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Abstract

As the name suggests, the family of general error distributions has been used to model
nonnormal errors in a variety of situations. In this article we show that the asymptotic
distribution of linearly normalized partial maxima of random observations from the
general error distributions is Gumbel when the parameter of these distributions lies in the
interval (0, 1). Our result fills a gap in the literature. We also establish the corresponding
density convergence, obtain an asymptotic distribution of the partial maxima under power
normalization, and state and prove a strong law. We also study the asymptotic behaviour
of observations near the partial maxima and the sum of such observations.
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1. Introduction

The class of general error distributions (GEDs) which includes the normal distribution was
introduced by Subbotin (1923). This class was popularized by Box and Tiao (1962), (1964),
(1973), who used it in robustness studies, and Tiao and Lund (1970), Swamy and Mehta (1977),
West (1984), and Osiewalski and Steel (1993). The probability density function (PDF) of a
standard GED is given by

f (x) = v exp{−(1/2)|x/λ|v}
λ21+1/v�(1/v)

, −∞ < x < ∞,

with v > 0, λ = (2−2/v�(1/v)/�(3/v))1/2, and �(·) denoting the gamma function. When
v = 2, the GED reduces to the standard normal distribution and, when v = 1, it reduces to the
double exponential distribution. One may trivially see that EXk = 0 when k is odd and

EXk =
(

�(1/v)

�(3/v)

)k/2
�((k + 1)/v)

�(1/v)

when k is even. This class of distributions has been widely used in statistical modelling. Peng
et al. (2009) established that 1 − F(x) = F(−x) ∼ x1−vf (x) as x → ∞, where F is the
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distribution function (DF) of the GED. Here ‘∼’ means ‘asymptotically equal to’ as x → ∞.
One can see that the tail of the GED is asymptotically equal to the Weibullian tail.

Nelson (1991) developed a market volatility model with the GED as the underlying
distribution, instead of a normal distribution. Let ξt , t ≥ 1, denote the prediction error at
time t , and let σ 2

t be the variance of ξt , given the information up to time t . Nelson introduced
the model ξt = σtZt , t ≥ 1, where {Zt , t ≥ 1} is a sequence of independent and identically
distributed (i.i.d.) random variables (RVs) having the GED as the common distribution. For a
data set on daily returns from CRSP (Center for Research in Security Prices—US stock market),
over the period from July 1962 to December 1987, it has been shown that a GED with v = 1.58
(thicker than a normal tail) is a fairly good fit. As a result, one may observe that the conditional
distribution of the prediction error ξt is a GED with the same v.

Do and Vetterli (2002) used the GED to model the distribution of wavelets. For experimental
results from 640 different data sets on texture images, it was found that GEDs with v (β in their
paper) ranging from 0.5 to 1 fit quite well.

If {Xn, n ≥ 1} denotes an i.i.d. sequence of RVs defined over a common probability space,
with the GED as the common DF, certain characteristics of interest are the asymptotic behaviour
of the partial sums, partial maxima, etc. Since all the moments exist, one can trivially see that
the central limit theorem and the strong law of large numbers hold.

In this paper we discuss the behaviour of maximal errors, as it is equally important. Given
a sequence {Xn, n ≥ 1} of i.i.d. RVs having the GED as the common distribution, define
Mn = max{X1, X2, . . . , Xn}, n ≥ 1. If there exist sequences {an, n ≥ 1} of positive constants
and {bn, n ≥ 1} of real constants such that ((Mn−bn)/an) converges weakly to a nondegenerate
RV Y , then it is well known that Y is either Fréchet or Weibull or Gumbel (see, for example,
Galambos (1978)). Peng et al. (2009) showed that Y is Gumbel whenever the parameter v of
the GED is greater than 1, and Peng et al. (2010) studied the associated rate of convergence.
When the parameter v of the underlying GED belongs to (0, 1), we establish in Theorem 2.1
below that Y will again be Gumbel. When v = 1, the GED reduces to the double exponential
DF and in this case it is well known that Y is Gumbel. Our result for 0 < v < 1 thus fills a
gap in the study of the weak convergence of {Mn, n ≥ 1}. In Section 2 we further establish
the density convergence and obtain a strong limit theorem for {Mn, n ≥ 1} when v > 0.

Another characteristic of importance, associated with Mn, is the near maxima, defined as
Kn(a) = #{j : 1 ≤ j ≤ n, Xj ∈ (Mn − a, Mn]}, which gives the number of observations
among X1, X2, . . . , Xn that fall in the interval (Mn −a, Mn] for a specified a. For a continuous
underlying DF, Pakes and Steutel (1997) studied the near maxima and the sum of the associated
observations. Let rF = sup{x; F(x) < 1}, and let F̄ = 1 − F . Suppose that, for any a > 0,
there exists a constant γ (a), 0 ≤ γ (a) ≤ 1, such that

lim
x→∞

F̄ (x) − F̄ (x + a)

F̄ (x)
= γ (a). (1.1)

In Pakes and Steutel (1997), DFs F satisfying (1.1) were classified as thick tailed when
γ (a) = 0, medium tailed when 0 < γ (a) < 1, and thin tailed when γ (a) = 1. They
also established that Kn(a)

P−→ 1 as n → ∞ when γ (a) = 0, {Kn(a), n ≥ 1} converges to

a geometric RV taking values 1, 2, . . . when 0 < γ (a) < 1, and Kn(a)
P−→ ∞ as n → ∞

when γ (a) = 1, where ‘
P−→’ denotes convergence in probability. For thick-tailed distributions,

Li (1999) obtained a necessary and sufficient condition for Kn(a) → 1 almost surely (a.s.) as
n → ∞. For thin-tailed F , Pakes (2000) established that there exists a normalizing sequence
{νn, n ≥ 1} such that {ν−1

n Kn(a), n ≥ 1} converges weakly to an exponential distribution.
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Another characteristic associated with Kn(a) is the near-maxima sum, defined as Sn(a) =∑
j∈Tn(a) Xj , where Tn(a) = {j, 1 ≤ j ≤ n; Xj ∈ (Mn − a, Mn]}. Pakes (2004) obtained

almost-sure results for the behaviour of {Kn(a), n ≥ 1} and {Sn(a), n ≥ 1} when F̄ is
either regularly varying or Weibullian, and Hu and Su (2003) examined their behaviour for
medium tailed F . Balakrishnan and Stepanov (2005) extended some of these results to upper
order statistics. In Sections 3 and 4 respectively we discuss the asymptotic behaviour of
{Kn(a), n ≥ 1} and {Sn(a), n ≥ 1} when F is a GED.

The study of near maxima has found applications in nonlife insurance mathematics, queues
with demanding customers, etc. As the class of GEDs includes distributions with thick, medium,
and thin tails, the results established in this paper help in developing suitable statistical models
in the areas of nonlife insurance, market volatility, queues, etc.

2. Limit behaviour of partial maxima

Lemma 2.1. (Peng et al. (2009).) Let F be a GED with parameter v. Then

(i) for v > 1 and x > 0,

2λv

vxv−1

(
1 + 2(v − 1)

v

λv

xv

)−1

f (x) ≤ F̄ (x) ≤ 2λv

vxv−1 f (x),

where f (x) = c1e−xv/2λv
, x ∈ R, c−1

1 = v−1(λ21+1/v�(1/v));

(ii) for any v > 0,
F̄ (x) ∼ c2x

1−ve−xv/2λv

as x → ∞,

where c2 = (λ1−v21/v�(1/v))−1.

Theorem 2.1. Let X1, . . . , Xn be random observations from a GED F with 0 < v < 1, and
let Mn = max{X1, . . . , Xn}, n ≥ 1. Then

lim
n→∞ P(Mn ≤ anx + bn) = 	(x), x ∈ R,

where

bn = 21/vλ

(
log n + 1 − v

v
log log n + log c2 + 1 − v

v
log 2λv

)1/v

with c2 = (λ1−v21/v�(1/v))−1, an = v−121/vλ(log n)(1−v)/v, n ≥ 3, and 	(x) = e−e−x
.

Proof. From Lemma 2.1(ii), as n → ∞, we have

nF̄ (anx + bn) ∼ nc2(anx + bn)
1−v exp

(
− (anx + bn)

v

2λv

)
.

By Taylor’s expansion,

(anx + bn)
v = bv

n + vanx

b1−v
n

+ c′ a2
nx

2

b2−v
n

,

where c′ is some constant. Hence,

(anx + bn)
v

2λv
= log n + 1 − v

v
log log n + log c2 + 1 − v

v
log 2λv + vanx

2λvb1−v
n

+ c′

2λv

a2
n

b2−v
n

x2. (2.1)
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Observe that van/2λvb1−v
n → 1 and a2

n/b
2−v
n → 0 as n → ∞. Consequently,

exp

(
− (anx + bn)

v

2λv

)
∼ e−x

c2n(log n)(1−v)/v2(1−v)/vλ1−v
. (2.2)

Also,
(anx + bn)

1−v ∼ 2(1−v)/vλ1−v(log n)(1−v)/v. (2.3)

From (2.1), (2.2), and (2.3), we can see that limn→∞ nF̄ (anx +bn) = e−x, x ∈ R, and, hence,
limn→∞ P(Mn ≤ anx + bn) = 	(x), x ∈ R.

Remark 2.1. The above proof holds for any v > 0. As such, Theorem 2.1 holds for all
v > 0, i.e. any GED F belongs to the max domain of attraction of a Gumbel law, denoted by
F ∈ D(	).

Remark 2.2. Since F ∈ D(	) for any v > 0, from Theorem 3.1 of Mohan and Ravi (1993),
by taking αn = bn and βn = an/bn, n ≥ 1, we see that

lim
n→∞ Fn(αn|x|βn sgn(x)) = �(x) =

{
0, x < 0,

e−1/x, 0 ≤ x,

where sgn(x) = 1, 0, −1 according to whether x is greater than, equal to, or less than 0.
In other words, F belongs to the max domain of attraction of the Fréchet law � under power
normalization.

Our next result establishes the density convergence. If gn(·) denotes the PDF of
(Mn − bn)/an, n ≥ 1, then gn(x) = nanF

n−1(anx + bn)f (anx + bn), x ∈ R. The PDF of a
Gumbel law is given by λ(x) = e−xe−e−x

, x ∈ R.

Theorem 2.2. The PDF gn(·) of (Mn −bn)/an converges to λ(·) locally uniformly on compact
subsets of R.

Proof. From Proposition 2.5 of Resnick (1987), it is enough to show that

lim
x→∞ f (x)

∫ ∞

x

1 − F(t)

(1 − F(x))2 dt = 1, x > 0.

For x > 0, observe that f (·) is nonincreasing and, hence, by Proposition 1.17 of Resnick
(1987), the above limiting relation holds.

In the next theorem, we establish a strong law for {Mn, n ≥ 1}. In particular, when v = 2,
F is standard normal and, hence, it is well known that Mn/

√
2 log n → 1 a.s. (see, for example,

Galambos (1978)).

Theorem 2.3. Let F be the DF of the GED with parameters v and λ. Then

lim
n→∞

Mn

(2 log n)1/v
= λ a.s.

Proof. We establish that Mn/bn → 1 a.s. as n → ∞, where

bn = 21/vλ

(
log n − v − 1

v
log log n + log c2 − v − 1

v
log 2λv

)1/v

.
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Since bn ∼ λ(2 log n)1/v as n → ∞, the theorem then follows trivially. For any k > 0, by
Lemma 2.1(ii) we have

F̄ (kbn) ∼ c2k
1−vb1−v

n exp

(−kvbv
n

2λv

)
.

Proceeding as in the proof of Theorem 2.1, we see that

F̄ (kbn) ∼ c1−kv

2 k1−vλ(kv−1)(v−1)2(kv−1)(v−1)/v(log n)(k
v−1)(v−1)/v

nkv

= c3(log n)(k
v−1)(v−1)/v

nkv , (2.4)

where c3 > 0 is some constant. When k < 1, let kv = 1 − δ1 for some δ1 ∈ (0, 1). Then from
(2.4) we can find an integer n1 such that, for all n ≥ n1,

F̄ (kbn) ≥ c3

2

(log n)(1−v)δ1/v

n1−δ1
.

Consequently,
∑

n F̄ (kbn) = ∞ whenever k < 1. For k > 1, take kv = 1 + δ2 for some
δ2 > 0. Then, again, from (2.4) we can find an integer n2 such that, for all n ≥ n2,

F̄ (kbn) ≤ 2c3(log n)(v−1)δ2/v

n1+δ2
.

In turn
∑

F̄ (kbn) < ∞ whenever k > 1. By Theorem 4.4.1 of Galambos (1978), we then
obtain

lim sup
n→∞

Mn

bn

= 1 a.s.

In order to show that Mn/bn → 1 a.s. as n → ∞, it is enough to show that, for any given
ε ∈ (0, 1),

P(Mn < (1 − ε)bn infinitely often) = 0. (2.5)

By Lemma 4.3.3 of Galambos (1978), (2.5) holds provided
∑

n F̄ ((1 − ε)bn) = ∞ and∑
n F̄ ((1 − ε)bn) exp(−nF̄ ((1 − ε)bn)) < ∞. Taking k = 1 − ε in (2.4), and setting kv =

(1 − ε)v = 1 − ε1, we can find an integer n2 > 0 such that, for all n ≥ n2,

c3

2

(log n)(1−v)ε1/v

n1−ε1
≤ F̄ ((1 − ε)bn) ≤ 2c3(log n)(1−v)ε1/v

n1−ε1
.

Consequently,
∑

n F̄ ((1 − ε)bn) = ∞. Also, for n ≥ n2,

F̄ ((1 − ε)bn) exp(−nF̄ ((1 − ε)bn)) ≤ 2c3

n1−ε1/2 exp

(−c3n
ε1/2

2

)
,

and, hence,
∑

n F̄ ((1 − ε)bn) exp(−nF̄ ((1 − ε)bn)) < ∞. By appealing to Lemma 4.3.3 of
Galambos (1978), (2.5) is established. The proof is complete.

Remark 2.3. Theorem 4.4.4 of Galambos (1978) gives a necessary and sufficient condition
for the strong convergence of {Mn, n ≥ 1}. However, it requires the exact form of F , which is
not available for a GED and so we use an alternate method.
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3. Asymptotic behaviour of near maxima

The near-maxima RV is defined as Kn(a) = #{j, 1 ≤ j ≤ n, Xj ∈ (Mn − a, Mn]}, where
a > 0 is some given constant. We show that, as n → ∞, Kn(a) → 1 a.s. when 0 < v < 1

2 ,
Kn(a)

P−→ 1, but Kn(a) � 1 a.s. when 1
2 ≤ v < 1, Kn(a) converges to a geometric RV when

v = 1, and Kn(a), properly normalized, converges to an exponential RV when v > 1.

Theorem 3.1. For a GED with parameter v, Kn(a)
P−→ 1 when 0 < v < 1, Kn(a) converges

to a geometric RV with values 1, 2, . . . when v = 1, and Kn(a)
P−→ ∞ when v > 1.

Proof. With F as the DF of the GED, from Lemma 2.1(ii) we have F̄ (x) ∼ c2x
1−ve−xv/2λv

as x → ∞, where c2 = (λ1−v21/v�(1/v))−1. Note that the tail F̄ (·) is asymptotically
Weibullian. Proceeding as in Pakes (2004), we can show that limx→∞ F̄ (x + a)/F̄ (x) = 1 if
0 < v < 1, limx→∞ F̄ (x + a)/F̄ (x) = e−a/2λ if v = 1, and limx→∞ F̄ (x + a)/F̄ (x) = 0

if v > 1. Consequently, from Pakes and Steutel (1997), F is thick tailed with Kn(a)
P−→ 1 if

0 < v < 1, F is medium tailed with Kn(a) converging to a shifted geometric RV taking values

1, 2, . . . if v = 1, and F is thin tailed with Kn(a)
P−→ ∞ if v > 1.

In order to investigate the almost-sure behaviour of Kn(a), we first present the following
results.

Theorem 3.2. (Theorem A of Li (1999).) It holds that Kn(a) → 1 a.s. as n → ∞ if and only
if ∫ ∞

−∞
F(x + a) − F(x − a)

(1 − F(x − a))2 dF(x) < ∞.

Theorem 3.3. (Theorem B of Pakes (2004).) For some δ > 0, let F(x + a) − F(x − a) =
O(x−δ(F̄ (x))) as x → ∞ and − ∫ ∞

1 log(F̄ (x)) dx/x1+δ < ∞. Then Kn(a) → 1 a.s. as
n → ∞.

Theorem 3.4. It holds that Kn(a) → 1 a.s. if 0 < v < 1
2 and Kn(a) � 1 a.s. if 1

2 ≤ v < 1.

Proof. By the mean value theorem, we have F(x + a) − F(x − a) = 2af (x + θa), where
−1 ≤ θ ≤ 1 is some constant. Since f (x), x > 0, is decreasing, we have F(x+a)−F(x−a) ≤
2af (x − a). For 0 < v < 1, f (x)/f (x − a) → 1 as x → ∞. Hence, we can find an x1 > 0
such that, for all x ≥ x1, F(x + a) − F(x − a) ≤ 4af (x) = 4ax1−vf (x)/x1−v . Since
F̄ (x) ∼ 2λvx1−vf (x)/v as x → ∞,

F(x + a) − F(x − a) = O

(
F̄ (x)

x1−v

)
as x → ∞.

Again using the relation F̄ (x) ∼ 2λvx1−vf (x)/v as x → ∞, for a given ε ∈ (0, 1), we can
find an x2 > x1 such that, for all x ≥ x2, F̄ (x) ≥ (1 − ε)2λvx1−vf (x)/v, and in turn that
− log(F̄ (x)) ≤ xv/2λv − (1 − v) log x − log((1 − ε)c2). Consequently, for some c > 0,∫ ∞

x2

− log(F̄ (x))

x1−v
dx < c

∫ ∞

x2

dx

x1−2v
< ∞

if 0 < v < 1
2 . For 1 < x < x2, 0 < F(x) < F(x2) < 1 implies that

−
∫ x2

1

− log(1 − F(x))

x1−v
dx < ∞.

Applying Theorem 3.3, we note that Kn(a) → 1 a.s when 0 < v < 1
2 .

https://doi.org/10.1239/jap/1402578641 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578641


534 R. VASUDEVA ET AL.

When 1
2 ≤ v < 1, proceeding as above, we can find an x3 > 0 such that

F(x + a) − F(x − a)

1 − F(x − a)
≥ 1

2x1−v
, x ≥ x3.

By Lemma 2.1(ii), we have f (x)/F̄ (x − a) ∼ vxv−1/2λv as x → ∞. Consequently, we can
find an x4 ≥ x3 such that∫ ∞

x4

F(x + a) − F(x − a)

(F̄ (x − a))2
dF(x) ≥ v

λv

∫ ∞

x4

dx

x1−v
= ∞,

and, by Theorem 3.2, Kn(a) � 1 a.s. as n → ∞ whenever 1
2 ≤ v < 1, proving the theorem.

Definition 3.1. (Complete convergence.) A sequence {ξn, n ≥ 1} of RVs is said to converge
to a constant c under complete convergence if

∑
n P(|ξn − c| > ε) < ∞ for arbitrary ε > 0.

Remark 3.1. Whenever ξn → c under complete convergence, then ξn → c a.s.

For constant δ > 0, we establish that (Kn(a) − 1)/(log n)1+δ → 0 under complete
convergence whenever 0 < v < 1.

Theorem 3.5. Let F be the DF of a GED with parameter v, 0 < v < 1. Then, for any δ > 0,
(Kn(a) − 1)/(log n)1+δ → 0 under complete convergence.

Proof. For arbitrary ε > 0, we need to show that

∞∑
n=1

P

( |Kn(a) − 1|
(log n)1+δ

> ε

)
< ∞,

which holds whenever
∑∞

n=1 P(Kn(a) > (log n)1+δ/2) < ∞. With an = [(log n)1+δ/2] + 1,
we have

∞∑
n=1

P(Kn(a) > (log n)1+δ/2)

=
∞∑

n=1

∞∑
k=an

∫ ∞

−∞
k

(
n

k

)
Fn−k(y − a)(F (y) − F(y − a))k−1 dF(y).

For t > 1, let a(t) = (log t)1+δ/2 and a−1(t) denote its inverse. Then a(a−1(t)) = t implies
that a−1(t) = exp(t(1+δ/2)−1

). Defining b(t) = exp(t(1+δ/4)−1
) we have b(t) > a−1(t) for

large t . Hence,

∞∑
n=1

P(Kn(a) > (log n)1+δ/2)

≤
∫ ∞

−∞

∞∑
k=1

b(k)∑
n=k

k

(
n

k

)
Fn−k(y − a)(F (y) − F(y − a))k−1 dF(y)

=
∫ ∞

−∞

∞∑
k=1

k(F (y) − F(y − a))k−1
b(k)∑
n=k

(
n

k

)
Fn−k(y − a) dF(y). (3.1)
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Proceeding as in Hu and Su (2003, p. 234), we can show that

b(k)∑
n=k

(
n

k

)
Fn−k(y − a) ≤ b2(k)

F k(y − a)

(1 − F(y − a))k−1 .

By (3.1), we obtain

∞∑
n=1

P(Kn(a) > (log n)1+δ/2)

≤
∫ ∞

−∞

∞∑
k=1

k
(F (y) − F(y − a))k−1

(1 − F(y − a))k−1 Fk(y − a)b2(k) dF(y),

≤
∫ ∞

−∞

∞∑
k=1

k
(F (y) − F(y − a))k−1

(1 − F(y − a))k−1 exp(2k(1+δ/4)−1
) dF(y). (3.2)

Since F is thick tailed, we have limy→∞(F (y)−F(y−a))/(1−F(y−a)) = 0. Consequently,
for a given δ1 > 0, we can find a y1 such that, for all y ≥ y1,

F(y) − F(y − a)

F̄ (y − a)
< e−δ1 . (3.3)

From the fact that F is continuous with (F (y) − F(y − a))/F̄ (y − a) < 1 for all |y| ≤ y1, we
can find a y2 ∈ [−y1, y1] such that, for |y| ≤ y1,

F(y) − F(y − a)

F̄ (y − a)
≤ F(y2) − F(y2 − a)

F̄ (y2 − a)
= e−δ2 < 1 (3.4)

for some δ2 > 0. For y < −y1, note that

F(y) − F(y − a)

F̄ (y − a)
<

F(−y1)

1 − F(−y1)
= e−δ3 < 1 (3.5)

for some δ3 > 0. Let δ0 = min(δ1, δ2, δ3). Then, from (3.2), (3.3), (3.4), and (3.5),

∞∑
n=1

P(Kn(a) > (log n)1+δ/2) ≤
∫ ∞

−∞

∞∑
k=1

ke−δ0(k−1) exp(2k(1+δ/4)−1
) dF(y)

< ∞. (3.6)

Consequently, (Kn(a)−1)/(log n)1+δ → 0 under complete convergence, completing the proof.

Remark 3.2. Note that, by the Borel–Cantelli lemma, (3.6) implies that

Kn(a) − 1

(log n)1+δ
→ 0 a.s.,

and this is consistent with Remark 3.1, that is, complete convergence implies almost-sure
convergence.
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In the sequel, we obtain the limit distribution of {Kn(a), n ≥ 1} when v > 1. By
Theorem 3.1, recall that a GED with v > 1 is thin tailed. Pakes (2000) obtained the limit
distribution of {Kn(a)} when the underlying DF is thin tailed. In order to obtain the limit
distribution, Pakes (2000) further divided the class of thin-tailed distributions into svelte, lean,
and gaunt. We first show that a GED with v > 1 is svelte. By Assumption B(ii) of Pakes (2000,
p. 1106), a DF F is svelte if R(x) = − log F̄ (log x) is slowly varying as x → ∞ with index
function ε(x) slowly varying as x → ∞ and satisfying ε(x)R(x) → ∞ as x → ∞.

Theorem 3.6. The DF F of a GED with v > 1 is svelte.

Proof. If F is the DF of a GED, by Lemma 2.1(ii), we have F̄ (x) ∼ c2x
1−v exp(−xv/2λv)

as x → ∞. Hence,

R(x) = − log F̄ (log x) = (log x)v

2λv
(1 + o(1)) as x → ∞.

In turn, for any t > 0, R(tx)/R(x) → 1 as x → ∞, or R(x) is slowly varying as x → ∞. The
Karamata representation of R(x) is given by R(x) = exp(

∫ ∞
c

(ε(y)/y) dy) for some constant
c and the index function ε(x) → 0 as x → ∞. If R′ denotes the derivative of R, we have

R′(x) = 1

F̄ (log x)

f (log x)

x
= v

2λv

(log x)v−1

x
(1 + o(1)). (3.7)

Also, the Karamata representation gives R′(x) = R(x)ε(x)/x. Hence, from (3.7), we see that
ε(x) = v(1 + o(1))/ log x and ε(x)R(x) = v(log x)v−1(1 + o(1))/2λv as x → ∞, which
means that ε(·) is slowly varying, and ε(x) → 0 as x → ∞ and ε(x)R(x) → ∞ as x → ∞.
Hence, F is svelte.

Theorem 3.7. If F is the DF of a GED with v > 1 then, for any x > 0,

lim
n→∞ P(Kn(a) ≤ xνn) = 1 − e−x,

where

νn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

exp

(
av

21/2λ
(log n)1−1/v

)
, 1 < v < 2,

exp

(
−

k∑
j=1

v(v − 1) · · · (v − j − 1)

j !
( −a

21/2λ

)j

×(log n)1−j/v

)
, k ≤ v < k + 1, k ≥ 2.

Proof. Let �(x) = 1/F̄ (log x), x > 0, and let λ(·) be its inverse function. Define
H(x) = �(e−aλ(x)), x > 0. Since F is svelte, by Theorem 5.2 of Pakes (2000), we note
that ν−1

n Kn(a) converges weakly to a unit exponential distribution, where νn = n/H(n).
We will now find the form of H(n). By Theorem 5.1 of Pakes (2000), H(n) satisfies the
relation limn→∞ H(n)pn(x) = e−x, x > 0, with pn(x) = F̄ (bn + anx(1 + o(1)) − a), where
an = v−121/vλ(log n)(1−v)/v ,

bn = 21/vλ

(
log n + 1 − v

v
log log n + 1 − v

v
log 2λv + log c2

)1/v

,
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and c2 = (λ1−v21/v�(1/v))−1. It is enough for us to obtain the asymptotic form of H(n),which
we obtain from the relation

lim
n→∞ H(n)pn(1) = e−1. (3.8)

We have

pn(1) = F̄ (bn + an(1 + o(1)) − a)

∼ c2(bn + an(1 + o(1)) − a)1−v exp

(
− 1

2λv
(bn + an(1 + o(1)) − a)v

)
. (3.9)

Note that
(bn + an(1 + o(1)) − a)1−v ∼ 2(1−v)/vλ1−v(log n)(1−v)/v. (3.10)

We consider two cases.
Case 1: 1 < v < 2. By Taylor’s expansion, we obtain

(bn + an(1 + o(1)) − a)v = bv
n

(
1 + an(1 + o(1)) − a

bn

)v

= bv
n + v(an(1 + o(1)) − a)bv−1

n + c′ (an(1 + o(1)) − a)2

b2−v
n

,

where c′ is some constant. On simplification, we obtain

exp

(
− 1

2λv
(bn + an(1 + o(1)) − a)v

)

∼ e−1 exp

(
av

21/vλ
(log n)(v−1)/v

)/
c22(1−v)/vλ1−vn(log n)(1−v)/v.

Hence, by (3.9) and (3.10), we have

pn(1) ∼ e−1

n
exp

(
av

21/vλ
(log n)(v−1)/v

)
.

By (3.8), we see that

H(n) ∼ n

/
exp

(
av

21/vλ
(log n)(v−1)/v

)
,

which in turn gives

νn = n

H(n)
∼ exp

(
av

21/vλ

)
(log n)(v−1)/v.

As we are interested in the limit distribution of Kn(a)/νn, we can also take

νn = exp

(
av

21/vλ

)
(log n)(v−1)/v.

Case 2: k ≤ v < k + 1, k = 2, 3, . . . . We have

(bn + an(1 + o(1)) − a)v = bv
n

(
1 + an(1 + o(1)) − a

bn

)v

.
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By Taylor’s expansion, we obtain,

(bn + an(1 + o(1)) − a)v = bv
n +

k∑
j=1

v(v − 1) · · · (v − j − 1)

j ! b
v−j
n (an(1 + o(1)) − a)j

+ c′′(an(1 + o(1)) − a)k+1

bk+1−v
n

for some constant c′′. Note that

k∑
j=1

v(v − 1) · · · (v − j − 1)

j ! b
v−j
n (an(1 + o(1)) − a)j

=
k∑

j=1

j∑
r=0

v(v − 1) · · · (v − j − 1)

j ! b
v−j
n

(
j

r

)
(an(1 + o(1)))r (−a)j−r ,

=
k∑

j=1

j∑
r=0

v(v − 1) · · · (v − j − 1)

r! (j − r)! b
v−j
n (an(1 + o(1)))r (−a)j−r .

Hence, (3.9) can be written as

pn(1) ∼ q1nq2nq3nq4n , (3.11)

where

q1n = c2(bn + an(1 + o(1)) − a)1−ve−bv
n/2λv

,

q2n = exp

(
− v

2λv
bv−1
n (an(1 + o(1)) − a)

)
,

q3n = exp

(
− 1

2λv

k∑
j=2

v(v − 1) · · · (v − j − 1)

j ! b
v−j
n (an(1 + o(1)) − a)j

)
,

q4n = exp

(
− c′′

2λv

(an(1 + o(1)) − a)k+1

bk+1−v
n

)
.

By (3.10), we can show that

lim
n→∞ nq1n = 1. (3.12)

On simplification, we can see that

lim
n→∞ q2n exp

(
av

21/vλ
(log n)(v−1)/v

)
= e−1 (3.13)

and

lim
n→∞ q4n = 1. (3.14)
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We will now obtain the asymptotic form of q3n . Note that, for k ≥ 2,

k∑
j=1

v(v − 1) · · · (v − j − 1)

j ! b
v−j
n (an(1 + o(1)) − a)j

=
k∑

j=2

j∑
r=0

v(v − 1) · · · (v − j − 1)

r! (j − r)! b
v−j
n (an(1 + o(1)))r (−a)j−r ,

=
k∑

j=2

v(v − 1) · · · (v − j − 1)

j ! (−a)j (log n)(v−j)/v2(v−j)/vλv−1,

since all the terms with r ≥ 1 tend to 0 as n → ∞. Consequently,

q3n ∼ exp

(
−

k∑
j=2

v(v − 1) · · · (v − j − 1)

j !
( −a

21/vλ

)j

(log n)1−j/v

)
. (3.15)

Substituting (3.12)–(3.15) into (3.11) yields

pn(1) ∼ e−1

n
exp

(
−

k∑
j=1

v(v − 1) · · · (v − j − 1)

j !
( −a

21/vλ

)j

(log n)1−j/v

)
.

Recall that H(n)pn(1) → e−1 as n → ∞ and that H(n) = n/νn, To obtain an asymptotic
approximation of H(n), we note that

νn ∼ exp

(
−

k∑
j=1

v(v − 1) · · · (v − j − 1)

j !
( −a

21/vλ

)j

(log n)1−j/v

)
.

As we are interested in the limit distribution of Kn(a)/νn, we can also take

νn = exp

(
−

k∑
j=1

v(v − 1) · · · (v − j − 1)

j !
( −a

21/vλ

)j

(log n)1−j/v

)
.

This completes the proof.

Remark 3.3. As a particular case, for the normal distribution, v = 2 and

νn = exp

(
a
√

2 log n − a2

2

)
.

4. Asymptotic behaviour of the near-maxima sum

Recall that the near-maxima sum is given by Sn(a) = ∑
j∈Tn

Xj , where

Tn = #{j, 1 ≤ j ≤ n; Xj ∈ (Mn − a, Mn]}.
For example, in the insurance industry, if Mn denotes the maximum of n claims, Kn(a) gives
the number of claims close to Mn and Sn(a), the sum of such claims. As such, Sn(a) turns out
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to be a very important indicator. Pakes (2000) and Hu and Su (2003) studied the asymptotic
behaviour of Sn(a) for distributions with rF = ∞. In this section we study the behaviour of
Sn(a) when F is the DF of a GED.

From the definition of Sn(a), we have the trivial identity (Mn − a)Kn(a) ≤ Sn(a) ≤
MnKn(a), which implies that

lim
n→∞

Sn(a)

MnKn(a)
= 1 a.s. (4.1)

We have the following results.

Theorem 4.1. Let ηn = Sn(a)/λ(2 log n)1/v, n ≥ 2. Then ηn → 1 a.s. if 0 < v < 1
2 , ηn

P−→ 1
if 1

2 ≤ v < 1, and ηn converges weakly to a geometric RV if v = 1.

Proof. From Theorem 2.3, note that Mn/λ(2 log n)1/v → 1 a.s. as n → ∞. Hence, writing

ηn = Sn(a)

MnKn(a)

Mn

λ(2 log n)1/v
Kn(a),

the result follows.

Theorem 4.2. When v > 1, Sn(a)/(2 log n)1/vλνn converges weakly to a unit exponential RV.

Proof. Writing

Sn(a)

λ(2 log n)1/vνn

= Sn(a)

MnKn(a)

Mn

λ(2 log n)1/v

Kn(a)

νn

,

and applying Theorem 2.3 and Theorem 3.7, the result follows immediately in view of (4.1).

Remark 4.1. From the discussions, it is interesting to note that the class of GEDs is a class
of symmetric distributions with all moments finite and that the tail of a GED is asymptotically
Weibullian. This class includes DFs that are thick tailed as well as those that are thin tailed. In
some sense these distributions are sandwiched between those with rapidly increasing tails and
with regularly varying tails.

Pareto distributions are being used in many studies, with applications to stock market data,
data on loss due to calamities, insurance claims data, etc. If the data indicate reasons to believe
that the observations come from a thick-tailed distribution with finite moments, then GEDs with
v < 1 become useful. In such situations, our study throws light on the behaviour of maxima,
near maxima, etc., which are crucial characteristics.

Similarly, if the data indicate that the tail of the associated DF is much thinner than a normal
tail, one may be able to choose a GED as a better alternative. In the study of the near maxima
RV Kn(a), we note that Kn(a)/νn converges to a unit exponential RV, under weak convergence,
whenever v > 1. Let r > 1 be some integer. Define Kn(a) = Kn,r (a) and νn(a) = νn,r (a)

when v = r , and note that Kn,2(a)/νn,2 and Kn,r (a)/νn,r , r > 2, both converge to a unit
exponential RV. Also, note that νn,r/νn,2 → ∞ as n → ∞. This means that a much larger
dividing or normalizing sequence is needed to get the same limit distribution when r > 2 as
compared to r = 2. Consequently, in some sense, Kn,r (a) can be seen to be larger than Kn,2(a),
eventually. That is, for distributions thinner than normal, the near-maxima RV can be seen to
be denser, even though Kn,r (a)

P−→ ∞ whenever r > 1. In statistical modelling, if a GED with
v > 2 is found to be more appropriate than a normal distribution, the discussions in this paper
may help in understanding and appreciating the situation.
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