OBJECTIVE: A single paragraph stating the hypothesis to be tested, or the observation or measurement to be made, and the methodological approach that will be taken to achieve the aims.

METHODS: Materials and procedures should be described in sufficient detail to enable replication. Results should not be included in the Methods section. This section should be brief but provide sufficient information to permit others to replicate the study. Pertinent details of species, apparatus and equipment, procedures and experimental design should be described. All experiments involving human subjects must be conducted in accordance with principles embodied in the Declaration of Helsinki (Code of Ethics of the World Medical Association). Experiments involving animals must conform to the principles regarding the care and use of animals adopted by the American Physiological Society and the Society for Neuroscience. The Editor may refuse papers that provide insufficient evidence of adherence to these principles.

RESULTS: This section may contain subheadings. Authors should ensure that the results are presented clearly and concisely, using Figures and Tables to summarize or illustrate the important findings.

CONCLUSIONS: The main conclusions that obtain directly and unambiguously from the results should be provided in one or two succinct paragraphs. Each conclusion should be stated as a declarative sentence in a bulleted paragraph, with one sentence for each conclusion. These are a simple statement by the author of the facts obtained from the results, without any interpretation, extrapolation, or equivocation.

DISCUSSION: Interpretation of the conclusions with respect to the hypothesis and the significance to the field should be discussed. Careful consideration of the conclusions for accuracy and alternative interpretations, and any potential conflicts or resolution of conflicts in the field is encouraged. Limited speculation and directions for future research can be included.

ACKNOWLEDGEMENTS: Use a separate page to recognize the contributions of individuals and supporting institutions.

REFERENCES: The Harvard (author-date) system should be used in the text and a complete list of References cited given at the end of the manuscript. Unpublished original communications, and manuscripts submitted for publication should be cited in the text and the supporting material submitted with the manuscript. In a text citation of a work by more than three authors, cite the first author's name followed by et al. (but the names of all the authors must be given in the References section). In the text, references should be cited in the following styles: Hagge (2001); Stevens et al. (2002); Sanes & Scheller (1997); Chalal et al. (2002). The alphabetical list of references cited in a new page, and must be typed double-spaced. Each in-text citation must include data such as videos, -D structures/images and any other supplementary material included in their article.

Neuron Glia Biology

Aims And Scope

Neuron Glia Biology publishes high-quality original research articles reporting significant findings in the field of neuron–glia interactions, but reviews and concise summaries of relevant research are welcome. The scope of interest encompasses studies on cell–cell communication between cells in the brain and peripheral nervous system, including glial–glial, neurite–glial, neurite–vascular or immune system interactions. Studies of cellular or molecular mechanisms of cell–cell communication during development, information processing, and disease, via diffusible messenger molecules, growth factors and cytokines, membrane receptors, channels and transporters, cell adhesion and extracellular matrix molecules are of interest. Methodological approaches including ultrastructure, live cell imaging, electrophysiology, molecular biology, transplantation, to investigate such biological processes as synaptogenesis, synaptic plasticity, nervous system development, morphogenesis, process outgrowth and retraction, information processing, myelination, and activity-dependent communication between neurons and non-neuronal cells are appropriate. Research studies with medical implications, including human diseases, are relevant. Authors should focus on basic science. Issues are printed on a bimonthly interval, and individual papers on average take up one page.

Manuscript Submission and Review

Neuron Glia Biology accepts electronic submission of manuscripts, allowing authors to benefit from faster review and earlier, online publication. Authors should submit their manuscripts online through the Manuscript Central website http://mc.manuscriptcentral.com/ngb. Authors who are unable to submit online should contact either of the Editor-in-Chief for assistance. For the purposes of reviewing, high-resolution graphics are not necessary, except in rare cases of resolution or print quality, but should ensure that they are of sufficient quality for viewing on-screen or by laser printing. On acceptance, high-resolution versions should be submitted, along with high-quality color copies of the published figure legends and table captions, and must be provided with the manuscript. Full instructions and Help function are available on the site.

Each manuscript will normally be reviewed by at least two referees with relevant scientific experience. Authors may suggest appropriate reviewers, but final selection of referees will be made by the Editor. Reviewers are asked to evaluate manuscripts for their scientific merit and clarity of presentation and to voice any concerns related to the wellness of human and animal subjects. Each effort will be made to notify authors of the reviewers' recommendations within four/five/six weeks of receipt of a manuscript.

Manuscript Preparation and Style

Manuscripts must be in English and double-spaced. All margins of at least 1” (20 mm); do not hyphenate words at the end of lines and do not justify right margins. Numbers should be spelled out when they occur in isolation or in the first instance; use Arabic numerals elsewhere. Abbreviations should be used sparingly and non-standard abbreviations should be defined at their first occurrence. Metric system (SI) units should be used. Manuscripts that do not conform to the style of Neuron Glia Biology will be returned without review. Authors of accepted manuscripts will be requested to provide the final text both as hard copy and on diskette. The diskette should be formatted in Word for Macintosh or IBM-compatible computers.

Manuscript Elements and Order

Title Page: The title should be concise, informative, and free of abbreviations, chemical formulae, technical jargon, and esoteric terms. This page should include: (a) the article's full title, (b) names and affiliations of all authors, (c) the name, mailing address, email address and telephone number of the corresponding author, (d) the address for reprints, and (e) a list of the number(s) of manuscript pages, number of tables, and number of figures.

Abstract: A summary of less than 200 words communicating the primary findings and significance of the research.

Key Words: Up to five words for the purposes of indexing, which are not included in the text.

Introduction: State the relevant background to the study to provide needed context to enable non-specialists to appreciate the objectives and significance of the paper.
CONTENTS

EDITORIAL
137 Release of neurotransmitters from glia
 R. Douglas Fields
141 Synaptic plasticity and Ca^{2+} signalling in astrocytes
 Christian Henneberger and Dmitri A. Rusakov
147 Is astrocyte calcium signaling relevant for synaptic plasticity?
 Sarrah Ben Achour, Lorena Pont-Lezica, Catherine Béchade and Olivier Pascual

ORIGINAL RESEARCH PAPERS
157 Astrocyte proximity modulates the myelination gene fabric of oligodendrocytes
 Sanda Iacobas and Dumitru A. Iacobas
171 Development of functional units within trigeminal ganglia correlates with increased expression of
 proteins involved in neuron–glia interactions
 Paul L. Durham and F.G. Garrett
183 Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters
 Eiji Shigetomi, Sebastian Kracun and Baljit S. Khakh
193 Bergmann glial ensheathment of dendritic spines regulates synapse number without affecting
 spine motility
 Jocelyn J. Lippman Bell, Tamar Lordkipanidze, Natalie Cobb and Anna Dunaevsky
201 Prostaglandin E2 induces glutamate release from subventricular zone astrocytes
 Kathleen A. Dave, Jean-Claude Platel, Frank Huang, David Tian, Severine Stammboulian-plateL and
 Angélique Bordey

https://www.cambridge.org/core/terms.
https://doi.org/10.1017/S1740925X11000044.
Downloaded from https://www.cambridge.org/core. IP address: 54.191.40.80, on 21 Aug 2017 at 07:04:18, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms.