shown explicitly in a somewhat more

involved derivation (Wagner et al., 1998)). This scaling

omits some details, but suffices to determine the

expectation of u. Clearly, an inspection of (64) gives

the mean surplus at equilibrium:

ub ¯
1

2
3

4

1®h, h%1

0, h"1.
(65)

The quantities rb , ub and �
R

are displayed in Fig. 4 as a

function of h. Both fitness and surplus decrease with

increasing mutation rate, whereas the variance in

fitness first increases and then decreases again. The

decline indicates that selection becomes less and less

efficient and finally ceases to operate when �
R
vanishes;

at the same time, rb and ub vanish. A population at

mutation equilibrium also has rb ¯ �
R
¯ ub ¯ 0. (Note

that, although there are fit genotypes and fitness

differences present in a population of random types,

they have vanishing impact on rb and �
R

in the limit

N!¢, since the distribution is clustered very narrowly

around ub ¯ 0 even for finite N – hence, Rb ¯ o(N ) and

V
R
¯ o(N ).) One may therefore speak of an error

threshold here : Beyond a critical mutation rate

(µ"γ), mutation can no longer be counteracted by

selection, and the population loses its genetic structure

in the sense that it cannot be distinguished from a

random population, at least not on the basis of the

observables considered here.

However, we must be more precise here. According

to the usual definition, an error threshold is identified

with the mutation rate at which the fittest type is lost

from the population. However, this criterion is tailored

to the assumption of a sharply peaked landscape and

need not give meaningful answers in other cases. In

the current example, with a large number of closely

spaced fitness values, the fittest type may be ex-

ceedingly rare even at small mutation rates, although

the population is very near to its fitness optimum. It is

seen from Fig. 1 that, in contrast to the sharply

peaked landscape, the distribution of types moves

steadily in the direction of more mutations, until a

conspicuous change happens at µ¯γ. We therefore

require a more generally applicable definition of error

thresholds, and tentatively use the existence of a non-

analytic point of the mean fitness as a function of µ;

this is also used in physics to define the analogous

phenomenon of a phase transition. In the case just

treated, the discontinuous second derivative of rb at

h¯1 is obvious, but we shall see a more subtle

example below. In any case, a non-analyticity (i.e. a

point at which the function cannot be expanded into

a Taylor series) means that extrapolation is impossible,

and ‘something qualitatively new happens’ beyond

this point. Some reference to the fittest type remains:

Our surplus (which plays a similar role to an order

parameter in physics) measures the mean agreement

with the fittest genotype, averaged over all sites, and

all members of the population, and vanishes at the

error threshold.

We have, so far, dealt with the completely symmetric

fitness landscape with positive epistasis, i.e. α¯ 0,

γ" 0, for which everything may be written down

analytically. For other parameters, approximate

solutions are more instructive than the exact ones. Let

us calculate the mean fitness to second order in the
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Fig. 5. Equilibria for the quadratic fitness function. Shown are those cases with a fitness maximum at the wild-type
(directional selection). From left to right : ®α!γ! 0; 0!γ!α ; 0!α!γ ; ®γ!α! 0. Upper panels : (intensively
scaled) fitness function r (vertical axes) as a function of u (horizontal axes) ; lower panels : left-hand side of (70)
(solid line) and right-hand side of (70), for small µ (dotted) as well as large µ (dashed), as a function of #. A bullet
indicates the solution of (70). An error threshold occurs if the intersection disappears for some large enough µ. This only
happens in the regime ®γ!α! 0.

mutation rate, for the general quadratic fitness

function.Withm¯m(µ), one obtains through implicit

differentiation of (46) (and with a little help from

M (Wolfram, 1996)):

m«(µ)¯ 0 and m§(µ)¯
1

(α­γ)#
. (66)

Using this to expand rb from (47) to second order in µ

yields for the mean fitness

rb ¯α­
γ

2
®µ­

µ#

2(α­γ)
­O(µ$). (67)

Since the reference genotype has fitness r
max

¯α­γ}2,

one obtains for the mutation load

F¯µ®
µ#

2(α­γ)
­O(µ$). (68)

Clearly, positive epistasis (γ" 0) reduces the mutation

load, whereas negative epistasis (γ! 0) increases it

relative to additive fitness (γ¯ 0). To make sure that

this is not an artefact of variation in the range of

fitness values, let α­γ}2¯c. Then, r
"
3 c and r

!
3 0,

where r
!
(r

"
) refer to the fitness per site of a type with

u¯1 (u¯ 0). Then, F¯µ®µ#}(2(c­γ}2))­O(µ$),

and the interpretation remains unchanged.

But we can also extract the qualitative picture for

the general quadratic fitness function from a simple

graphical argument based on the self-consistency

equation, even without approximation. Let α, γ1 0,

and write the self-consistency equation (46) in the

form

m

o(1®m#)
¯

α­γm

µ
, (69)

or, with m :¯ sin #,

tan #¯
α­γsin#

µ
. (70)

The ‘rightmost ’ intersection of the graphs of the left-

hand and right-hand sides of (70) defines the relevant

equilibrium of the model. This is depicted in Fig. 5 for

various α, γ and µ (but only scenarios of directional

selection are considered). An error threshold occurs if

this intersection vanishes, i.e. if the intersection on the

positive branch of tan # ceases to exist at some large

enough µ (the intersection on the negative branch may

be safely ignored, since it belongs to the second,

artificial peak of the fitness function). Fig. 5 demon-

strates that this requires positive (i.e. diminishing

returns) epistasis (γ" 0), but additionally, ®γ%α!
0. In contrast, for unidirectional mutation, error

thresholds exist whenever γ" 0, independently of α

(Charlesworth, 1990). Geometrically, in both cases

the condition means that the fitness landscape attains

its minimum (i.e. the fitness gradient vanishes) at

positive surplus values, that is, before the mutation

equilibrium, which is located at ub ¯ 0 (cf. Fig. 5). In

the third panel (0!α!γ), one has positive epistasis

with the fitness minimum situated at ub ! 0, and no

error threshold. For completeness, let us mention that

there is no error threshold in the case of stabilizing

selection either, where the fitness maximum is at a

surplus value between 0 and 1 (this is the case

γ!®α! 0, which we excluded from Fig. 5 since we

have been concentrating on directional selection

throughout the article).

We have, and will continue to, restrict ourselves to

the equilibrium behaviour here, although we have

chosen the setup (in particular the scaling) carefully to

also allow the analysis of the time evolution of the
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model. But this is a separate issue and will be deferred

to a future publication.

(iii) Onsager’s landscape

As suggested by the verbal description in Section 2(ii),

the fitness of configuration s under Onsager’s land-

scape is (again, up to an irrelevant constant term)

Rs ¯γ(N®2w)¯γ3
k
s
k
s
k+"

, where γ" 0, and w is

the number of domain walls in the configuration. We

assume cyclic boundary conditions for convenience,

i.e. s
N+l

¯ s
"

(other boundary conditions would not

change the qualitative behaviour of the solution – so

we may go for the simplest case). This corresponds to

a spin system with nearest-neighbour interactions as

first solved by Onsager, hence the name of this setting.

However, it should be noted that the neighbouring

relation need not be limited to spatial neighbours; we

might, as well, perform any renumbering of sites, thus

aiming at interactions of ‘logical’ neighbours rather

than spatial ones.

In Section 2, we have listed a few qualitative

properties of this fitness landscape. In particular, it

was intuitively clear that there is positive epistasis,

since the fraction of compensatory mutations increases

with the distance from the peak. We shall make this

more precise now by calculating rW (u), the average

fitness of a configuration with surplus u, or with

N+ ¯N(u ­1)}2 ‘­’ sites. In a random configuration

with surplus u, any site reads ‘­’ with probability

p¯ (1­u)}2, and ‘®’ with probability q¯ (1®u)}2.

Thus, between any pair of neighbouring sites, there is

a domain wall with probability 2pq¯ (1­u)(l®u)}2,

and the expected number of domain walls in the

configuration is w¯Npq¯N(1®u#)}2 (of course,

overlapping pairs of sites are not independent, but

recall that expectations are additive for sums of

random variables, even if these random variables

fail to be independent: cf. Feller 1968, chap. IX).

Therefore,

rW (u)¯γu#. (71)

That is, as far as the a�erage fitness of types with

surplus u is concerned, Onsager’s landscape coincides

with the quadratic fitness function with α¯0 and γ"0

(up to a factor of 2). But we shall see in a moment

that the behaviour is not governed by rW (u) alone. Let

us further remark that the whole distribution of the

number of domain walls is easily calculated, since the

problem translates directly into the statistics of runs in

sequences of Bernoulli trials, which is very well

studied (cf. Feller, 1968, chap. II), but we will not

pursue this here.

With Rs ¯γ3
k
s
k
s
k+"

, the mutation–reproduction

operator for Onsager’s landscape reads

(¯-­2¯µ3
i

(σx

i
®1)­γ3

i

σz

i
σz

i+"
. (72)

To solve this model, we now change our strategy.

For the previous landscapes, we have performed a

line-by-line derivation, since no literature on the

method is available that is accessible to the typical

theoretical biologist. For Onsager’s landscape, how-

ever, the solution may be followed in the famous

paper by Lieb et al. (1961), and there is also a very

helpful text available (Thompson, 1972). Adaptations

of this method to the biological situation can be found

in Wagner et al. (1998). To avoid duplication, we shall

therefore not dwell on the derivation here, but only

summarize the results.

Starting from explicit expressions for eigenvalues

and eigenvectors of ( for finite N, the limit N!¢ is

performed and yields two symmetric branches of

equilibria, just as with the corresponding quadratic

landscape. At µ¯γ, the branches coalesce, after

which there is only one branch left to survive. As a

function of h :¯µ}γ, the ground state energy (i.e.

mean fitness per site) is derived to read

rb ¯
2γ

π
(1­h)E

E

F

π

2
, θ

G

H

®µ, (73)

where

θ# :¯
4h

(1­h)#
, and

E

E

F

π

2
, θ

G

H

:¯&
π/#

!

o(1®θ#sin# (ψ))dψ (74)

is the complete elliptic integral of the second kind (cf.

Abramowitz & Stegun, 1970). Since the landscape is,

again, homogeneous (two-site interactions only), one

also has �
R
¯ 4µrb . Although this is not so obvious, rb

(and, consequently, �
R
) both have a non-analytic

point at h¯1 (the second derivative is discontinuous,

i.e. the phase transition is second order in the fitness

variable).

As in the case of the quadratic landscape, the

surplus does not correspond to any physical property

and must be calculated separately. This was done in

Wagner et al. (1998) and results in

ua ¯
1

2
3

4

o(1®h), h%1

0, h"1,
(75)

for the positive branch of the solution. Clearly, at h

¯1, the first derivative is discontinuous (i.e. the phase

transition is first order with respect to the surplus);

hence, the non-analyticity is more readily diagnosed

from this variable than from the mean fitness alone.

The results are depicted in Fig. 4. For small

mutation rates, the behaviour of mean and variance

in fitness is very similar to the corresponding

permutation-invariant model. For larger mutation

rates, however, there are obvious differences. The

surplus precipitates to zero, and a phase transition
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occurs in the sense that the mean fitness displays a

non-analyticity. But there is still appreciable fitness

left, and the variance remains very large. This reflects

the fact that fitness is not a function of the number of

deleterious mutations when compensatory mutations

are present: Here, we have very fit configurations

(­­­I­ ® ® ®I® as an extreme example)

whose distance from the fittest sequence is close to

that of a random sequence, and, at high mutation

rates, they will be present in appreciable amounts.

Recall that we have, in the ‘scaling and limits’

section, used this system to illustrate the time evolution

in the limit N!¢. Let us now come back to this

point and refer again to Fig. 3, where the time

evolution of the mean fitness is depicted for two

different (extreme) initial conditions, namely a purely

wild-type and a fully randomized population. Clearly,

convergence to equilibrium occurs within an evo-

lutionarily reasonable time span. Let us, however,

mention that other observables, which we have not

discussed here, may show a qualitatively different

behaviour. The time evolution of the �ariance of the

surplus, for example, shows what is called a ‘critical

slowing down’: In the vicinity of the critical point,

convergence towards the equilibrium becomes

infinitely slow (in genotype space), and the equilibrium

distribution of genotypes will never be reached,

although the mean fitness has long become stationary.

We only mention this here to hint at the complicated

rearrangements that may go on as a consequence of

compensatory mutations; for more details, see Wagner

et al. (1998).

7. Discussion

There are obvious parallels between the topics of

population genetics and statistical physics: Both deal

with a huge number of possible states, and there is no

way to observe them all. One is therefore interested in

a few statistical properties rather than all the details.

Since the mathematical tools of statistical physics are

highly developed, it is an obvious idea to try to apply

such methods to solve problems from population

genetics.

However, a one-to-one correspondence between

biological and physical models is rare, the differences

ranging from subtle to fundamental. In the realm of

mutation–selection models, the equivalence with a

classical two-dimensional Ising model had been known

for fifteen years (Leutha$ usser, 1986), but the inter-

actions arising in the biological model (long-range

within rows, nearest-neighbour between rows) proved

so different from those in typical physical models that

progress along these lines was limited. The quantum

chain picture overcomes this problem, but now care

must be exercised to distinguish carefully between

quantum-mechanical and classical quantities; in par-

ticular, the surplus differs from the quantum-mech-

anical magnetization in a fundamental way. Apart

from this, the translation is one-to-one, and the

dictionary reads

fitness% energy

additive part of fitness% interaction with

longitudinal field

epistatic part of fitness%within-chain interaction

equilibrium mean fitness% ground state energy

mutation% interaction with

transverse field

mutation rate% temperature-like

parameter

time% inverse temperature

error threshold%phase transition

The main benefit of the equivalence is that it makes

available the toolbox of quantum statistical mechanics

to calculate the leading eigenvalue of the mutation–

reproduction matrix, i.e. the mean fitness. This, in

turn, gives access to the corresponding eigenvector

and the surplus. Much more directly, one obtains the

mutation load. This is non-trivial as soon as one

leaves the territory where Haldane’s Principle holds

(i.e. the mutation load in haploids (or diploids without

dominance) equals the mutation rate if mutation is

unidirectional – independently of the fitness function, in

particular, independently of epistasis). Deviations

from Haldane’s Principle have been investigated in

situations with dominance and various schemes of

sexual reproduction but still with unidirectional

mutation; the overall picture is that positive epi-

stasis enhances the mutation load, whereas negative

epistasis alleviates it (Kimura & Maruyama, 1966;

Charlesworth, 1990; Higgs, 1994). We have explored

the other direction here, with symmetric mutation,

but still with haploid, asexual populations. Not

surprisingly, symmetric mutation by itself diminishes

the mutation load. For quadratic fitness functions

with epistasis, we again find that positive (negative)

epistasis enhances (decreases) the mutation load

relative to this zero-epistasis reference case. The same

holds true for Onsager’s landscape, which exhibits

compensatory mutations but positive epistasis, too

(cf. Fig. 4).

A phenomenon closely related to mutation loads is

the error threshold, which, so far, has no clear-cut

definition, but which we have tentatively identified

with a non-analytic point of the mean fitness. This

subsumes various types of behaviour. For example, in

the quadratic landscape with α¯ 0, selection ceases to

operate beyond a critical mutation rate; in contrast,

Onsager’s landscape displays a phase transition which
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is not obvious at the fitness level, but all the more

conspicuous at the genetic level. In both cases, there is

a non-analytic point in the limit N!¢, which marks

a qualitative change in the behaviour of the system.

The existence of error thresholds has been highly

controversial, and has been discussed from various

points of views. The first question is whether such a

phenomenon is observed in experiments. Answers

require fitness measurements at various (artificially

elevated) mutation rates, which are practically

unfeasible for organisms larger than bacteria. In

viruses with small RNA genomes, extinction of the

population is observed at increased levels of muta-

genesis (Holland et al., 1990; Domingo & Holland,

1997), which is taken as indicative of an error

threshold. However, the demonstration of a sharp

transition would require much more precise measure-

ments at very closely spaced mutation rates. In-

clusion of the genetic level, maybe through DNA

hybridization studies with the wild-type, might help to

clarify the picture, since this would yield a measure-

ment corresponding to our surplus. From the theor-

etical point of view, the main question is which fitness

landscapes have error thresholds. The examples

investigated in Charlesworth (1990), Wiehe (1997)

and the present study demonstrate that error

thresholds are not restricted to the sharply peaked

landscape. They further allow the speculation that

positive epistasis is a necessary, but not sufficient

condition for the existence of an error threshold (we

have seen in Fig. 5 that a further requirement is that

the (local) fitness minimum be located at a positive

surplus value). Although the models are admittedly

rather special, there is no reason to believe that the

result is atypical; this is due to what is known as

universality in physics (Kadanoff, 1976; Cardy, 1987).

Of course, the last but hardest question is: What are

biologically realistic fitness landscapes? The classical

mutation–selection experiments (Mukai et al., 1972)

yield data for RW
k
, the chromosome-wide average of

the fitness of a genotype with k mutations. For the

small range of k observed, the data are compatible

with a quadratic, permutation-invariant fitness func-

tion R
k

with positive epistasis. But, as pointed out in

Phillips et al. (2000), there is no reason to believe that

this function models the local interactions correctly.

On the contrary, detailed mutation experiments have

revealed all kinds of epistatic interactions locally,

without a general picture emerging so far (Whitlock et

al., 1995), and many of the interactions tend to cancel

each other when it comes to averages (Elena & Lenski,

1997). Further, it may be argued on theoretical

grounds that all kinds of interactions may exist; for

example, metabolic control theory is used by Phillips

et al. (2000) to demonstrate that, with a single gene

coding for an enzyme, positive and negative epistasis

are equally plausible to occur, depending on the state

of the remainder of the metabolic network. The

importance of individual interactions is corroborated

by our results on Onsager’s landscape, which has the

same a�erage fitness function rW (u) as a quadratic one,

but displays very different behaviour.

But let us return to the Drosophila data. Of course,

one crucial question concerns RW
k

for larger k than

those measured. It is hard to conceive that the fitness

function is concave throughout. In a forthcoming

paper, it will be shown that even convex regions of the

fitness function may lead to threshold behaviour. So

the case is not yet closed — not even for Drosophila.

The limit N!¢ was a crucial tool to simplify the

solution of the models, and to extract the characteristic

behaviour in an explicit manner. For finite N, there

cannot be a non-analytic point, which we used to

define error thresholds. In a large but finite system

with a quadratic fitness function, for example, the

second derivative of the mean fitness performs a steep

but smooth transition from γ to 0, which turns into a

jump for N!¢, cf. (61). To be conclusive, the limit

must be performed in a way which guarantees

maximum similarity between the behaviour of the

finite (biological) system and the infinitely large

(mathematical) one, as defined in (25). We have seen

that this requires extensive scaling of both mutation

and fitness, and gives access to observables such as the

mean and variance in fitness, or the fraction of

mutated sites, which involve simple averages over all

sites, without reference to the spatial structure within

the configuration. If ‘spatial’ aspects (such as the size

of domains) were to be investigated, a very different

approach would be required.

Readers with a physical background may have

wondered why we have not even mentioned critical

exponents. Critical exponents give the power laws of

the decay of a quantity in the vicinity of the critical

point ; for example, the surplus has exponent 1 in the

quadratic landscape with α¯ 0 and γ¯1, but

exponent 1}2 in Onsager’s landscape. These quantities

are measurable with high precision in physics and

convey crucial information about the nature of the

phase transition. As we have discussed above, how-

ever, the location of the error threshold (if any) is only

measureable with an enormous effort (if at all), and

precise characterization of the equilibrium for mu-

tation rates in the vicinity of the threshold is virtually

impossible. Also, finite population size would render

such observations meaningless, since it shifts error

thresholds to smaller mutation rates, and changes the

nature of the transition. For small mutation rates, on

the other hand, the behaviour is often very similar to

that of the infinite population (see Wiehe et al., 1995).

For these reasons, critical exponents seem to be less

meaningful from the biological point of view, and the

parameter regions far from the critical point are at

least as interesting.
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To conclude, this paper has been mainly concerned

with the development of novel methods for the analysis

of mutation–selection balance. We have illustrated

these methods by means of selected examples, which

included compensatory mutations in one case. It is

worth mentioning that these techniques can also be

applied to mutation–selection models with more than

two states per site (Hermisson et al., 2001). In a

forthcoming paper, we will apply our methods to the

general class of permutation-invariant landscapes and

draw more general biological conclusions.

Appendix. Ising’s model

(Ferro-)magnetic materials, such as iron, may be in

either of two states (or phases) : an ordered one (at low

temperature) and a disordered one (at high tem-

perature).† Which of them is present depends on the

interplay of two ‘forces’. The interaction between the

particles tends to align the magnetic moments, whereas

the thermal movement has a randomizing effect. At a

critical temperature, the latter becomes so strong that

the interaction between the particles is effectively

overcome, and a phase transition occurs from the

ordered into the disordered phase.

The classical model for the description of such

phenomena is the Ising model. For readers unfamiliar

with the matter, we recommend Thompson (1972) as

a really lucid text. According to Ising’s model, particles

are considered as localized at the vertices of a

rectangular lattice patch, and their magnetic moments

(or spins) may only assume two directions, which may

be identified with ‘north’ and ‘south’, or ­l and ®1,

respectively. For a patch with N columns and M

rows, there are thus 2MN possible configurations

c ` ²­1, ®1´MN. Every configuration has an energy

E(c) ; E is a mapping from configuration space to the

real numbers, and depends on the details of the

interaction between the particles. It is well known

that, in thermodynamic equilibrium, the probabilities

p(c) of the configurations follow the Boltzmann

distribution, i.e.

p(c)¯
exp(®βE(c))

Z
, (A1)

where β :¯1}(kT ) is the in�erse temperature (with k

being Boltzmann’s constant, and T the absolute

temperature), and Z is the partition function

Z :¯3
c

exp(®βE(c)). (A2)

The partition function appears just as a normalization

factor here, but is, in fact, a generating function and,

as such, a quantity of fundamental importance. After

† More precisely, the phases in question have or do not have
spontaneous magnetization.

all, all macroscopic properties of the system may be

derived from it (in the literal sense indeed, since the

operation involves differentiation). One therefore

seeks to calculate Z once the model (i.e. E(c)) is

specified, but this tends to be a formidable task due to

the large number of configurations involved.

For two-dimensional systems on a rectangular

patch, the transfer matrix method is appropriate,

which solves the problem at least formally, as long as

the interactions do not span more than two neigh-

bouring rows. It will also provide the link to the

evolution model. The (row-to-row) transfer matrix is

a 2N¬2N matrix which ‘transports’ the distribution of

‘row configurations’ from one row of the lattice patch

to the next. The calculation of Z for the patch is then

achieved by starting from the equidistribution at the

bottom row, successive application of the transfer

matrix, and summing up the result at the last row.

To be more specific, let a configuration be defined

through its row configurations si :¯ (si
"
, si

#
, … ,si

N
),

i¯1, … , M (i.e. the superscripts label rows, the

subscripts label columns). Assume that the interaction

energy within a row with configuration s is given by

E(s), and interaction between the rows is nearest

neighbour, i.e. every pair of neighbouring spins in the

vertical direction yields an energy contribution of

®Jsi+"
j

si
j
, where J determines the strength of the

interactions; so there are negative energy contri-

butions from all neighbouring pairs which are alike,

and positive ones from those which are different. The

energy of the whole configuration then reads

E(c)¯ 3
M

j="

E

F

®0J3
N

i="

s j+"
i

s j

i1­E(s j )
G

H

. (A3)

The corresponding row-to-row transfer matrix (cf.

Thompson, 1972) has elements

Ts«s ¯ exp
E

F

βJ3
i

s«
i
s
i

G

H

exp(®βE(s)). (A4)

Let us now link the transfer matrix with our

mutation–selection model. To this end, we consider a

discrete-time version of (3),

x(t­τ)¯67x(t) (A5)

where τ denotes the duration of one generation.

Equation (A5) is obtained through the identifications

6¯ exp(τ-) and 7¯ exp(τ2). (A6)

More explicitly, the elements of the diagonal matrix

7 are ws ¯ exp(τRs) (the well-known relationship

between Wrightian and Malthusian fitness : cf. Crow

& Kimura, 1970), and the elements of 6 are the

mutation probabilities

�s«s ¯ pD(s«,s)(1®p)N−D(s«,s), (A7)

with p¯ e−µτsinh(µτ), which belong to the quasi-

species model (5), to which the transfer matrix
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Position in sequence
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Fig. A1. Line of descent as a two-dimensional,
anisotropic Ising model. Sequences descending from each
other (i.e. grandmother–mother–daughter) form the rows
of the lattice. This way, columns correspond to sequence
positions, rows to generations, and the transition from
one row to the next is governed by the
mutation–reproduction matrix 67. If the letters of the
sequence are identified with spins, every line of descent
corresponds to one possible configuration of a two-
dimensional Ising model, and the transfer matrix takes
the role of the mutation–reproduction matrix.
Interactions are anisotropic : Interactions between the
rows (dashed) are nearest-neighbour and correspond to
mutation. Interactions within the rows (continuous lines)
may be arbitrary and long range, but are identical for
every row. Their presence or absence, as well as their
strengths, define the fitness landscape in the sense of a
mapping from sequence space into the real numbers.

approach was applied in the first place (Leutha$ usser,

1986). Actually, Leutha$ usser (1986, 1987) showed

that the mutation–reproduction matrix 67 is exactly

equivalent to the transfer matrix of a two-dimensional

Ising model of the type just described. This is because

its elements may be rewritten as

(67)s«s ¯ (p(1®p))N/#[exp

E

F

β

2
3
j

s«
j
s
j

G

H

exp(Rsτ),

(A8)

where β¯ ln(p}(1®p)). The analogy with (A4) is then

apparent (note that (p(1®p))N/# is a constant factor

independent of the spin configuration).

We have reproduced this result here because there is

a plausible biological picture behind this equivalence.

This is the line of descent depicted in Fig. A1, which

is obtained when sequences are piled on top of each

other generation-wise (i.e. grandmother–mother–

daughter–granddaughter sequence) ; note that the

result is a genealogy in the sense of a single lineage,

not in the sense of the coalescent (it does not bifurcate).

A line of descent may now be identified with a

configuration of a two-dimensional Ising lattice patch,

where the columns correspond to positions in the

sequence, and the rows to generations. The present

time corresponds to the (upper) patch surface. The

Fig. A2. Short-generation or anisotropic limit. The lattice
is as in Fig. A1, with columns corresponding to sequence
positions and rows to generations. The distance between
rows tends to zero, whereas the distance between columns
remains constant. This way, the line of descent with
discrete generations turns into the parallel
mutation–selection model in continuous time, and the
classical Ising model is replaced by an Ising quantum
chain.

interactions defining this Ising model are anisotropic.

They are nearest-neighbour between rows; this corre-

sponds to mutation, which proceeds independently at

every site, and has no memory of previous generations.

Within rows, on the other hand, interactions may be

very complicated and long-ranged – just imagine a

protein folding back upon itself. These interactions

represent the fitness landscape, i.e. they define the

mapping from sequences (i.e. row configurations) into

fitness values. The fitness of a sequence, in turn,

corresponds to the interaction energy within the row.

Since the landscape is stagnant, the interactions (but

not the fitness!) are the same for every row. More

precisely, the fitness landscape may be decomposed

into interaction coefficients η
I
in the way described in

the main text. The interaction pattern stored in these

coefficients may be visualized as in Fig. 2. It may be

understood as a recipe of how to determine the fitness

given the sequence. This recipe is the same for every

sequence; hence the interactions are identical in all

rows of the lattice.

The translation between biological and physical

quantities may be continued. In particular, an infinite

biological population (together with its history)

corresponds to an ensemble of Ising configurations,

the mutation rate corresponds to a temperature-like

parameter (cf. (A4) and (A8)), and the error threshold

may be identified with a phase transition of the

system. Apart from its intuitive appeal, this equiv-

alence makes available the highly developed tools of

statistical physics for use in population genetics.

However, over the past ten years, only few

applications have made use of it, and progress along

these lines has been surprisingly sparse. Apart from

the case of multiplicative fitness, there are still no

landscapes for which exact solutions are available.

After all, a few approximate and numerical studies

have exploited the transfer matrix method (e.g.

Tarazona, 1992). The reason for the general sparseness

of results seems to be that, in exp(τ-) exp(τ2),

horizontal and vertical interactions of all orders mix.

Thismay be seen by evaluating the matrix exponentials

and writing their product in terms of sums of products
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of Pauli matrices, which results in ‘mutation’ (σx) term

which are influenced by ‘reproduction’ terms (σz), and

vice versa. In contrast, mutation and reproduction

interactions remain separate in -­2.

But let now τ in (A5) and (A6) shrink to zero, as in

Fig. A2, so that the number of generations per unit

time goes to infinity (which corresponds to overlapping

generations) ; biologically, this is the short-generation

limit. In the corresponding physical picture, this

process is known as the anisotropic limit, and it leads

from the classical Ising model to the quantum chain

described in the main text. Mathematically, the

corresponding limit reads n!¢ under τ!0 with nτ¯
t¯ const, and it follows from the Trotter formula

(Reed & Simon, 1980, thm. VIII.29) that

(VW )n

¯
E

F

exp

E

F

t

n
-

G

H

exp

E

F

t

n
2

G

H

G

H

n

MN
n!¢

exp(t(-­2));

(A9)

convergence is with respect to any matrix norm (cf.

Wagner et al., 1998). Hence, the solution of the

discrete time equation converges to that of the parallel

one in the short generation limit.

To recapitulate, the transfer matrix picture involves

a one-to-one correspondence between an indi�idual

(and its history) and a spin system. In contrast, in the

quantum-mechanical picture developed in the main

text, the collection of spins corresponds to the whole

population.

It is our pleasure to thank M. Baake, J. Hermisson and O.
Redner for helpful discussions, and for critically reading the
manuscript. We are grateful to N. Barton, K. Dawson and
P. Higgs for their constructive criticism.
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