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Abstract

Let α be a formation of finite groups which is closed under subgroups and group extensions and which
contains the formation of solvable groups. Let G be any finite group. We state and prove equivalences
between conditions on chief factors of G and structural characterizations of the α-residual and the
α-radical of G. We also discuss the connection of our results to the generalized Fitting subgroup of G.
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1. Introduction

Let G be a finite group such that each chief factor of G is simple nonabelian. It
can be proved from Schreier’s conjecture (which states that out(T ) is solvable if T is
simple nonabelian) that G = Soc(G), where Soc(G) is the subgroup generated by the
minimal normal subgroups of G. Theorem 6 extends this result under the assumption
that certain nonabelian chief factors of G satisfy a suitable ‘Schreier property’. Similar
ideas underlie Theorem 8. Here the ‘Schreier property’ is assumed to hold for a family
of chief factors which includes the abelian ones. A special case of Theorem 8 is
obtained when G is a group for which every chief factor M/N , where M is contained
in the solvable radical R of G, is cyclic. In this case, Theorem 8 gives CG(L) = R
where L is the solvable residual of G (compare to [4]).

The proof of Theorem 6 utilizes a generalization of a characteristic subgroup which
plays a role in various algorithms of computational group theory [1, Ch. 10, 6, Ch. 6].
This subgroup (denoted N2 in [6]) is the preimage in G of Soc(G/R) where R is
the solvable radical of G. Theorem 4 provides another way of looking at N2 which
naturally leads us to consider the generalized Fitting subgroup F∗(G). We do this in
Section 3 where we prove (see Theorem 24) that F∗(G) = N2 ∩ CG(R)F(G) where
F(G) is the Fitting subgroup of G. We also give in this section a short proof, based on
basic consequences of our concepts, of the well-known fact that CG(F∗(G)) ≤ F∗(G).
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Throughout the paper we consider finite groups. The Greek letter α will denote a
formation of finite groups, that is, a property of finite groups which has a residual and
is closed under homomorphic images. We recall that α has a residual if for every group
G there exists a normal subgroup Lα(G) such that G/Lα(G) is α, and, for any N E G
such that G/N is α, Lα(G) ≤ N . Henceforth we denote the α-residual of G by Lα(G).
In addition, we assume that α is closed under group extensions and under subgroups
and that α contains the formation of solvable groups. Three particular examples of
formations which satisfy all of our assumptions are the following:

(1) the formation of solvable groups;
(2) the formation of π -solvable groups, where π is any fixed set of primes;
(3) the formation of π -separable groups, where π is any fixed set of primes.

Our assumptions imply that α has a radical (see Lemma 10). This means that for
every group G there exists a normal subgroup which is α and contains each normal
α-subgroup of G. Henceforth we denote the α-radical of G by Rα(G).

The main objects of interest in the present paper are given by the following
definitions.

DEFINITION 1. Let G be a group and K ≤ G. We say that K is minimal α′ normal in
G if:

(1) K is a normal subgroup of G;
(2) K is not α;
(3) if N E G and N < K then N is α.

Note that since α is closed under group extensions, a minimal α′ normal subgroup
of G is necessarily perfect.

DEFINITION 2. Let G be a group. L0(α, G) is the subgroup of G which is generated
by all of the minimal α′ normal subgroups of G. If there are none (that is, G is α) then
L0(α, G) = 1.

When α is the formation of solvable groups, L0(α, G)Rα(G) = N2 (see above and
Proposition 18).

DEFINITION 3. Let G be a group.
(1) For any M E G

InnG(M)
def
= CG(M)M .

For any M, N E G, N < M , we define InnG(M/N ) to be the preimage in G of
InnG/N (M/N ).

(2) For any M E G,

OutG(M)
def
= G/InnG(M) = G/(CG(M)M).

For any M, N E G, N < M , we define

OutG(M/N )
def
= G/InnG(M/N ) ∼= OutG/N (M/N ).
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Note that for M E G, InnG(M) is the set of all elements of G which act on M
(by conjugation) like inner automorphisms of M . It can also be verified that OutG(M)

is embedded in Out(M).
We prove and then use the following characterization of L0(α, G)Rα(G).

THEOREM 4. Let G be a group. Then

L0(α, G)Rα(G) =

⋂
M/N is a non-α chief

factor of G

InnG(M/N ). (1)

Theorem 4 brings to mind the characterization of the generalized Fitting subgroup
F∗(G) (see [2]) as the set of all elements g ∈ G such that g acts as an inner
automorphism on all chief factors of G, that is,

F∗(G) =

⋂
M/N is a chief

factor of G

InnG(M/N ). (2)

In Section 3 we make some further observations on the formal similarity between
L0(α, G)Rα(G) and F∗(G).

DEFINITION 5. Let G be a group and let M, N E G. Then M/N has the α-Schreier
property in G if OutG(M/N ) is α.

Note that if α is the formation of solvable groups and M/N is a simple nonabelian
chief factor of G, then Out(M/N ) is solvable by Schreier’s conjecture and hence M/N
has the α-Schreier property in G.

The next two theorems characterize certain α-Schreier properties of chief factors.
For the first theorem note that L0(α, G) ≤ Lα(G) holds for any group G (see
Corollary 15).

THEOREM 6. Let G be a group. Then the following conditions are equivalent.

(a) L0(α, G) = Lα(G).
(b) Every chief factor of G of the form M/Rα(G) has the α-Schreier property in G.
(c) Every non-α chief factor of G has the α-Schreier property in G.

REMARK 7. Note that Rα(G) = 1 implies that L0(α, G) = Soc(G) (this follows
easily from the definition of L0(α, G)). Using this, one can verify that the result
mentioned at the beginning of the introduction is a special case of Theorem 6.

For the next result note that CG(Lα(G)) ≤ Rα(G) for any group G (see Lemma 22).

THEOREM 8. Let G be a group. Then the following conditions are equivalent.

(a) CG(Lα(G)) = Rα(G).
(b) Every chief factor M/N of G such that M ≤ Rα(G) has the α-Schreier property

in G.
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2. Proofs of Theorems 4, 6 and 8

LEMMA 9. Let G be a group. Then Lα(Lα(G)) = Lα(G). In particular, Lα(G) is
perfect.

PROOF. This follows from the fact that α is closed under extensions, and from the fact
that α contains the formation of solvable groups. 2

LEMMA 10. The property α has a radical.

PROOF. It is sufficient to prove that if N1, N2 E G and N1, N2 are α then N1 N2 is α.
Consider N1 N2/N1 ∼= N2/(N1 ∩ N2). Since α is inherited by quotients, N1 N2/N1 is
α. Now, since N1 is α and α is inherited by extensions, N1 N2 is α. 2

LEMMA 11. Let G be a group and N E G. Then Rα(N ) = Rα(G) ∩ N.

PROOF. This follows easily from the assumption that α is closed under subgroups. 2

LEMMA 12. Let G be a group and let N E G be such that N ≤ Rα(G). Then
Rα(G/N ) = Rα(G)/N. In particular, Rα(G/Rα(G)) = 1.

PROOF. Rα(G)/N is α because α is closed under homomorphic images, and so
Rα(G)/N ≤ Rα(G/N ). On the other hand, let M/N = Rα(G/N ). Then, since both
M/N and N are α and α is closed under extensions, M is α and hence M ≤ Rα(G).
This shows that Rα(G/N ) ≤ Rα(G)/N . 2

LEMMA 13. Let G be a group and N E G. Then Lα(G/N ) = Lα(G)N/N.

PROOF. Let K/N = Lα(G/N ). Then (G/N )/(K/N ) ∼= G/K is α and so Lα(G)

≤ K and Lα(G)N ≤ K . This proves that Lα(G)N/N ≤ Lα(G/N ). On the other
hand, G/(Lα(G)N ) is α since α is closed under homomorphic images. Thus
Lα(G/N ) ≤ Lα(G)N/N . 2

LEMMA 14. Let G be a group and N E G. Let K be minimal α′ normal in G. Then
either K ≤ N or K N/N is minimal α′ normal in G/N. It follows from Definition 2
that L0(α, G)N/N ≤ L0(α, G/N ).

PROOF. Suppose that K � N . Then 1 < K N/N E G/N . We also have K ∩ N < K ,
and hence (Definition 1(3)) K ∩ N is α. Hence, using the fact that α is closed
under extensions, K N/N ∼= K/K ∩ N is α if and only if K is α. But K is not α

(Definition 1(2)), hence K N/N is not α. Let M/N < K N/N be a normal subgroup of
G/N . We shall prove that M/N is α. Now M = M ∩ K N = (M ∩ K )N . Supposing
that M ∩ K = K yields that M = K N – a contradiction. Hence M ∩ K < K . Since
M ∩ K E G and K is minimal α′ normal in G, we get (Definition 1(3)) that M ∩ K
is α. Thus, M/N = (M ∩ K )N/N ∼= (M ∩ K )/(K ∩ N ) is α. Combining all of the
above, we have proved that K N/N is minimal α′ normal in G/N . 2
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COROLLARY 15. Let G be a group. Then L0(α, G) ≤ Lα(G).

PROOF. Note that if a group H is α then L0(α, H) = 1. Hence, if we choose
N = Lα(G) in Lemma 14, we get L0(α, G)Lα(G)/Lα(G) ≤ L0(α, G/Lα(G)) = 1.
The claim follows. 2

LEMMA 16. Let K be minimal α′ normal in G. Then K Rα(G)/Rα(G) is a non-α
chief factor of G.

PROOF. K Rα(G)/Rα(G) ∼= K/Rα(K ) (Lemma 11). Since K is not α, K/Rα(K ) is
not α. Thus K Rα(G)/Rα(G) is non-α. Suppose to the contrary that K Rα(G)/Rα(G)

is not a chief factor of G. Then there exists N E G such that Rα(G) < N < K Rα(G).
We have N = N ∩ K Rα(G) = (N ∩ K )Rα(G). Note that N ∩ K E G. Assuming
that N ∩ K is α leads to N ∩ K ≤ Rα(G) which gives N = (N ∩ K )Rα(G) = Rα(G),
contradicting Rα(G) < N . Hence, N ∩ K is a normal non-α subgroup of G contained
in K . Since K is minimal α′ normal in G we get N ∩ K = K , giving N = K Rα(G) –
a contradiction. 2

LEMMA 17. Let G be a group. Suppose M/Rα(G) is a chief factor of G. Then Lα(M)

is a minimal α′ normal subgroup of G. Furthermore, M = Lα(M)Rα(G).

PROOF. Note that Lα(M) is a normal non-α subgroup of G. For if Lα(M) is α,
then, since M/Lα(M) is α, we get that M is α and M ≤ Rα(G), contradicting the
assumption that M/Rα(G) is a chief factor of G. Let N E G be such that N ≤ Lα(M).
Then Rα(G) ≤ N Rα(G) ≤ M . Since M/Rα(G) is a chief factor of G, either
N ≤ Rα(G) or N Rα(G) = M . The first possibility implies that N is α. The second
possibility implies that M/N ∼= Rα(G)/Rα(N ) is α and hence N ≥ Lα(M), implying
N = Lα(M). This concludes the proof that Lα(M) is minimal α′ normal in G.
Moreover, repeating the last argument with N = Lα(M) gives M = Lα(M)Rα(G). 2

PROPOSITION 18. Let G be a group. Then

L0(α, G)Rα(G)/Rα(G) = Soc(G/Rα(G)).

PROOF. Set Rα(G) = R. Let K be minimal α′ normal in G. Then, by Lemma 16,
K R/R is minimal normal in G/R. Hence, K R/R ≤ Soc(G/R). Since L0(α, G)

is generated by all minimal α′ normal subgroups of G we get L0(α, G)R/R
≤ Soc(G/R).

For the reverse inclusion, let M E G be such that M/R is minimal normal in
G/R. By Lemma 17, M = Lα(M)R, and Lα(M) is minimal α′ normal in G. Hence,
M/R ≤ L0(α, G)R/R. Thus Soc(G/R) ≤ L0(α, G)R/R. 2

LEMMA 19. Let G be a group and let N be a minimal normal subgroup of G. Then
Soc(G) ≤ CG(N )N.
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PROOF. If M is a minimal normal subgroup of G then either M = N or M ≤ CG(N ).
The claim follows. 2

LEMMA 20. Let G be a group such that Rα(G) = 1. Then

Soc(G) =

⋂
N is minimal
normal in G

CG(N )N.

PROOF. Set
M =

⋂
N is minimal
normal in G

CG(N )N .

We show that Soc(G) = M . By Lemma 19, Soc(G) ≤ M . Let N be a minimal
normal subgroup of G. Then, using N ≤ Soc(G) ≤ M ≤ CG(N )N , we obtain
M = M ∩ CG(N )N = (M ∩ CG(N ))N , implying

M/(M ∩ CG(N )) = (M ∩ CG(N ))N/(M ∩ CG(N )) ∼= N/CG(N ) ∩ N .

Since α contains the formation of solvable groups, Rα(G) = 1 implies that the solvable
radical of G is 1 and hence N is nonabelian. Therefore CG(N ) ∩ N = 1, and we have
proved that M/CM (N ) ∼= N . Let N1, . . . , Nt be minimal normal subgroups of G such
that Soc(G) = N1 × · · · × Nt . Now M/(CM (N1) ∩ · · · ∩ CM (Nt )) can be embedded
in (M/CM (N1)) × · · · × (M/CM (Nt )), which is isomorphic (see above) to Soc(G).
However,

CM (N1) ∩ · · · ∩ CM (Nt ) = M ∩ CG(Soc(G)).

Now Z(Soc(G)) = 1, forcing CG(Soc(G)) = 1. Thus M itself can be embedded in
Soc(G). Since Soc(G) ≤ M , we get Soc(G) = M . 2

COROLLARY 21. Let G be a group. Then

L0(α, G)Rα(G) =

⋂
all M such that M/Rα(G)

is a chief factor of G

InnG(M/Rα(G)).

PROOF. Set Rα(G) = R. Let M/R be a chief factor of G. Then InnG(M/R)/

R = CG/R(M/R)(M/R). Thus ⋂
all M such that M/R
is a chief factor of G

InnG(M/R)

 /
R =

⋂
K is minimal

normal in G/R

CG/R(K )K

= Soc(G/R)

= L0(α, G)R/R,

where the second equality is justified by Lemma 20 and the third by Proposition 18. 2
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PROOF OF THEOREM 4. Let M/N be a non-α chief factor of G. We show
that L0(α, G)Rα(G) ≤ InnG(M/N ). First note that Rα(G)N/N ∩ M/N = 1 and
hence Rα(G) ≤ CG(M/N ) ≤ InnG(M/N ) (CG(M/N ) is the preimage in G of
CG/N (M/N )). Next, let K be minimal α′ normal in G. Then, by Lemma 14, either
K ≤ N (implying that K ≤ InnG(M/N )) or K N/N is minimal α′ normal in G/N . In
the second case, since M/N is minimal normal in G/N and non-α, either K N/N =

M/N or K N/N ∩ M/N = 1. In both cases K N/N ≤ InnG(M/N ), and L0(α, G) ≤

InnG(M/N ) follows. Thus we have proved the inclusion of L0(α, G)Rα(G) in the
right-hand side of (1). Equality now follows from Corollary 21. 2

PROOF OF THEOREM 6.
(a) implies (c): L0(α, G) = Lα(G) implies that L0(α, G)Rα(G) = Lα(G)Rα(G).

By Theorem 4(1),

Lα(G)Rα(G) =

⋂
M/N is a non-α chief

factor of G

InnG(M/N ).

Thus, if M/N is a non-α chief factor of G, then Lα(G) ≤ InnG(M/N ) and hence
OutG(M/N ) = G/InnG(M/N ) is α.

(c) implies (b): Trivial.
(b) implies (a): We assume that every chief factor of G of the form M/Rα(G)

has the α-Schreier property in G. Hence, for any such chief factor, Lα(G) ≤

InnG(M/Rα(G)). Thus, by Corollary 21, Lα(G) ≤ L0(α, G)Rα(G). Since
L0(α, G) ≤ Lα(G) (Corollary 15), we obtain Lα(G) = L0(α, G)(Lα(G) ∩ Rα(G)).
From this we get that Lα(G)/L0(α, G) is α. Since, by Lemma 9, Lα(Lα(G)) =

Lα(G), we obtain Lα(G) = L0(α, G) as required. 2

LEMMA 22. Let G be a group. Then CG(Lα(G)) ≤ Rα(G).

PROOF. Set L = Lα(G). Clearly CG(L) E G, so it is sufficient to prove that CG(L)

is α. Indeed, CG(L)L/L ∼= CG(L)/(L ∩ CG(L)) is α, and L ∩ CG(L) is abelian and
hence α. Therefore, CG(L) is α. 2

PROOF OF THEOREM 8.
(a) implies (b): Suppose that CG(Lα(G)) = Rα(G). Let M/N be a chief factor

of G such that M ≤ Rα(G). Then every element of M commutes with every
element of Lα(G). Hence, CG/N (M/N ) ≥ Lα(G)N/N . Thus, by Lemma 13,
(G/N )/CG/N (M/N ) is α and M/N has the α-Schreier property in G.

(b) implies (a): Suppose that every chief factor M/N of G such that M ≤ Rα(G)

has the α-Schreier property in G. By Lemma 22, we may assume that Rα(G) > 1.
Let N be a minimal normal subgroup of G such that N ≤ Rα(G). By Lemma 12,
Rα(G/N ) = Rα(G)/N . Hence, if (M/N )/(K/N ) ∼= M/K is a chief factor of G/N
and M/N ≤ Rα(G/N ), then M/K is a chief factor of G such that M ≤ Rα(G).
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It follows from this and the definition of α-Schreier property (Definition 5) that
condition (b) of the theorem holds for the group G/N . Hence, by induction,

CG/N (Lα(G/N )) = Rα(G/N ),

and so CG/N (Lα(G)N/N ) = Rα(G)/N . We get that [Lα(G), Rα(G)] ≤ N .
Moreover, since N has the α-Schreier property in G, we get that G/CG(N )N is α.
Since

(G/CG(N ))/(CG(N )N/CG(N )) ∼= G/(CG(N )N ),

and α is closed under extensions, we have that G/CG(N ) is α which implies that
Lα(G) ≤ CG(N ). Thus,

[Rα(G), Lα(G), Lα(G)] = 1.

Hence, by the three-subgroups lemma,

[Lα(G), Lα(G), Rα(G)] = 1.

But Lα(G) is perfect (Lemma 9), hence [Lα(G), Rα(G)] = 1 and CG(Lα(G))

= Rα(G). 2

3. Some comments on F∗(G)

We begin by noting a formal similarity between L0(α, G)Rα(G) and F∗(G). Recall
that F∗(G) = E(G)F(G), where E(G) is the layer of G. The following property of
E(G) whose proof is omitted (see [3, Section 6.5]) is useful for our purposes (compare
with Definition 1).

LEMMA 23. Let G be a group. Then E(G) is generated by all subgroups 1 < K E G
such that K is perfect, and for all N E G such that N < K we have N ≤ Z(K )

(henceforth such K will be called a minimal z′ normal subgroup of G).

Thus, L0(α, G), which is generated by the minimal α′ normal subgroups of G,
resembles E(G), and F(G), which is the nilpotent radical of G, resembles Rα(G)

(note that F(G) ≤ Rα(G), and if α is the formation of solvable groups then E(G)

≤ L0(α, G)).
A more direct connection between these subgroups is given by the following.

THEOREM 24. Let G be a group. Denote Fα(G) = Rα(G) ∩ F∗(G). Then

F∗(G) = L0(α, G)Rα(G) ∩ CG(Rα(G))Fα(G).

In particular, F∗(G) = N2 ∩ CG(R)F(G), where R is the solvable radical of G.

The proof of this theorem requires the following lemma.
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LEMMA 25. Set

Eα(G) =

∏
K is minimal α′normal in G

Rα(K )=Z(K )

K ,

L1(α, G) =

∏
K is minimal α′normal in G

Rα(K )6=Z(K )

K .

Then L0(α, G) = Eα(G)L1(α, G), F∗(G) = Eα(G)Fα(G) (see Theorem 24) and
Eα(G) ≤ CE(G)(Rα(G)).

PROOF. L0(α, G) = Eα(G)L1(α, G) is obvious from the definitions. Let K be
minimal α′ normal in G such that Rα(K ) = Z(K ). By Lemma 23, K ≤ E(G),
from which Eα(G) ≤ E(G) follows. Thus Eα(G)Fα(G) ≤ F∗(G). In order to
prove the reverse inclusion, note that F(G) ≤ Rα(G) implies F(G) ≤ Fα(G). Next,
let K be a minimal z′ normal subgroup of G (see Lemma 23). If K is α

then K ≤ Rα(G) ∩ F∗(G) = Fα(G). If K is not α then Rα(K ) < K and we get
Rα(K ) = Z(K ). This proves that E(G) ≤ Eα(G)Fα(G) and concludes the proof
that Eα(G)Fα(G) = F∗(G). Finally, let K be minimal α′ normal in G such that
Rα(K ) = Z(K ). Since K is not α, then K ∩ Rα(G) < K implying [K , Rα(G)] ≤

K ∩ Rα(G) ≤ Z(K ), hence [K , Rα(G), K ] = 1. Thus, by the three-subgroups lemma
[3, 1.5.6], [K , K , Rα(G)] = 1. Since K is perfect this implies that [K , Rα(G)] = 1,
leading to K ≤ CE(G)(Rα(G)). Thus Eα(G) ≤ CE(G)(Rα(G)). 2

PROOF OF THEOREM 24. We use the notation of Lemma 25. Since Fα(G) ≤ Rα(G)

and Eα(G) ≤ CG(Rα(G)) (Lemma 25),

L0(α, G)Rα(G) ∩ CG(Rα(G))Fα(G)

= Eα(G)(L1(α, G)Rα(G) ∩ CG(Rα(G))Fα(G)).

Since F∗(G) = Eα(G)Fα(G) (Lemma 25) it is sufficient to prove that L1(α, G)Rα(G)

∩ CG(Rα(G)) ≤ Fα(G). In fact, it is sufficient to prove that L1(α, G)Rα(G) ∩

CG(Rα(G)) is α since then it is contained in Z(Rα(G)) and hence in Fα(G).
Assume to the contrary that L1(α, G)Rα(G) ∩ CG(Rα(G)) is not α. Then it must
contain a minimal α′ normal subgroup of G, say K . Since K ≤ CG(Rα(G)), then
Rα(K ) = Z(K ).

Let N be any minimal α′ normal subgroup of G such that Rα(N ) 6= Z(N ) (such
N ’s generate L1(α, G)). Then K � N and hence K ∩ N ≤ Z(K ). It follows that
[K , N , K ] = 1 and by the three-subgroups lemma [K , K , N ] = 1 and (K is perfect)
[K , N ] = 1. Thus [K , L1(α, G)] = 1. But K ≤ L1(α, G)Rα(G) ∩ CG(Rα(G)) now
implies that K ≤ Z(L1(α, G)Rα(G)), contradicting the fact that K is not α. 2

We close this section with a proof that utilizes our Definition 1 of the following
well-known fact. We only need Lemma 23.
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FACT. For any group G, CG(F∗(G)) ≤ F∗(G).

PROOF. In this proof the property α is solvability and Rα(K ) = R(K ). Recall
[5, 7.67] that if H E G is solvable and H centralizes F(G) then H ≤ F(G). From this
and from the fact that CG(F∗(G)) ≤ CG(F(G)) it easily follows that the claim holds
if CG(F∗(G)) is solvable. Otherwise, CG(F∗(G)) is a normal nonsolvable subgroup
of G, and hence contains a minimal solvable′ (that is, nonsolvable) normal subgroup
K . Now R(K ) < K ≤ CG(F(G)), and hence, by the same result mentioned above,
R(K ) ≤ F(G). Since K ≤ CG(F(G)) we get R(K ) = Z(K ). Hence (Lemma 23)
K ≤ E(G). However, K ≤ CG(E(G)), hence K ≤ Z(E(G)), contradicting the fact
that K is nonsolvable. 2
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