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Operators in Hilbert spaces

In this chapter we recall basic properties of operators on topological vector
spaces. We concentrate on Hilbert spaces, which play the central role in quantum
physics.

2.1 Convergence and completeness

We start with a discussion of various topics related to convergence and complete-
ness.

2.1.1 Nets

Nets are generalizations of sequences. In this subsection we briefly recall this
useful concept.

Definition 2.1 A directed set is a set I equipped with a partial order relation
≤ such that for any i, j ∈ I there exists k ∈ I such that i ≤ k, j ≤ k.

We will often use the following directed set:

Definition 2.2 Let I be a set. We denote by 2I
fin the family of finite subsets of

I. It becomes a directed set when we equip it with the inclusion.

Definition 2.3 Let S be a set. A net in S is a mapping from a directed set I to
S, denoted by {xi}i∈I .

Definition 2.4 A net {xi}i∈I in a topological space S converges to x ∈ S if for
any neighborhood N of x there exists i ∈ I such that if i ≤ j then xj ∈ N . We
will write xi → x. If S is Hausdorff, then a net in S can have at most one limit
and one can also write lim xi = x.

Definition 2.5 Let X be a topological space and U ⊂ X . Then U cl will denote
the closure of U , which is equal to the set of limits of all convergent nets in U .

2.1.2 Functions

Definition 2.6 Let X ,Y be sets. Then c(X ,Y) is the set of all functions from
X to Y. Clearly, c(X , K), is a vector space over K. We often write c(X ) for
c(X , C). f ∈ c(X , K) is called finitely supported if f−1

(
K\{0}) is finite. cc(X , K)
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2.1 Convergence and completeness 37

denotes the space of finitely supported functions in c(X , K). If x ∈ X , define

δx ∈ cc(X , K) by δx(y) :=

{
1, x = y,

0, x �= y.
. Clearly, each element of cc(X , K) can be

written as a unique finite linear combination of {δx : x ∈ X}. Sometimes, it
will be convenient to write x instead of δx .

Definition 2.7 Let X ,Y be topological spaces. Then C(X ,Y) is the set of all
continuous functions from X to Y. Clearly, C(X , K) is a vector space over K. We
often write C(X ) for C(X , C). Cc(X , K) denotes the set of compactly supported
functions in C(X , K).

We will use various styles of notation to introduce a function f with domain
X , such as X � x �→ f(x) or {f(x)}x∈X . Sometimes, we will simply write that
we are given a function f(x). This is possible, if we declared before that x is the
generic variable in X , or at least if it is clear from the context that x should be
understood this way. Thus x is not a concrete element of X , it is just a symbol
for which we can substitute an arbitrary element of X .

For example, the notation [aij ] is sometimes used for a matrix. Here, i is
understood as the generic variable in {1, . . . , n} and j as the generic variable
in {1, . . . , m}, where n, m should be clear from the context. Thus [aij ] is an
abbreviation for {1, . . . , n} × {1, . . . , m} � (i, j) �→ ai,j .

Generic variables are also used in some other situations, e.g. as a part of the
notation for integration or differentiation.

2.1.3 Topological vector spaces

Let E be a topological vector space.

Definition 2.8 If U ⊂ E, we will use the shorthand Spancl(U) for (Span(U))cl.

Definition 2.9 A net {xi}i∈I in a topological vector space E is Cauchy if, for any
neighborhood N of 0, there exists i ∈ I such that if i ≤ j, k, then xj − xk ∈ N .
E is complete if every Cauchy net is convergent.

Proposition 2.10 There exists a complete topological vector space containing E
as a dense subspace. If E1 and E2 are two such complete spaces, then there exists
a unique linear homeomorphism T : E1 → E2 such that T

∣∣
E = 1lE .

Definition 2.11 The complete vector space, described in Prop. 2.10 uniquely up
to isomorphism, is called the completion of E and denoted Ecpl.

2.1.4 Infinite sums

Let E be a topological vector space and {xi}i∈I a family of elements of E .
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38 Operators in Hilbert spaces

Definition 2.12 We say that the series
∑
i∈I

xi is convergent if the net{∑
i∈J xi

}
J∈2I

f in
, is convergent. The limit of the above net will be denoted by∑

i∈I

xi.

Assume that E is a normed space.

Definition 2.13 We say that the series
∑
i∈I

xi is absolutely convergent if the

numerical series
∑
i∈I

‖xi‖ is convergent.

Proposition 2.14 (1) For every absolutely convergent series, the set
{i : xi �= 0} is at most countable.

(2) Every absolutely convergent series in a Banach space is convergent.
(3) In a finite-dimensional space, a series is convergent iff it is absolutely con-

vergent.

2.1.5 Infinite products

Let {xi}i∈I be a family in C.

Definition 2.15 First assume that xi �= 0 for all i ∈ I. In this case, the infinite
product

∏
i∈I

xi is called convergent if the net
{∏

i∈J

xi

}
J∈2I

f in
converges to a non-

zero limit in C. The limit will be denoted by∏
i∈I

xi.

In the general case, one says that
∏
i∈I

xi is convergent if I0 = {i ∈ I : xi = 0} is

finite and the infinite product
∏

i∈I\I0

xi is convergent in the above sense. If I0 �= ∅,
one sets ∏

i∈I

xi := 0.

It is easy to see that the convergence of
∏
i∈I

xi is equivalent to the convergence

of
∑
i∈I

|xi − 1|. Therefore, if
∏
i∈I

xi converges, then the set {i ∈ I : xi �= 1} is at

most countable and xi → 1.

2.2 Bounded and unbounded operators

2.2.1 Normed vector spaces

Let H,K be normed spaces over K = R or C.
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2.2 Bounded and unbounded operators 39

Definition 2.16 We equip the complex conjugate space H with the norm ‖Φ‖ :=
‖Φ‖, Φ ∈ H.

Definition 2.17 B(H,K) denotes the space of bounded linear operators from
H to K. We set B(H) := B(H,H). H# := B(H, K) is the topological dual of H
and H∗ := B(H, K) = H# = H#

is the topological anti-dual of H.

Remark 2.18 Note that the meaning of the symbol H# , resp. H∗ depends on
the context: if we consider H as a vector space without a topology, it will denote
the algebraic dual, resp. anti-dual. see Defs; 1.8, resp. 1.54. If H is considered
together with its topology, it will denote the topological dual, resp. anti-dual.

Definition 2.19 By saying that A is a linear operator from H to K, we will
not necessarily mean that it is defined on the whole H. We will just mean that
there exists a subspace D of H such that A ∈ L(D,K). The space D will be called
the domain of A and denoted Dom A. The subspace GrA :=

{
(Φ, AΦ) : Φ ∈

Dom A
} ⊂ H⊕K is called the graph of A.

Definition 2.20 A linear operator A from H to K is closed if GrA is closed
in H⊕K. It is called closable if it has a closed extension. Its minimal closed
extension is called the closure of A and denoted by Acl. Cl(H,K) will denote the
set of closed, densely defined operators from H to K.

Proposition 2.21 Let A ∈ B(H,K). Then A is closable as an operator from
Hcpl to Kcpl and Acl ∈ B(Hcpl,Kcpl).

Definition 2.22 Let A be an operator on H. We say that z ∈ C belongs to the
resolvent set of A if A− z1l : Dom A → H is bijective and (A− z1l)−1 ∈ B(H).
The resolvent set of A is denoted by res A. The set specA = C\res A is called the
spectrum of A.

Definition 2.23 (1) If A is an injective linear operator, then we set
Dom A−1 := Ran A.

(2) If A,B are two linear operators, we set

Dom AB := {Φ ∈ Dom B : BΦ ∈ Dom A}.
(3) If A,B are two linear operators on H, their commutator and anti-

commutator are the operators given by

[A,B] := AB −BA, [A,B]+ := AB + BA, on Dom AB ∩Dom BA.

In the case that H is a Hilbert space, sometimes we will consider [A,B],
[A,B]+ as quadratic forms on Dom A ∩Dom A∗ ∩Dom B ∩Dom B∗. For
example,

(Φ|[A,B]Ψ) := (A∗Φ|BΨ)− (B∗Φ|AΨ).
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40 Operators in Hilbert spaces

2.2.2 Scalar product spaces

Let H be a unitary space (a complex space equipped with a scalar product).
The scalar product of Φ,Ψ ∈ H will be denoted by (Φ|Ψ) or Φ ·Ψ. Recall that
a complete unitary space is called a complex Hilbert space, where one usually
omits the word “complex”. Note that if H is a Hilbert space, then H equipped
with the scalar product (Ψ|Φ) := (Ψ|Φ) is a Hilbert space as well, and the map
H � Φ �→ Φ ∈ H is anti-unitary (see Subsect. 1.2.10). The Riesz lemma says that
H∗ = H#

is naturally isomorphic toH. Sometimes, however, other identifications
are convenient; see Subsect. 2.3.4.

In a Euclidean space (a real space equipped with a scalar product) we prefer
to denote the scalar product by 〈Φ|Ψ〉 or Φ ·Ψ. Recall that a complete Euclidean
space is called a real Hilbert space. If H is a real Hilbert space, the Riesz lemma
says that H# is naturally isomorphic to H.

Remark 2.24 If we compare Def. 1.54 with this subsection, we see that z·w
or (w|z) may stand for the pairing between vectors in two distinct spaces in an
anti-dual pair, or for the scalar product of two vectors in the same Hilbert space.

Analogously, if we compare Def. 1.8 with this subsection, we see that v·y or
〈v|y〉 may stand for the pairing within a dual pair, or for the scalar product in
the same real Hilbert space.

There are more such ambiguous notations, whose exact meaning depends on
the context; see e.g. Remark 2.18. These ambiguities should not cause any diffi-
culties.

Remark 2.25 As we see above, there are minor differences in the notation and
terminology between real and complex Hilbert spaces. In what follows, we often
discuss both cases at once. We then use the notation and terminology of complex
Hilbert spaces, their modification to the real case being obvious.

Definition 2.26 Let H be a real or complex Hilbert space. A family of vectors
{ei}i∈I is called an orthonormal system if (ei |ej ) = δij . If in addition Spancl{ei :
i ∈ I} = H, we say that it is an orthonormal basis, or an o.n. basis for brevity.

Definition 2.27 Let H be a topological vector space. We say that it is a Hilbert-
izable space if there exists a scalar product on H that generates its topology and
H is complete in the corresponding norm.

2.2.3 Operators on Hilbert spaces

In this subsection we discuss basic definitions concerning operators on complex
and real Hilbert spaces. We try to be as close as possible to the usual terminology,
fixing, however, some of its obvious flaws (see Remark 2.30).

We start with the complex case. Let H1 ,H2 ,H be complex Hilbert spaces. Let
A be a densely defined operator from H1 to H2 .
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2.2 Bounded and unbounded operators 41

Definition 2.28 The operator A∗ from H2 to H1 defined by

(Φ2 ,Ψ1) ∈ GrA∗ ⇔ (Φ2 |AΦ1) = (Ψ1 |Φ1), Φ1 ∈ Dom A,

is called the adjoint of A. We set A# := A
∗

= A∗, which is an operator from H2

to H1 .

Note that A∗ and A# are automatically closed. Moreover, A is closable iff
Dom A∗, or Dom A# is dense. We then have A∗∗ = A# # = Acl .

If A is bounded, then so are A∗ and A# . As an example of adjoints, consider
Φ ∈ H and let us note the identities |Φ)∗ = (Φ| (see Def. 1.70).

Definition 2.29 (1) Densely defined operators on H satisfying A ⊂ A∗ are
called Hermitian.

(2) Densely defined operators from H to H satisfying A ⊂ A# are called sym-
metric.

Remark 2.30 Note that, unfortunately, in a part of the literature the word
“symmetric” is often used to denote Hermitian operators. This is an incorrect
usage.

Definition 2.31 (1) Densely defined operators on H satisfying A∗ = A are
called self-adjoint and those satisfying A∗ = −A anti-self-adjoint. The set
of bounded self-adjoint operators on H is denoted by Bh(H), and the set of
all self-adjoint operators on H by Clh(H).

(2) The set of bounded symmetric, resp. anti-symmetric operators from H to H
is denoted Bs(H,H), resp. Ba(H,H). The set of all operators from H to H
satisfying A = A# , resp. A = −A# is denoted Cls(H,H), resp. Cla(H,H).

Self-adjoint and anti-self-adjoint operators are automatically closed. Likewise,
operators in Cls(H,H) and Cla(H,H) are automatically closed.

A is anti-self-adjoint iff iA is self-adjoint.
Let us now consider the real case. Let H1 ,H2 ,H be real Hilbert spaces. Let A

be a densely defined operator from H1 to H2 .

Definition 2.32 The operator A# from H2 to H1 defined by

(Φ2 ,Ψ1) ∈ GrA# ⇔ 〈Φ2 |AΦ1〉 = 〈Ψ1 |Φ1〉, Φ1 ∈ Dom A,

is called the adjoint of A.

Note that A# is automatically closed. Moreover, A is closable iff Dom A# is
dense and we then have A# # = Acl .

If A is bounded, then so is A# . As an example of adjoints, consider Φ ∈ H and
let us note the identity |Φ〉# = 〈Φ| (see Def. 1.24).

Definition 2.33 Densely defined operators on H satisfying A ⊂ A# are called
symmetric.
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42 Operators in Hilbert spaces

Definition 2.34 Densely defined operators on H satisfying A# = A, resp.
A# = −A are called self-adjoint, resp. anti-self-adjoint. The set of bounded self-
adjoint, resp. anti-self-adjoint operators on H is denoted by Bs(H), resp. Ba(H).
The set of all self-adjoint, resp. anti-self-adjoint operators on H is denoted by
Cls(H), resp. Cla(H).

Self-adjoint and anti-self-adjoint operators are automatically closed.

2.2.4 Product of a closed and a bounded operator

Proposition 2.35 Let G ∈ Cl(H1 ,H2), H ∈ B(H2 ,H3). We define HG and
G∗H∗ with their natural domains, as in Def. 2.23. Then HG is densely defined,
so that we can define its adjoint, and we have

(HG)∗ = G∗H∗. (2.1)

Besides, G∗H∗ is closed.

Proof By Def. 2.23,

Dom HG = Dom G, (2.2)

Dom G∗H∗ = {Φ ∈ H3 : H∗Φ ∈ Dom G∗}. (2.3)

G is densely defined. By (2.2), so is HG. It immediately follows that

(HG)∗ ⊃ G∗H∗.

Suppose that Ψ ∈ Dom(HG)∗. This means that for some C

|(Ψ|HGΦ)| ≤ C‖Φ‖, Φ ∈ Dom G.

Thus

|(H∗Ψ|GΦ)| ≤ C‖Φ‖, Φ ∈ Dom G.

Hence, H∗Ψ ∈ Dom G∗. Thus

(HG)∗ ⊂ G∗H∗.

This ends the proof of (2.1). G∗H∗ is closed as the adjoint of a densely defined
operator. �

2.2.5 Compact operators

Let H1 ,H2 ,H be real or complex Hilbert spaces.

Definition 2.36 We denote by B∞(H1 ,H2) the space of compact operators from
H1 to H2 and set B∞(H) := B∞(H,H).
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Proposition 2.37 If A ∈ B∞(H) is self-adjoint, then H has an o.n. basis
{ej}j∈I of eigenvectors of A for a family {λj}j∈I of real eigenvalues having
0 as its only possible accumulation point.

2.2.6 Hilbert–Schmidt and trace-class operators

Let H1 ,H2 ,H be real or complex Hilbert spaces.

Definition 2.38 A ∈ B(H1 ,H2) is called Hilbert–Schmidt if TrA∗A < ∞. The
space of Hilbert–Schmidt operators is denoted B2(H1 ,H2) and is a Hilbert space
for the scalar product Tr B∗A.

Definition 2.39 If A ∈ B(H1 ,H2), then |A| := √
A∗A is called the absolute

value of A. We say that A is trace class if Tr|A| <∞. The space of trace-class
operators is denoted B1(H1 ,H2).

Note the following proposition:

Proposition 2.40 Let A ∈ B1(H)and Bn ∈ B(H), with Bn → B weakly. Then
Tr BnA→ Tr BA.

Definition 2.41 Positive elements of B1(H) having trace 1 are called density
matrices.

Definition 2.42 If β > 0 is a number, H a self-adjoint operator and Tr e−βH <

∞, then the density matrix

e−βH /Tr e−βH

is called the Gibbs density matrix for the Hamiltonian H and inverse temperature
β.

Definition 2.43 For 1 ≤ p < ∞, the p-th Schatten ideal is

Bp(H1 ,H2) :=
{
A ∈ B(H1 ,H2) : Tr|A|p <∞}.

2.2.7 Fredholm determinant

Let H be a real or complex Hilbert space.

Definition 2.44 We denote by 1l + B1(H) the set of operators of the form 1l + A

with A ∈ B1(H). If H is a complex, resp. real Hilbert space, we set

U1(H) := U(H) ∩ (1l + B1(H)), resp. O1(H) := O(H) ∩ (1l + B1(H)).

Theorem 2.45 There exists a unique function 1l + B1(H) � R �→ det R ∈ C sat-
isfying the following properties:
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44 Operators in Hilbert spaces

(1) If H = H1 ⊕H2 with dimH1 < ∞ and R = R1 ⊕ 1l, then det R = det R1 ,
where det R1 is the usual determinant of the finite-dimensional operator R1 .

(2) B1(H) � A �→ det(1l + A) is continuous in the trace norm.

Definition 2.46 det R is called the Fredholm determinant of R.

The following properties follow easily from Thm. 2.45:

Proposition 2.47 (1) det R1R2 = det R1 det R2 , det R∗ = det R.
(2) Let A ∈ B1(H). Then 1l + A is invertible iff det(1l + A) �= 0.
(3) If H is a complex, resp. real Hilbert space, then

|det R| = 1, for R ∈ U1(H), resp. det R = ±1, for R ∈ O1(H).

Definition 2.48 Let A ∈ B2(H). The regularized determinant of 1l + A is

det2(1l + A) := det
(
(1l + A)e−A

)
. (2.4)

The regularized determinant can sometimes be used instead of the usual deter-
minant.

Proposition 2.49 Let A ∈ B2(H). Then 1l + A is invertible iff det2(1l + A) �= 0.

2.2.8 Derivatives

For functions on a vector space, one can distinguish several kinds of deriva-
tives. In the following definition we recall the directional derivative, the Gâteaux
derivative and the (most commonly used) Fréchet derivative.

Let Y be a real or complex vector space and G be a complex-valued function
defined on a subset U of Y. To define the directional derivative of G at a point
y0 ∈ U , U has to be finitely open, i.e. the intersection of U with any finite-
dimensional subspace of Y should be open (for its canonical topology).

Definition 2.50 Let Y be a real or complex normed space and G be a complex-
valued function defined on a subset U of Y.

(1) Assume that U is finitely open. We say that the derivative of G in the direc-
tion of y ∈ Y at y0 exists if

y · ∇G(y0) :=
d
dt

G(y0 + ty)
∣∣
t=0 exists.

(Here t is a real parameter if Y is real, and complex if Y is complex.)
We say that G is Gâteaux differentiable at y0 if

D :=
{
y ∈ Y : y · ∇G(y0) exists

}
is a dense linear subspace of Y and the map

D � y �→ y · ∇G(y0) ∈ C

is a bounded linear functional.
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2.3 Functional calculus 45

(2) Assume that U is open. We say that G is Fréchet differentiable at y0 if there
exists a bounded linear functional v such that

lim
y→0

G(y0 + y)−G(y0)− v·y
‖y‖ = 0.

If such a functional exists, it is necessarily unique and is denoted ∇G(y0).

Note that if the Fréchet derivative exists, then so does the Gâteaux derivative,
and they are equal.

For example, consider the function DomH
1
2 � y �→ G(y) = (y|Hy), where H

is a positive self-adjoint operator. The set DomH
1
2 is obviously finitely open. G

is Gâteaux differentiable at y0 iff y0 ∈ Dom H. It is Fréchet differentiable iff H

is bounded.

2.3 Functional calculus

2.3.1 Holomorphic functional calculus

Let H be a Banach space and A ∈ B(H). The basic construction of the holomor-
phic functional calculus is described in the following definition:

Definition 2.51 Let f be a function on spec A that extends to a function holo-
morphic on an open neighborhood of spec A. Let γ be a closed curve encircling
spec A counterclockwise and contained in the domain of f . We set

f(A) :=
1

2πi

‰
γ

f(z)(z1l−A)−1dz. (2.5)

It is easy to see that (2.5) does not depend on the choice of the curve γ.
Let Θ be a subset of spec A.

Definition 2.52 The characteristic function of the set Θ is defined as

1lΘ(z) :=

{
1, z ∈ Θ,

0, z ∈ specA\Θ.

Suppose that Θ is a relatively open and closed subset of specA. Then
the function 1lΘ satisfies the assumptions of the holomorphic spectral
calculus.

Definition 2.53 1lΘ(A) is called the (Riesz) spectral projection of A onto Θ.

Clearly, if γ encircles Θ, staying outside of specA\Θ, then

1lΘ(A) =
1

2πi

‰
γ

(z1l−A)−1dz. (2.6)
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46 Operators in Hilbert spaces

2.3.2 Functional calculus for normal operators

In the case of Hilbert spaces, besides the holomorphic calculus, we have another
functional calculus based on the spectral theorem, which applies to normal oper-
ators.

Let us be more precise. Let H be a real or complex Hilbert space.

Definition 2.54 An operator A on H is called normal if Dom A = Dom A∗ and
(AΦ|AΨ) = (A∗Φ|A∗Ψ), Φ,Ψ ∈ Dom A.

Self-adjoint and unitary operators are normal. In the case of normal operators
the spectral theorem can be used to extend the functional calculus to a much
larger class of functions.

Let A be a normal operator on a complex Hilbert space.

Definition 2.55 If f : spec A→ C is Borel, we define f(A) by the functional
calculus for normal operators.

For normal operators we can extend the definition of spectral projections to a
much larger class of sets.

Definition 2.56 Let Θ be a Borel subset of spec A. The operator 1lΘ(A) is called
the spectral projection of A onto Θ.

Let us now consider the functional calculus on real Hilbert spaces. Let H
be a real Hilbert space and A a normal operator on H. Then we can apply
the functional calculus to the operator AC on CH. Note that spec AC satisfies
spec AC = spec AC. If a Borel function f on spec A satisfies

f(z) = f(z), (2.7)

then f(AC) preserves H, and the formula f(A) := f(AC)
∣∣
H defines an operator

on H.
These conditions are satisfied, for instance, if A is a self-adjoint operator on

H and f is a real Borel function. Note that in this case f(A) is a self-adjoint
operator on H.

Let us describe another application of functional calculus on real Hilbert spaces
that we will need. Let R ∈ O(H) be such that Ker(R + 1l) = {0}. Consider the
function f(z) = zt for t ∈ R, where if t �∈ Z we take the principal branch of zt ,
with a cut along the negative semi-axis. Note that zt is not defined for z = −1.
However, 1l{−1}(RC) = 0; therefore Rt

C
is well defined. Moreover zt satisfies (2.7),

so we can define Rt . Note that Rt ∈ O(H) and RtRs = Rt+s . For |t| ≤ 1, we have
Ker(Rt + 1l) = {0} and (Rt)s = Rts .

2.3.3 Spectrum of the product of operators

It is well known that if A,B ∈ B(H), then

spec (AB)\{0} = spec (BA)\{0}.
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2.3 Functional calculus 47

This is also true if AB and BA are closed with spec (AB), spec (BA) �= C;
see Hardt–Konstantinov–Mennicken (2000). We will need the following related
facts:

Proposition 2.57 (1) Let A,B be two linear operators on a Hilbert space H
such that AB and BA are closed. Let z ∈ C such that z �∈ spec (AB) ∪
spec (BA). Then

A(z1l−BA)−1 = (z1l−AB)−1A.

Moreover, if A,B ∈ B(H) and f is holomorphic near spec (AB) ∪ spec (BA),
then

Af(BA) = f(AB)A.

(2) If A ∈ Cl(H) and f is a bounded Borel function, then

Af(A∗A) = f(AA∗)A.

Proof Let Φ ∈ Dom A and (z1l−BA)Ψ = Φ. Then BAΨ = zΨ− Φ ∈ Dom A

and ABAΨ = zAΨ−AΦ hence AΨ ∈ Dom AB and (z1l−AB)AΨ = AΦ. This
proves (1).

To prove (2) we note that A∗A and AA∗ are self-adjoint, so the identity
A(z1l−A∗A)−1 = (z1l−AA∗)−1A for z ∈ C\R is true by (1). It extends by the
usual argument to all bounded Borel functions. �

2.3.4 Scale of Hilbert spaces associated with a positive operator

Let H be a real or complex Hilbert space.

Definition 2.58 For an operator B on H we will write B ≥ 0 if it is positive
self-adjoint. If in addition 0 is not an eigenvalue of B, then we will write B > 0.

Let B > 0. Let us introduce the scale of Hilbert spaces associated with B. The
Hilbert space H will play the role of a “pivot” space.

If H is real, we will identify H# with H, and if H is complex, we identify H∗

with H, using the scalar product.

Definition 2.59 We equip Dom B−s with the scalar product (Φ|Ψ)−s :=
(B−sΦ|B−sΨ) and the norm ‖B−sΦ‖. We set

BsH :=
(
Dom B−s

)cpl
.

Proposition 2.60 (1) B−sH = Dom Bs if s ≥ 0 and 0 �∈ spec B.
(2) Bt : Dom B−s ∩Dom Bt → Dom B−s−t extends continuously to a unitary

map from BsH to Bs+tH.
(3) (Bt)sH = BstH.
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(4) If H is complex, the sesquilinear product (Ψ|Φ) on Dom Bs ×Dom B−s

extends continuously to B−sH×BsH and one can unitarily identify (BsH)∗

with B−sH.
(5) If H is real, the bilinear product 〈Ψ|Φ〉 on Dom Bs ×Dom B−s extends con-

tinuously to B−sH×BsH and one can isometrically identify (BsH)# with
B−sH.

Definition 2.61 If B1 , B2 are two positive self-adjoint operators, we write B1 ≤
B2 if Dom B

1
2
2 ⊂ Dom B

1
2
1 and

‖B 1
2
1 Φ‖2 ≤ ‖B 1

2
2 Φ‖2 , Φ ∈ Dom B

1
2
2 .

If 0 ≤ B1 ≤ B2 , then the Kato–Heinz theorem says that 0 ≤ Bα
1 ≤ Bα

2 for
α ∈ [0, 1]. If 0 < B1 ≤ B2 , then also 0 ≤ B−α

2 ≤ B−α
1 , for α ∈ [0, 1]. This implies

the following fact:

Proposition 2.62 Let 0 < B1 ≤ B2 and − 1
2 ≤ α ≤ 1

2 . Then the natural embed-
dings

Iα : Bα
1 H → Bα

2 H
are contractive and I∗α = I−α .

Note also the following useful fact, which follows from the three lines theorem.

Proposition 2.63 Let B > 0 be a self-adjoint operator. Let Ψ ∈ Dom B. Then

{z : 0 ≤ Re z ≤ 1} � z �→ BzΨ

is a continuous function holomorphic in the interior of the domain and satisfying
the bound

‖BzΨ‖ ≤ ‖Ψ‖1−Re z‖BΨ‖Re z .

2.3.5 C0-semi-groups

Let H be a real or complex Hilbert space.

Definition 2.64 A C0-semi-group is a one-parameter semi-group [0,∞[� t �→
U(t) ∈ B(H) continuous in the strong topology. Every C0-semi-group U(t) has
the generator A defined by

Dom A :=
{

Φ ∈ H : s − lim
t→0

t−1(U(t)Φ− Φ) =: AΦ exists
}

.

In such a case we will write U(t) =: etA .

The generator of a C0-semi-group is always closed and densely defined.
The set of generators of C0-groups in O(H) and U(H) coincides with the set

of anti-self-adjoint operators. This fact is known as Stone’s theorem.
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Definition 2.65 If R � t �→ U(t) is a unitary C0-group, then the self-adjoint
generator of U(t) is the operator B defined as U(t) = eitB .

Definition 2.66 A is a maximal dissipative operator if it is a closed densely
defined operator such that Re(Φ|AΦ) ≤ 0 for Φ ∈ Dom A and Ran(−A + λ1l) =
H for some λ > 0.

The Hille–Yosida theorem says that the set of generators of C0-semi-groups
of contractions coincides with the set of maximal dissipative operators. A is
maximal accretive if −A is maximal dissipative.

2.3.6 Local Hermitian semi-groups

Let H be a real or complex Hilbert space. Clearly, if [0,∞[� t �→ U(t) ∈ B(H)
is a C0-semi-group of self-adjoint contractions, then U(t) = e−tA for A positive
self-adjoint.

The notion of local Hermitian semi-groups, due to Klein–Landau (1981a) and
Fröhlich (1980), allows us to extend this construction to the case of semi-groups
of unbounded Hermitian operators. It is particularly important in the Euclidean
approach to quantum field theory, especially at positive temperatures.

Definition 2.67 Let T > 0. A local Hermitian semi-group {P (t),Dt}t∈[0,T ] is
a family of linear operators P (t) on H and subspaces Dt of H such that

(1) D0 = H, Dt ⊃ Ds if 0 ≤ t ≤ s ≤ T and D = ∪
0<t≤T

Dt is dense in H;

(2) P (t) is a Hermitian linear operator with Dom P (t) = Dt such that P (0) =
1l, P (s)Dt ⊂ Dt−s for 0 ≤ s ≤ t ≤ T , and P (t)P (s) = P (t + s) on Dt+s for
t, s, t + s ∈ [0, T ];

(3) t �→ P (t) is weakly continuous, i.e. for Φ ∈ Ds the map [0, s] � t �→
(Φ, P (t)Φ) is continuous.

Remark 2.68 In the literature, local Hermitian semi-groups are often called
local symmetric semi-groups.

An example of a local Hermitian semi-group is P (t) = e−tH , Dt = Dom e−tH ,
with T = ∞, if H is a self-adjoint operator on H. The following theorem shows
that all local Hermitian semi-groups are restrictions of groups of unbounded
self-adjoint operators of this form.

Theorem 2.69 Let {P (t),Dt}t∈[0,T ] be a local Hermitian semi-group on H.
Then there exists a unique self-adjoint operator H on H such that

(1) Dt ⊂ Dom e−tH , e−tH
∣∣
Dt

= P (t) for 0 ≤ t ≤ T ;
(2) For any 0 < T ′ ≤ T , ∪

0<t≤T ′
∪

0<s<t
P (s)Dt is a core for H.

(The core of a Hermitian operator is defined in Subsect. 2.3.7). For the proof
one needs a definition and a lemma due to Widder (1934).
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Definition 2.70 A continuous function r : [T1 , T2 ] → R is OS positive if for
any n ∈ N and t1 , . . . , tn ∈ R such that T1 ≤ ti + tj ≤ T2 the matrix [r(ti +
tj )]1≤i,j≤n is positive.

Lemma 2.71 The continuous function r : [T1 , T2 ] → R is OS positive iff there
exists a positive measure ν such that λ �→ e−tλ belongs to L1(R,dν) for each
t ∈ [T1 , T2 ] and

r(t) =
ˆ

R

e−tλdν(λ).

Proof of Thm. 2.69. We fix 0 < t < T and Φ ∈ Dt and set r(s) = ‖P (s/2)Φ‖2

for s ∈ [0, 2t]. The function r is continuous by the weak continuity of P (s). Using
the symmetry and semi-group property we see that r is OS positive on [0, 2t].
By Lemma 2.71, there exists a measure ν on R such that r(s) =

´
R

e−sλdν(λ),
s ∈ [0, 2t]. We note that

(P (s1)Φ|P (s2)Φ) = r(s1 + s2) =
ˆ

R

e−s1 λe−s2 λdν(λ), 0 ≤ s1 , s2 ≤ t. (2.8)

For z ∈ C, set gz (λ) := e−zλ . Since the span of {gs : 0 ≤ s ≤ t} is dense in
the Hilbert space L2(R,dν), we see that the map

J : L2(R,dν) � gs �→ P (s)Φ ∈ H
extends by linearity and density to a unitary map between L2(R,dν) and the
closed span of {P (s)Φ : s ∈ [0, t]}. The map

z �→ gz (λ) ∈ L2(R,dν)

is clearly holomorphic in the strip {0 < Re z < t} and continuous up to the
boundary. Applying J , we obtain that the map s→ P (s)Φ is the restriction
to [0, t] of a map z �→ Φ(z) with the same properties. We define now

U(y)Φ := Φ(iy), y ∈ R. (2.9)

Clearly, U(y) is defined on D. We claim that U(y) extends to H as a strongly
continuous unitary group. To prove that U(y) is isometric, we use the identity

(Φ(z1)|Φ(z2)) =
ˆ

R

e−(z1 −z2 )λdν(λ),

which follows from (2.8) by analytic continuation. The map U(y) is clearly linear
on D, if we note that U(y)Φ is independent of the space Dt to which Φ belongs
and use that two vectors Φ,Ψ ∈ D always belong to a common space Dt . The
strong continuity of y �→ U(y) follows from the norm continuity of Φ(z).

To prove the group property, we pick Φ ∈ Dt and set Φ(s1 , s2) =
P (s1)P (s2)Φ = P (s1 + s2)Φ for s1 , s2 , s1 + s2 ∈ [0, t]. We first analytically con-
tinue Φ(s1 , s2) in s1 to Φ(iy1 , s2) = U(y1)P (s1)Φ and then in s2 to Φ(iy1 , iy2) =
U(y1)U(y2)Φ. Since P (s)Φ analytically continues to Φ(z), we see that
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P (s1 + s2)f analytically continues in (s1 , s2) to Φ(iy1 + iy2) = U(y1 + y2)f .
Therefore, U(y1)U(y2)Φ = U(y1 + y2)Φ.

We now uniquely define a self-adjoint operator H by U(y) =: e−iyH . We note
that if Φ ∈ Dt , then

(Φ|U(y)Φ) =
ˆ

R

e−iyλdν(λ),

hence dν(λ) = d(Φ|1l]−∞,λ ](H)Φ), which implies that Φ ∈ Dom e−tH . The two
functions e−iyH Φ and Φ(iy) coincide and are the boundary values of the functions
e−zH Φ and Φ(z), both holomorphic in the strip {0 < Re z < t} and continuous
up to the boundary. It follows that these two holomorphic functions coincide
everywhere and hence in particular

Φ(t) = P (t)Φ = e−tH Φ.

This shows the existence of a self-adjoint operator H satisfying (1). If H1 , H2

are two such operators, then the same analytic continuation argument shows
that e−iyH1 Φ = e−iyH2 Φ for Φ ∈ D, which implies that H1 = H2 . We refer to
Klein–Landau (1981a) for the proof of (2). �

2.3.7 Essential self-adjointness

Let A be a Hermitian linear operator on a Hilbert spaceH, i.e. such that A ⊂ A∗.

Definition 2.72 A is called essentially self-adjoint if Acl is self-adjoint. If the
domain D of A needs to be specified, one says that A is essentially self-adjoint
on D. If a self-adjoint operator A is the closure of A

∣∣
D, one says that D is a

core for A.

Definition 2.73 If A is any operator, vectors Φ ∈ ⋂n Dom An satisfying for
some t > 0

∞∑
n=0

tn‖AnΦ‖
n!

< ∞

are called analytic vectors of A.

Let us give three criteria for essential self-adjointness, all due to Nelson.

Theorem 2.74 (1) (Nelson’s commutator theorem) Let A be Hermitian and B

self-adjoint positive on H with Dom B ⊂ Dom A. Assume that

‖AΦ‖2 ≤ C‖(B + 1l)Φ‖2 , |(AΦ|BΦ)− (BΦ|AΦ)| ≤ C(Φ|(B + 1l)Φ),

Φ ∈ Dom B.

Then A is essentially self-adjoint on Dom B.
(2) (Nelson’s invariant domain theorem) Consider Ut = eitA , a strongly con-

tinuous unitary group on H. Let D be a dense subspace of H such that
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D ⊂ Dom A and D is invariant under Ut . Then A is essentially self-adjoint
on D.

(3) (Nelson’s analytic vectors theorem) Let A be a Hermitian operator possessing
a dense space of analytic vectors. Then it is essentially self-adjoint on this
space.

A useful application of the notion of essential self-adjointness are the following
two versions of Trotter’s product formula:

Theorem 2.75 (1) Let A, B be two self-adjoint operators on H such that A + B

with domain Dom A ∩Dom B is essentially self-adjoint. Then

eit(A+B )c l
= s − lim

n→∞

(
eitA/neitB/n

)n

.

(2) Suppose in addition that A, B are bounded below. Then

e−t(A+B )c l
= s − lim

n→∞

(
e−tA/ne−tB/n

)n

, t ≥ 0.

2.3.8 Commuting self-adjoint operators

Let A1 , A2 be self-adjoint operators on H.

Definition 2.76 We say that A1 and A2 commute if all their bounded Borel
functions commute in the usual sense. (It is enough to demand e.g. that eit1 A 1

commutes with eit2 A 2 for any t1 , t2 ∈ R.)

If A1 , . . . , An are commuting self-adjoint operators, then for any Borel function
F on Rn we can define F (A1 , . . . , An ) by the self-adjoint calculus.

One can generalize this as follows. Let X be a real vector space.

Definition 2.77 We will say that

X � x �→ 〈x|A〉 ∈ Clh(H) (2.10)

is an X # -vector of commuting self-adjoint operators if there exists a unitary
representation X � x �→ U(x) ∈ U(H) such that, for all x ∈ X , R � t �→ U(tx)
is strongly continuous and U(tx) = eit〈x|A〉.

Consider a vector of commuting self-adjoint operators (2.10). Clearly, 〈x1 |A〉,
〈x2 |A〉 commute for any x1 , x2 ∈ X . If F is a Borel function that depends on
a finite-dimensional subspace of X # , we can define F (A) by the self-adjoint
functional calculus.

Definition 2.78 C∞ vectors for (2.10) are elements of

∞⋂
n=1

⋂
x1 ,...,xn ∈X

Dom (〈x1 |A〉 · · · 〈xn |A〉) .
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2.3.9 Conjugations adapted to a self-adjoint operator

Let H be a complex Hilbert space. Recall that τ is a conjugation on H if it is an
anti-unitary involution.

Proposition 2.79 Let A be a self-adjoint operator on a (complex) Hilbert space
H. Then there exists a conjugation τ such that τAτ = A. We then say that τ is
adapted to A.

Proof By the spectral theorem, there exists a collection {Qi, μi}i∈I of measure
spaces such that H = ⊕

i∈I
L2(Qi, μi) and A is unitarily equivalent to the multi-

plication by a real measurable function. Then we take the standard conjugation
on ⊕

i∈I
L2(Qi, μi). �

2.4 Polar decomposition

Every operator on a Hilbert space possesses a canonical decomposition into the
product of a positive operator and a partial isometry. It is called the polar decom-
position. In this section we discuss various forms and consequences of the polar
decomposition of an operator on a complex or real Hilbert space.

We will mostly consider the polar decomposition for operators that have a
trivial kernel and co-kernel. In this case the decomposition into a positive oper-
ator and a partial isometry (which in this case is a unitary, resp. orthogonal
operator) is unique, and not only canonical.

2.4.1 Polar decomposition

Let H,K be real or complex Hilbert spaces and A ∈ Cl(H,K).

Theorem 2.80 There exist a unique positive operator |A| ∈ Cl(H) and a unique
partial isometry U ∈ B(H,K) such that A = U |A| and Ker |A| = (Ran U)⊥. We
have |A| := (A∗A)

1
2 . Moreover one has A = |A∗|U for |A∗| = (AA∗)

1
2 .

Definition 2.81 The decomposition A = |U |A described in Thm. 2.80 is called
the polar decomposition of A.

We will actually mostly need a special case of the polar decomposition,
described in the following proposition:

Proposition 2.82 Assume that Ker A = {0} and Ran A is dense in K. Then
there exists a unique positive operator |A| and a unique orthogonal, resp. unitary
operator U such that

A = U |A| = |A∗|U. (2.11)
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2.4.2 Polar decomposition of self-adjoint and

anti-self-adjoint operators

In the self-adjoint case the polar decomposition has additional properties:

Proposition 2.83 Let A be a self-adjoint operator on a real or complex Hilbert
space. Assume that Ker A = {0}. Let A = U |A| be the polar decomposition of A.
Then |A|U = U |A| and U 2 = 1l.

Next let us consider anti-self-adjoint operators. Only the real case is interest-
ing, because in the complex case the multiplication of anti-self-adjoint operators
by the imaginary unit makes them self-adjoint. Therefore, until the end of this
subsection H will be a real Hilbert space.

Proposition 2.84 (1) Let A be an anti-self-adjoint operator on H such that
Ker A = {0}. Let A = U |A| be its polar decomposition. Then U ∈ O(H),
U 2 = −1l (U is a Kähler anti-involution) and U |A| = |A|U .

(2) Let R ∈ O(H) such that Ker(R2 − 1l) = {0}. Define C = 1
2 (R + R∗). Then

−1l ≤ C ≤ 1l. Moreover, we have the polar decomposition 1
2 (R−R∗) =

V
√

1l− C2 , where V ∈ O(H), V 2 = −1l and [V,C] = 0. Finally, we have
R = C + V

√
1l− C2 .

Proof (1) The identity A = U |A| = |A∗|U implies that U = −U∗ since A =
−A∗. Since U ∈ O(H), we have U 2 = −1l.

(2) Since R ∈ O(H), we get that −1l ≤ C ≤ 1l. The operator 1
2 (R−R∗) is

anti-self-adjoint and has a zero kernel since Ker(R2 − 1l) = {0}. Moreover,

1
2
(R−R∗)∗

1
2
(R−R∗) =

1
4
(21l−R2 −R∗2) = 1l− C2 . (2.12)

Applying (1), we get that V 2 = −1l and [V,
√

1l− C2 ] = 0. Also
√

1l− C2 [V,C] =
[
√

1l− C2V,C] = [R,C] = 0. Since by (2.12) we know that Ker(1l− C2) = 0, this
implies that [V,C] = 0. �

Let R ∈ O(H). Set H± := Ker(R∓ 1l) and H1 := (H− +H+)⊥. Then H1 is a
subspace invariant w.r.t. R and (R2 − 1l)

∣∣
H1

has a trivial kernel. Thus Prop. 2.84
can be applied also in situations when KerA and Ker(R2 − 1l) are non-trivial.

Corollary 2.85 (1) Let A be an anti-self-adjoint compact operator. Then there
exists an o.n. basis {ei±, ej}i∈I ,j∈J and real numbers {λi}i∈I with λi > 0
such that

Aei+ = λiei−, Aei− = −λiei+ , Aej = 0.

(2) Let R ∈ O(H) ∩ (1l + B∞(H)). Then there exist an o.n. basis
{ei±, fj , gk}i∈I ,j∈J,k∈K and numbers {θi}i∈I with Im θi > 0 such that

Rei+ = θiei−, Rei− = θiei+ , Rfj = fj , Rgk = −gk .
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Proof Since A preserves (Ker A)⊥, we can assume that Ker A = {0}. Let
A = V |A| the polar decomposition of A. Let {λi}i∈I be the eigenvalues of |A|
and Hi = Ker(|A| − λi). Then Hi is invariant under V , so V is a Kähler anti-
involution of Hi . Let (e1 , · · · , en ) be an o.n. basis of the complex Hilbert space
CHi . We set ej+ = ej , ej− = V ej , so that (e1+ , · · · en+ , e1−, . . . , en−) is an o.n.
basis of the real Hilbert space Hi and Aej+ = λiej−, Aej− = −λiej+. Collecting
the above bases of Hi we obtain the first statement of the corollary. �

Proposition 2.86 Let (Y, ν, ω, j) be a complete Kähler space.

(1) Let A be a self-adjoint or anti-self-adjoint operator on (Y, ν) such that
Ker A = {0} and Aj = jA. Let |A|, U be as in Prop. 2.83 or Prop. 2.84
(1). Then j|A| = |A|j, U j = jU .

(2) Let R ∈ O(Y) such that Ker(R2 − 1l) = {0} and Rj = jR. Let C, V be as in
Prop. 2.84 (2). Then V j = jV and jC = Cj.

Proof To prove (1) we use that j∗ = −j, since (ν, j) is Kähler, and hence [A∗, j] =
0. This implies that [A∗A, j] = 0 and hence [|A|, j] = 0, [V, j] = 0. The proof of
(2) is similar. �

2.4.3 Polar decomposition of symmetric and

anti-symmetric operators

In this subsection H is a complex Hilbert space. We use the notation A# = A
∗

defined in Subsect. 2.2.3. Recall that Cls/a(H,H) stands for the set of operators
A from H to H satisfying A = A# , resp. A = −A# .

Proposition 2.87 Let A ∈ Cls/a(H,H) such that Ker A = {0}. Consider
the polar decomposition A = U |A|. Then we have

U ∈ U(H,H), U |A| = |A|U, UU = ±1l. (2.13)

Proof Consider the real Hilbert space HR, that is, the realification of H. It can
be identified with the realification ofH. Let AR denote the operator A understood
as an operator on HR. It is easy to see that

(A# )R = (AR)# ,

where the superscript # is defined in the complex sense on the left and in the
real sense on the right. Therefore, A#

R
= ±AR. By the real case of Prop. 2.83,

resp. Prop. 2.84 (1), we obtain AR = UR|AR| with UR ∈ O(HR):

UR ∈ O(HR), UR|AR| = |AR|UR, U 2
R = ±1l. (2.14)

Then we go back from HR to H and H, and (2.14) becomes (2.13). �
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Corollary 2.88 (1) Let A ∈ Bs(H,H) be compact. Then there exists an o.n.
basis of (Ker A)⊥, {ei}i∈I , and positive numbers {λi}i∈I such that Aei =
λiei.

(2) Let A ∈ Ba(H,H) be compact. Then there exists an o.n. basis of (Ker A)⊥,
{ei+ , ei−}i∈I , and positive numbers {λi}i∈I such that Aei+ = λiei−, Aei− =
−λiei+ .

2.5 Notes

The standard reference for operators on Hilbert spaces is the four-volume mono-
graph by Reed–Simon (1975, 1978a,b, 1980), and also the books by Kato (1976)
and by Davies (1980).

The Fredholm and regularized determinants are discussed e.g. in Simon (1979).
Thm. 2.69 about local Hermitian semi-groups is shown in Klein–Landau

(1981a) and Fröhlich (1980).
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