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Abstract

The Poiseuille flow of a generalized Maxwell fluid is discussed. The velocity field
and shear stress corresponding to the flow in an infinite circular cylinder are obtained
by means of the Laplace and Hankel transforms. The motion is caused by the infinite
cylinder which is under the action of a longitudinal time-dependent shear stress. Both
solutions are obtained in the form of infinite series. Similar solutions for ordinary
Maxwell and Newtonian fluids are obtained as limiting cases. Finally, the influence
of the material and fractional parameters on the fluid motion is brought to light.
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1. Introduction

The study of viscoelastic fluids has many applications in industrial processes. These
include the extrusion of polymer fluids, cooling of a metallic plate in a bath, food
stuffs, exotic lubricants, and colloidal and suspension solutions. The classical Navier–
Stokes theory is inadequate to describe the flows of such fluids, whose non-Newtonian
characteristics include stress relaxation, the normal stress difference, shear thinning or
thickening, and many others. Due to the complexity of non-Newtonian fluids, various
models for viscoelastic fluids have been proposed. Among these, the rate-type models
have received much attention during the last few years [1, 6, 7, 19]. There are very few
cases in which exact solutions for the motion equations of flows of non-Newtonian
fluids can be obtained. However, it is usually necessary to study non-Newtonian
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fluid flows in many engineering fields such as oil exploration, the polymer chemical
industry, and bio-engineering. The Maxwell fluid is the most common non-Newtonian
viscoelastic fluid in industrial fields, such as polymer solutions. It is the simplest rate-
type fluid in which the relaxation phenomena are taken into consideration. The first
exact solutions for unsteady motions of such fluids seem to have been obtained by
Srivastava [18].

Recently, fractional calculus has been very successful in the description of complex
dynamics such as relaxation, oscillation, wave behaviour and viscoelastic behaviour.
The starting point of the fractional derivative model of non-Newtonian fluids is
usually a classical differential equation which is modified by replacing the time
derivative of an integer order by a time fractional derivative. This generalization
allows us to define precisely noninteger order integrals or derivatives. Many exact
solutions corresponding to different motions of non-Newtonian fluids with fractional
derivatives have been established, but we mention here only a few in cylindrical
domains [2, 5, 11, 12, 16, 17, 20, 21]. Furthermore, the one-dimensional fractional
derivative Maxwell model has been very useful in modelling the linear viscoelastic
response of some polymers in the glass transition and the glass state [10]. In other
cases, it has been shown that the governing equations employing fractional derivatives
are also linked to molecular theories [8]. The use of fractional derivatives in the context
of viscoelasticity was first proposed by Germant [9]. Later, Bagley and Torvic [3]
demonstrated that the theory of viscoelasticity of coiling polymers predicts constitutive
relations with fractional derivatives, and Makris et al. [14] achieved a very good fit to
experimental data when the fractional derivative Maxwell model was used instead of
the Maxwell model for the silicon gel fluid. However, it is worth pointing out that
almost all of the aforementioned works deal with problems in which the velocity is
given on the boundary.

The aim of this paper is to discuss the Poiseuille flow of a generalized Maxwell
fluid in an infinite circular cylinder that applies a time-dependent shear to the fluid.
More precisely, we establish exact solutions for the velocity field and the adequate
shear stress corresponding to the motion of such a fluid induced by an infinite cylinder
subject to a time-dependent shear stress of the form (3.1). The solutions that have
been obtained, presented as series forms in terms of the generalized Ra,b(·, t) and
Ga,b,c(·, t) functions, can be easily reduced to give similar solutions for ordinary
Maxwell and Newtonian fluids undergoing the same motion. Finally, the influence of
pertinent parameters on the fluid motion is illustrated via some numerical examples.

2. Governing equations

The motions to be considered here have velocity field v and shear stress S of the
form

v= v(r, t)= v(r, t)ez, S= S(r, t), (2.1)

where ez is the unit vector in the z-direction of the cylindrical coordinate system r, θ
and z. For such flows, the constraint of incompressibility is automatically satisfied and

https://doi.org/10.1017/S1446181111000514 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181111000514


418 W. Akhtar, C. Fetecau and A. U. Awan [3]

the governing equations corresponding to incompressible Maxwell fluids are [6](
1+ λ

∂

∂t

)
τ(r, t)= µ

∂v(r, t)

∂r
,(

1+ λ
∂

∂t

)
∂v(r, t)

∂t
= ν

(
∂2

∂r2 +
1
r

∂

∂r

)
v(r, t),

(2.2)

where τ(r, t)= Sr z(r, t) is the shear stress, λ the relaxation time, µ the dynamic
viscosity, ν = µ/ρ the kinematic viscosity, and ρ the constant density of the fluid.

The governing equations corresponding to the generalized Maxwell fluids (GMF),
undergoing the same motion, are

(1+ λDα
t )
∂v(r, t)

∂t
= ν

(
∂2

∂r2 +
1
r

∂

∂r

)
v(r, t), (2.3)

(1+ λDα
t )τ (r, t) = µ

∂v(r, t)

∂r
, (2.4)

where the fractional differential operator Dα
t is defined by [15]

Dα
t f (t)=

1
0(1− α)

d

dt

∫ t

0

f (τ )

(t − τ)α
dτ, 0< α < 1, (2.5)

in which 0(·) is the Gamma function. In order to obtain the above governing equations,
we assumed that there is no pressure gradient in the flow direction. Furthermore,
although we have kept the same notation, the new material constant λ has the
dimension of tα and reduces to the relaxation time if α→ 1.

In the following section, the fractional partial differential equations (2.3) and
(2.4), with appropriate initial and boundary conditions, will be solved by means of
the finite Hankel and Laplace transforms. In order to avoid lengthy calculations
of residues and contour integrals, the discrete inverse Laplace method will be
used [2, 5, 11, 12, 16, 17, 21].

3. Longitudinal flow through an infinite circular cylinder

Let us consider an incompressible GMF at rest in an infinite circular cylinder of
radius R. At time t = 0+, the cylinder is suddenly pulled with the time-dependent
shear stress

τ(R, t)=
f

λ
Rα,−2

(
−

1
λ
, t

)
, (3.1)

where the generalized Ra,b(c, t) functions are defined by

Ra,b(c, t)=
∞∑

n=0

cnt (n+1)a−b−1

0[(n + 1)a − b]
, Re(a − b) > 0.
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Owing to the shear, the fluid is gradually moved. Its velocity is of the form (2.1)
while the governing equations are (2.3) and (2.4). The appropriate initial and boundary
conditions are

v(r, 0)= 0, r ∈ [0, R), (3.2)

(1+ λDα
t )τ (R, t)= µ

∂v(r, t)

∂r

∣∣∣∣
r=R
= f t, t ≥ 0, (3.3)

where f is a constant. Of course, as we shall later see, τ(R, t) given by (3.1) is just the
solution of the fractional differential equation (3.3). For α→ 1, (3.1) takes the form

τ(R, t)= f [t − λ(1− e−t/λ)], (3.4)

corresponding to an ordinary Maxwell fluid. Taking λ→ 0, (3.4) reduces to the simple
form

τ(R, t)= f t (3.5)

and corresponds to a problem with a constantly accelerating shear on the boundary. A
similar problem, with f instead of f t in (3.3), has been studied in [6]. For Newtonian
and second-grade fluids [2] it corresponds to a constant shear stress on the boundary.

3.1. Calculation of the velocity field Applying the Laplace transform to (2.3)
and (3.3) and using the Laplace transform formula for sequential fractional
derivatives [15], we obtain

(q + λqα+1)v(r, q) = ν

(
∂2v(r, q)

∂r2 +
1
r

∂v(r, q)

∂r

)
, (3.6)

∂v(R, q)

∂r
=

f

µq2 , (3.7)

where

v(r, q)=
∫
∞

0
v(r, t)e−qt dt

is the Laplace transform of v(r, t). In the following calculations we denote by

vH (rn, q)=
∫ R

0
rv(r, q)J0(rrn) dr (3.8)

the finite Hankel transform of v(r, q), where rn, n = 1, 2, 3, . . . are the positive roots
of the transcendental equation J1(Rr)= 0. Here J0(·), J1(·) are Bessel functions of
the first kind.

Multiplying both sides of (3.6) by rJ0(rrn), integrating with respect to r from 0
to R and taking into account the condition (3.7) and the identity [4]∫ R

0
r

[
∂2v(r, q)

∂r2 +
1
r

∂v(r, q)

∂r

]
J0(rrn) dr

= R J0(Rrn)
∂v(R, q)

∂r
− r2

nvH (rn, q), (3.9)
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we find that

vH (rn, q)=
R f

ρ
J0(Rrn)

1

q2(q + λqα+1 + νr2
n )
. (3.10)

Now, for a more suitable presentation of the final results, we rewrite (3.10) in the
equivalent form

vH (rn, q)= v1H (rn, q)+ v2H (rn, q), (3.11)

where

v1H (rn, q)=
R f J0(Rrn)

r2
n

1

µq2 ,

v2H (rn, q)=−
R f J0(Rrn)

µr2
n

1+ λqα

q(q + λqα+1 + νr2
n )
.

(3.12)

The inverse Hankel transforms of the functions v1H (rn, q) and v2H (rn, q) are [4]

f r2

2R

1

µq2 and −
2 f

µR

∞∑
n=1

J0(rrn)

r2
n J0(Rrn)

1+ λqα

q(q + λqα+1 + νr2
n )
, (3.13)

respectively. Using the above results, we obtain

v(r, q)=
f r2

2R

1

µq2 −
2 f

µR

∞∑
n=1

J0(rrn)

r2
n J0(Rrn)

1+ λqα

q(q + λqα+1 + νr2
n )
, (3.14)

and we write the last factor in the summand of the infinite series as

1+ λqα

q(q + λqα+1 + νr2
n )
=

1+ λqα

λq2[(qα + 1/λ)+ (νr2
n/λ)q−1]

=

∞∑
k=0

(1+ λqα)(−(νr2
n/λ)q

−1)k

λq2(qα + 1/λ)k+1

=

∞∑
k=0

1
λ

(
−
νr2

n

λ

)k q−k−2
+ λqα−k−2

(qα + 1/λ)k+1 . (3.15)

To obtain the velocity field v(r, t)= L−1
{v(r, q)}, we use (3.15) and the formula [13]

L−1
{

qb

(qa − d)c

}
= Ga,b,c(d, t), Re(ac − b) > 0, (3.16)

where

Ga,b,c(d, t)=
∞∑
j=0

d j0(c + j)

0(c)0( j + 1)
t (c+ j)a−b−1

0[(c + j)a − b]
(3.17)

are the generalized G-functions.

https://doi.org/10.1017/S1446181111000514 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181111000514


[6] Exact solutions for the Poiseuille flow of a generalized Maxwell fluid 421

Finally, we obtain the velocity field in the following form:

v(r, t) =
f r2

2µR
t −

2 f

µR

∞∑
n=1

J0(rrn)

r2
n J0(Rrn)

∞∑
k=0

1
λ

(
−
νr2

n

λ

)k

×

[
Gα,−k−2,k+1

(
−

1
λ
, t

)
+ λGα,α−k−2,k+1

(
−

1
λ
, t

)]
. (3.18)

3.2. Calculation of the shear stress By applying the Laplace transform to (2.4), we
find that

τ(r, q)=
µ

1+ λqα
∂v(r, q)

∂r
. (3.19)

Differentiating (3.14) with respect to r and using the result in (3.19), we obtain

τ(r, q) =
r f

R

1

q2(1+ λqα)
+

2 f

R

∞∑
n=1

J1(rrn)

rn J0(Rrn)

1

q(q + λqα+1 + νr2
n )

=
r f

λR

q−2

qα + 1/λ
+

2 f

R

∞∑
n=1

J1(rrn)

rn J0(Rrn)

×

∞∑
k=0

1
λ

(
−
νr2

n

λ

)k q−k−2

(qα + 1/λ)k+1 . (3.20)

Applying the inverse Laplace transform to (3.20) and using the relation [13, (21)]

L−1
{

qb

qa − c

}
= Ra,b(c, t), Re(a − b) > 0, Re(q) > 0,

where Ra,b(c, t) has been defined in Section 3, we find that the shear stress τ(r, t)
takes the simple form

τ(r, t)=
r f

λR
Rα,−2

(
−

1
λ
, t

)
+

2 f

R

∞∑
n=1

J1(rrn)

rn J0(Rrn)

∞∑
k=0

1
λ

(
−
νr2

n

λ

)k

Gα,−k−2,k+1

(
−

1
λ
, t

)
. (3.21)

4. Limiting cases

We now consider the following limiting cases.
(1) Taking α→ 1 in (3.18) and (3.21), we obtain the velocity field

v(r, t) =
f r2

2µR
t −

2 f

µR

∞∑
n=1

J0(rrn)

r2
n J0(Rrn)

∞∑
k=0

1
λ

(
−
νr2

n

λ

)k

×

[
G1,−k−2,k+1

(
−

1
λ
, t

)
+ λG1,−k−1,k+1

(
−

1
λ
, t

)]
(4.1)
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and shear stress

τ(r, t) =
r f

λR
R1,−2

(
−

1
λ
, t

)
+

2 f

R

∞∑
n=1

J1(rrn)

rn J0(Rrn)

∞∑
k=0

1
λ

(
−
νr2

n

λ

)k

G1,−k−2,k+1

(
−

1
λ
, t

)
(4.2)

corresponding to an ordinary Maxwell fluid undergoing the same motion.
By using (A.3), (A.4) and (A.6) from the Appendix, the above expressions can be

written in the simplified forms

v(r, t) =
f r2

2µR
t −

2 f

νµR

∞∑
n=1

J0(rrn)

r4
n J0(Rrn)

×

[
1−

{
ch(bnt)+

1− 2λνr2
n

an
sh(bnt)

}
e−t/2λ

]
, (4.3)

τ(r, t) =
r f

R
[t − λ(1− e−t/λ)]

+
2 f

νR

∞∑
n=1

J1(rrn)

r3
n J0(Rrn)

[
1−

{
ch(bnt)+

sh(bnt)

an

}
e−t/2λ

]
, (4.4)

where an =
√

1− 4λνr2
n , bn = an/(2λ).

(2) Taking λ→ 0 in (4.3) and (4.4) and using

lim
λ→0

(an)= 1, lim
λ→0

(bn)=∞,

lim
λ→0

e−t/2λch(bnt)= lim
λ→0

e−t/2λsh(bnt)=
1
2

e−νr2
n t ,

(4.5)

we find the velocity field

v(r, t)=
f r2

2µR
t −

2 f

µνR

∞∑
n=1

J0(rrn)

r4
n J0(Rrn)

[1− e−νr2
n t
] (4.6)

and shear stress

τ(r, t)=
r f t

R
+

2 f

νR

∞∑
n=1

J1(rrn)

r3
n J0(Rrn)

[1− e−νr2
n t
] (4.7)

for a Newtonian fluid undergoing the same motion.

5. Conclusion and numerical results

The velocity field and the associated shear stress corresponding to the longitudinal
flow induced by an infinite circular cylinder in an incompressible generalized Maxwell
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fluid have been determined using Laplace and Hankel transforms. The motion is
produced by the infinite circular cylinder that is initially pulled with a time-dependent
shear along its axis. The solutions that have been obtained, written in terms of the
generalized R and G-functions, satisfy all imposed initial and boundary conditions. In
the special case when α→ 1, or α→ 1 and λ→ 0, the corresponding solutions for
ordinary Maxwell and Newtonian fluids, undergoing the same motion, are obtained.

It is worth pointing out that the flow that has been studied here, unlike that from [6],
is unsteady and remains unsteady for all kinds of fluids. Furthermore, the solutions
corresponding to ordinary Maxwell and Newtonian fluids, resulting from (4.3), (4.4)
and (4.6), (4.7), are written as a sum of the large-time and transient solutions. The
large-time solutions for velocity,

vN L(r, t)= vM L(r, t)=
f r2

2µR
t −

2 f

νµR

∞∑
n=1

J0(rrn)

r4
n J0(Rrn)

, (5.1)

are identical, while those corresponding to the shear stress,

τN L(r, t)=
r f t

R
+

2 f

νR

∞∑
n=1

J1(rrn)

r3
n J0(Rrn)

(5.2)

and

τM L(r, t)=
r f

R
[t − λ(1− e−t/λ)] +

2 f

νR

∞∑
n=1

J1(rrn)

r3
n J0(Rrn)

, (5.3)

are different. The flow studied in [6] ultimately becomes steady, and the steady
solutions corresponding to ordinary Maxwell and Newtonian fluids,

vN S(r)= vM S(r)=
R1 f

µ
ln
(

r

R2

)
and τN S(r)= τM S(r)=

R1 f

r
, (5.4)

are identical.
Finally, the influence of the pertinent parameters on the velocity field and shear

stress is illustrated in Figures 1–6. A series of calculations was performed for
different situations with typical values. For example, we chose ρ = 900 and ν = 0.05,
corresponding to the values of crude oil, and different values of λ and α were chosen
to illustrate their effects on the flow. Figures 1 and 2 show the influence of the
fractional parameter α and the relaxation time λ on the fluid velocity. Qualitatively,
their influence seems to be the same. In the neighbourhood of the cylinder the velocity
field v(r, t) is an increasing function of α and λ, while it decreases around its axis.
From Figure 3, as was to be expected, we see that for λ→ 0 and α→ 1, the diagrams
of the velocity corresponding to Newtonian and generalized Maxwell fluids are almost
identical.

The remaining figures give similar representations for the shear stress τ(r, t). They
are in accordance with those corresponding to the velocity field. The shear stress,
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1(r)

2(r)

3(r)

    = 0.9

0

0.1

0.2

0.3

–0.5 0 0.5
r

–1 1

  = 0.2

 = 0.6

α

α

α

FIGURE 1. Profiles of the velocity field v(r, t) given by (3.18), for ν = 0.05, ρ = 900, R = 1, f = 5,
λ= 2, t = 5 s and different values of α.

λ = 0.4

λ = 1.0

λ = 2.0

0

0.1

0.2

0.3

–0.5 0 0.5
r

–1 1

1(r)

2(r)

3(r)

FIGURE 2. Profiles of the velocity field v(r, t) given by (3.18), for ν = 0.05, ρ = 900, R = 1, f = 5,
α = 0.85, t = 5 s and different values of λ.
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(r)

N(r)

r

0.02

0.04

0.06

0.08

0.1

–1 –0.5 0 0.5 1

FIGURE 3. Profiles of the velocity field v(r, t) given by (3.18) (curve v(r)) and vN(r, t) given by (4.6)
(curve vN(r)) for ν = 0.05, ρ = 900, R = 1, f = 5, α = 0.7, λ= 0.1 and t = 2 s.

τ1(r) 

τ2(r)

τ3(r)

r

–40

–20

0

20

40

–1 –0.5 0 0.5 1

 = 0.2α

 = 0.6 α

 = 0.9 α

FIGURE 4. Profiles of the shear stress τ(r, t) given by (3.21) for ν = 0.05, ρ = 900, R = 1, f = 5,
λ= 2, t = 5 s and different values of α.
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τ2(r) 

τ3(r)

r

λ = 0.4

λ = 1.0 

λ = 2.0 

–100

–50

0

50

100

–1 –0.5 0 0.5 1

FIGURE 5. Profiles of the shear stress τ(r, t) given by (3.21) for ν = 0.05, ρ = 900, R = 1, f = 5,
α = 0.85, t = 5 s and different values of λ.
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–20
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0

10

20

–1 –0.5 0 0.5 1

FIGURE 6. Profiles of the shear stress τ(r, t) given by (3.21) (curve τ (r)) and τN(r, t) given by (4.7)
(curve τN(r)) for ν = 0.05, ρ = 900, R = 1, f = 5, α = 0.7, λ= 0.1 and t = 2 s.
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as shown in Figures 4 and 5, is zero at the middle of the channel and maximal on
the boundary. It is a decreasing function with respect to α and λ on the whole flow
domain. From Figure 6 it is also seen that for λ→ 0 and α→ 1, the diagrams of the
shear stress corresponding to the two models (Newtonian and generalized Maxwell)
are almost identical.

In order to bring to light the effect of fractional derivatives on the fluid motion,
special attention has to be given to Figures 1 and 4. From Figure 1, for instance, it is
clear that the fractional Maxwell fluid flows more slowly near the boundary and faster
in the middle of the channel in comparison with the ordinary Maxwell fluid. From
Figure 3 it is also seen that the Newtonian fluid, as expected, is the faster moving.
The units of the constants in Figures 1–6 are SI units and the roots rn have been
approximated by (4n + 1)π/(4R).
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Appendix

We consider the function

G(rn, q)=
1

λq2 + q + νr2
n
=

1
λ

1

(q + 1/(2λ))2 − (1− 4λνr2
n )/(4λ2)

.

Let us denote an =
√

1− 4λνr2
n , bn = an/(2λ), so that

G(rn, q) =
1
λ

1

(q + 1/(2λ))2 − (bn)2
=

1
λbn

bn

(q + 1/(2λ))2 − (bn)2

=
2
an

bn

(q + 1/(2λ))2 − (bn)2

and

L−1
{G(rn, q)} =

2
an

e−t/2λsh(bnt). (A.1)

On the other hand, G(rn, q) can be written in the form

G(rn, q) =
1
λq

1

(q + 1/λ)+ (νr2
n/λ)q−1 =

1
λ

q−1

(q + 1/λ)+ (νr2
n/λ)q−1

=
1
λ

∞∑
k=0

(−νr2
n/λ)

kq−k−1

(q + 1/λ)k+1 ,
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and thus

L−1
{G(rn, q)} =

∞∑
k=0

1
λ

(
−
νr2

n

λ

)k

G1,−k−1,k+1

(
−

1
λ
, t

)
. (A.2)

From (A.1) and (A.2) we obtain (with an, bn defined as above)

∞∑
k=0

1
λ

(
−
νr2

n

λ

)k

G1,−k−1,k+1

(
−

1
λ
, t

)
=

2
an

e−t/2λsh(bnt), (A.3)

∞∑
k=0

(
−
νr2

n

λ

)k

G1,−k−2,k+1

(
−

1
λ
, t

)
=

λ

νr2
n

[
1−

{
ch(bnt)+

1
an

sh(bnt)

}
e−t/2λ

]
, (A.4)

G1,−1,1

(
−

1
λ
, t

)
=

∞∑
j=0

(
−

1
λ

) j t j+1

0( j + 2)

=−λ

∞∑
j=0

(−t/λ) j+1

( j + 1)!
= λ[1− e−t/λ

], (A.5)

G1,−2,1

(
−

1
λ
, t

)
= λ[t − λ(1− e−t/λ)]. (A.6)
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