SCHREIER CONDITIONS ON CHIEF FACTORS AND RESIDUALS OF SOLVABLE-LIKE GROUP FORMATIONS

GIL KAPLAN and DAN LEVY[™]

(Received 11 September 2007)

Abstract

Let α be a formation of finite groups which is closed under subgroups and group extensions and which contains the formation of solvable groups. Let *G* be any finite group. We state and prove equivalences between conditions on chief factors of *G* and structural characterizations of the α -residual and the α -radical of *G*. We also discuss the connection of our results to the generalized Fitting subgroup of *G*.

2000 Mathematics subject classification: 20D25, 20E34.

Keywords and phrases: Schreier's conjecture, residual, radical, chief factors, generalized Fitting subgroup.

1. Introduction

Let *G* be a finite group such that each chief factor of *G* is simple nonabelian. It can be proved from Schreier's conjecture (which states that out(T) is solvable if *T* is simple nonabelian) that G = Soc(G), where Soc(G) is the subgroup generated by the minimal normal subgroups of *G*. Theorem 6 extends this result under the assumption that certain nonabelian chief factors of *G* satisfy a suitable 'Schreier property'. Similar ideas underlie Theorem 8. Here the 'Schreier property' is assumed to hold for a family of chief factors which includes the abelian ones. A special case of Theorem 8 is obtained when *G* is a group for which every chief factor M/N, where *M* is contained in the solvable radical *R* of *G*, is cyclic. In this case, Theorem 8 gives $C_G(L) = R$ where *L* is the solvable residual of *G* (compare to [4]).

The proof of Theorem 6 utilizes a generalization of a characteristic subgroup which plays a role in various algorithms of computational group theory [1, Ch. 10, 6, Ch. 6]. This subgroup (denoted N_2 in [6]) is the preimage in G of Soc(G/R) where R is the solvable radical of G. Theorem 4 provides another way of looking at N_2 which naturally leads us to consider the generalized Fitting subgroup $F^*(G)$. We do this in Section 3 where we prove (see Theorem 24) that $F^*(G) = N_2 \cap C_G(R)F(G)$ where F(G) is the Fitting subgroup of G. We also give in this section a short proof, based on basic consequences of our concepts, of the well-known fact that $C_G(F^*(G)) \leq F^*(G)$.

^{© 2008} Australian Mathematical Society 0004-9727/08 \$A2.00 + 0.00

Throughout the paper we consider finite groups. The Greek letter α will denote a formation of finite groups, that is, a property of finite groups which has a residual and is closed under homomorphic images. We recall that α has a residual if for every group G there exists a normal subgroup $L_{\alpha}(G)$ such that $G/L_{\alpha}(G)$ is α , and, for any $N \leq G$ such that G/N is α , $L_{\alpha}(G) \leq N$. Henceforth we denote the α -residual of G by $L_{\alpha}(G)$. In addition, we assume that α is closed under group extensions and under subgroups and that α contains the formation of solvable groups. Three particular examples of formations which satisfy all of our assumptions are the following:

- (1) the formation of solvable groups;
- (2) the formation of π -solvable groups, where π is any fixed set of primes;
- (3) the formation of π -separable groups, where π is any fixed set of primes.

Our assumptions imply that α has a radical (see Lemma 10). This means that for every group *G* there exists a normal subgroup which is α and contains each normal α -subgroup of *G*. Henceforth we denote the α -radical of *G* by $R_{\alpha}(G)$.

The main objects of interest in the present paper are given by the following definitions.

DEFINITION 1. Let G be a group and $K \leq G$. We say that K is minimal α' normal in G if:

- (1) K is a normal subgroup of G;
- (2) K is not α ;
- (3) if $N \leq G$ and N < K then N is α .

Note that since α is closed under group extensions, a minimal α' normal subgroup of G is necessarily perfect.

DEFINITION 2. Let *G* be a group. $L_0(\alpha, G)$ is the subgroup of *G* which is generated by all of the minimal α' normal subgroups of *G*. If there are none (that is, *G* is α) then $L_0(\alpha, G) = 1$.

When α is the formation of solvable groups, $L_0(\alpha, G)R_\alpha(G) = N_2$ (see above and Proposition 18).

DEFINITION 3. Let *G* be a group.

(1) For any $M \trianglelefteq G$

$$\operatorname{Inn}_G(M) \stackrel{\text{def}}{=} C_G(M)M.$$

For any $M, N \leq G$, N < M, we define $\text{Inn}_G(M/N)$ to be the preimage in G of $\text{Inn}_{G/N}(M/N)$.

(2) For any $M \trianglelefteq G$,

$$\operatorname{Out}_G(M) \stackrel{\text{def}}{=} G/\operatorname{Inn}_G(M) = G/(C_G(M)M).$$

def

1.0

For any $M, N \leq G, N < M$, we define

$$\operatorname{Out}_G(M/N) \stackrel{\operatorname{del}}{=} G/\operatorname{Inn}_G(M/N) \cong \operatorname{Out}_{G/N}(M/N).$$

Note that for $M \leq G$, $\operatorname{Inn}_G(M)$ is the set of all elements of G which act on M (by conjugation) like inner automorphisms of M. It can also be verified that $\operatorname{Out}_G(M)$ is embedded in $\operatorname{Out}(M)$.

We prove and then use the following characterization of $L_0(\alpha, G)R_{\alpha}(G)$.

THEOREM 4. Let G be a group. Then

$$L_0(\alpha, G)R_\alpha(G) = \bigcap_{\substack{M/N \text{ is a non-}\alpha \text{ chief}\\factor of G}} \operatorname{Inn}_G(M/N).$$
(1)

Theorem 4 brings to mind the characterization of the generalized Fitting subgroup $F^*(G)$ (see [2]) as the set of all elements $g \in G$ such that g acts as an inner automorphism on all chief factors of G, that is,

$$F^*(G) = \bigcap_{\substack{M/N \text{ is a chief} \\ \text{factor of } G}} \operatorname{Inn}_G(M/N).$$
(2)

In Section 3 we make some further observations on the formal similarity between $L_0(\alpha, G)R_{\alpha}(G)$ and $F^*(G)$.

DEFINITION 5. Let *G* be a group and let *M*, $N \leq G$. Then *M*/*N* has the α -Schreier property in *G* if $Out_G(M/N)$ is α .

Note that if α is the formation of solvable groups and M/N is a simple nonabelian chief factor of G, then Out(M/N) is solvable by Schreier's conjecture and hence M/N has the α -Schreier property in G.

The next two theorems characterize certain α -Schreier properties of chief factors. For the first theorem note that $L_0(\alpha, G) \leq L_{\alpha}(G)$ holds for any group G (see Corollary 15).

THEOREM 6. Let G be a group. Then the following conditions are equivalent.

(a) $L_0(\alpha, G) = L_{\alpha}(G).$

- (b) Every chief factor of G of the form $M/R_{\alpha}(G)$ has the α -Schreier property in G.
- (c) Every non- α chief factor of G has the α -Schreier property in G.

REMARK 7. Note that $R_{\alpha}(G) = 1$ implies that $L_0(\alpha, G) = \text{Soc}(G)$ (this follows easily from the definition of $L_0(\alpha, G)$). Using this, one can verify that the result mentioned at the beginning of the introduction is a special case of Theorem 6.

For the next result note that $C_G(L_\alpha(G)) \le R_\alpha(G)$ for any group G (see Lemma 22).

THEOREM 8. Let G be a group. Then the following conditions are equivalent.

- (a) $C_G(L_\alpha(G)) = R_\alpha(G).$
- (b) Every chief factor M/N of G such that $M \le R_{\alpha}(G)$ has the α -Schreier property in G.

2. Proofs of Theorems 4, 6 and 8

LEMMA 9. Let G be a group. Then $L_{\alpha}(L_{\alpha}(G)) = L_{\alpha}(G)$. In particular, $L_{\alpha}(G)$ is perfect.

PROOF. This follows from the fact that α is closed under extensions, and from the fact that α contains the formation of solvable groups.

LEMMA 10. The property α has a radical.

PROOF. It is sufficient to prove that if N_1 , $N_2 \leq G$ and N_1 , N_2 are α then N_1N_2 is α . Consider $N_1N_2/N_1 \cong N_2/(N_1 \cap N_2)$. Since α is inherited by quotients, N_1N_2/N_1 is α . Now, since N_1 is α and α is inherited by extensions, N_1N_2 is α .

LEMMA 11. Let G be a group and $N \leq G$. Then $R_{\alpha}(N) = R_{\alpha}(G) \cap N$.

PROOF. This follows easily from the assumption that α is closed under subgroups. \Box

LEMMA 12. Let G be a group and let $N \leq G$ be such that $N \leq R_{\alpha}(G)$. Then $R_{\alpha}(G/N) = R_{\alpha}(G)/N$. In particular, $R_{\alpha}(G/R_{\alpha}(G)) = 1$.

PROOF. $R_{\alpha}(G)/N$ is α because α is closed under homomorphic images, and so $R_{\alpha}(G)/N \leq R_{\alpha}(G/N)$. On the other hand, let $M/N = R_{\alpha}(G/N)$. Then, since both M/N and N are α and α is closed under extensions, M is α and hence $M \leq R_{\alpha}(G)$. This shows that $R_{\alpha}(G/N) \leq R_{\alpha}(G)/N$.

LEMMA 13. Let G be a group and $N \leq G$. Then $L_{\alpha}(G/N) = L_{\alpha}(G)N/N$.

PROOF. Let $K/N = L_{\alpha}(G/N)$. Then $(G/N)/(K/N) \cong G/K$ is α and so $L_{\alpha}(G) \leq K$ and $L_{\alpha}(G)N \leq K$. This proves that $L_{\alpha}(G)N/N \leq L_{\alpha}(G/N)$. On the other hand, $G/(L_{\alpha}(G)N)$ is α since α is closed under homomorphic images. Thus $L_{\alpha}(G/N) \leq L_{\alpha}(G)N/N$.

LEMMA 14. Let G be a group and $N \leq G$. Let K be minimal α' normal in G. Then either $K \leq N$ or KN/N is minimal α' normal in G/N. It follows from Definition 2 that $L_0(\alpha, G)N/N \leq L_0(\alpha, G/N)$.

PROOF. Suppose that $K \nleq N$. Then $1 < KN/N \trianglelefteq G/N$. We also have $K \cap N < K$, and hence (Definition 1(3)) $K \cap N$ is α . Hence, using the fact that α is closed under extensions, $KN/N \cong K/K \cap N$ is α if and only if K is α . But K is not α (Definition 1(2)), hence KN/N is not α . Let M/N < KN/N be a normal subgroup of G/N. We shall prove that M/N is α . Now $M = M \cap KN = (M \cap K)N$. Supposing that $M \cap K = K$ yields that M = KN - a contradiction. Hence $M \cap K < K$. Since $M \cap K \trianglelefteq G$ and K is minimal α' normal in G, we get (Definition 1(3)) that $M \cap K$ is α . Thus, $M/N = (M \cap K)N/N \cong (M \cap K)/(K \cap N)$ is α . Combining all of the above, we have proved that KN/N is minimal α' normal in G/N.

COROLLARY 15. Let G be a group. Then $L_0(\alpha, G) \leq L_{\alpha}(G)$.

PROOF. Note that if a group *H* is α then $L_0(\alpha, H) = 1$. Hence, if we choose $N = L_{\alpha}(G)$ in Lemma 14, we get $L_0(\alpha, G)L_{\alpha}(G)/L_{\alpha}(G) \leq L_0(\alpha, G/L_{\alpha}(G)) = 1$. The claim follows.

LEMMA 16. Let K be minimal α' normal in G. Then $KR_{\alpha}(G)/R_{\alpha}(G)$ is a non- α chief factor of G.

PROOF. $KR_{\alpha}(G)/R_{\alpha}(G) \cong K/R_{\alpha}(K)$ (Lemma 11). Since *K* is not α , $K/R_{\alpha}(K)$ is not α . Thus $KR_{\alpha}(G)/R_{\alpha}(G)$ is non- α . Suppose to the contrary that $KR_{\alpha}(G)/R_{\alpha}(G)$ is not a chief factor of *G*. Then there exists $N \trianglelefteq G$ such that $R_{\alpha}(G) < N < KR_{\alpha}(G)$. We have $N = N \cap KR_{\alpha}(G) = (N \cap K)R_{\alpha}(G)$. Note that $N \cap K \trianglelefteq G$. Assuming that $N \cap K$ is α leads to $N \cap K \le R_{\alpha}(G)$ which gives $N = (N \cap K)R_{\alpha}(G) = R_{\alpha}(G)$, contradicting $R_{\alpha}(G) < N$. Hence, $N \cap K$ is a normal non- α subgroup of *G* contained in *K*. Since *K* is minimal α' normal in *G* we get $N \cap K = K$, giving $N = KR_{\alpha}(G) - \alpha$ contradiction.

LEMMA 17. Let G be a group. Suppose $M/R_{\alpha}(G)$ is a chief factor of G. Then $L_{\alpha}(M)$ is a minimal α' normal subgroup of G. Furthermore, $M = L_{\alpha}(M)R_{\alpha}(G)$.

PROOF. Note that $L_{\alpha}(M)$ is a normal non- α subgroup of G. For if $L_{\alpha}(M)$ is α , then, since $M/L_{\alpha}(M)$ is α , we get that M is α and $M \leq R_{\alpha}(G)$, contradicting the assumption that $M/R_{\alpha}(G)$ is a chief factor of G. Let $N \leq G$ be such that $N \leq L_{\alpha}(M)$. Then $R_{\alpha}(G) \leq NR_{\alpha}(G) \leq M$. Since $M/R_{\alpha}(G)$ is a chief factor of G, either $N \leq R_{\alpha}(G)$ or $NR_{\alpha}(G) = M$. The first possibility implies that N is α . The second possibility implies that $M/N \cong R_{\alpha}(G)/R_{\alpha}(N)$ is α and hence $N \geq L_{\alpha}(M)$, implying $N = L_{\alpha}(M)$. This concludes the proof that $L_{\alpha}(M)$ is minimal α' normal in G. Moreover, repeating the last argument with $N = L_{\alpha}(M)$ gives $M = L_{\alpha}(M)R_{\alpha}(G)$.

PROPOSITION 18. Let G be a group. Then

$$L_0(\alpha, G)R_\alpha(G)/R_\alpha(G) = \operatorname{Soc}(G/R_\alpha(G)).$$

PROOF. Set $R_{\alpha}(G) = R$. Let K be minimal α' normal in G. Then, by Lemma 16, KR/R is minimal normal in G/R. Hence, $KR/R \leq \text{Soc}(G/R)$. Since $L_0(\alpha, G)$ is generated by all minimal α' normal subgroups of G we get $L_0(\alpha, G)R/R \leq \text{Soc}(G/R)$.

For the reverse inclusion, let $M \leq G$ be such that M/R is minimal normal in G/R. By Lemma 17, $M = L_{\alpha}(M)R$, and $L_{\alpha}(M)$ is minimal α' normal in G. Hence, $M/R \leq L_0(\alpha, G)R/R$. Thus $\operatorname{Soc}(G/R) \leq L_0(\alpha, G)R/R$.

LEMMA 19. Let G be a group and let N be a minimal normal subgroup of G. Then $Soc(G) \leq C_G(N)N$.

PROOF. If *M* is a minimal normal subgroup of *G* then either M = N or $M \le C_G(N)$. The claim follows.

LEMMA 20. Let G be a group such that $R_{\alpha}(G) = 1$. Then

$$\operatorname{Soc}(G) = \bigcap_{\substack{N \text{ is minimal} \\ normal in G}} C_G(N)N.$$

PROOF. Set

$$M = \bigcap_{\substack{N \text{ is minimal} \\ \text{normal in } G}} C_G(N)N.$$

We show that Soc(G) = M. By Lemma 19, $Soc(G) \le M$. Let N be a minimal normal subgroup of G. Then, using $N \le Soc(G) \le M \le C_G(N)N$, we obtain $M = M \cap C_G(N)N = (M \cap C_G(N)N)$, implying

$$M/(M \cap C_G(N)) = (M \cap C_G(N))N/(M \cap C_G(N)) \cong N/C_G(N) \cap N.$$

Since α contains the formation of solvable groups, $R_{\alpha}(G) = 1$ implies that the solvable radical of *G* is 1 and hence *N* is nonabelian. Therefore $C_G(N) \cap N = 1$, and we have proved that $M/C_M(N) \cong N$. Let N_1, \ldots, N_t be minimal normal subgroups of *G* such that $\operatorname{Soc}(G) = N_1 \times \cdots \times N_t$. Now $M/(C_M(N_1) \cap \cdots \cap C_M(N_t))$ can be embedded in $(M/C_M(N_1)) \times \cdots \times (M/C_M(N_t))$, which is isomorphic (see above) to $\operatorname{Soc}(G)$. However,

$$C_M(N_1) \cap \cdots \cap C_M(N_t) = M \cap C_G(\operatorname{Soc}(G)).$$

Now Z(Soc(G)) = 1, forcing $C_G(\text{Soc}(G)) = 1$. Thus *M* itself can be embedded in Soc(G). Since $\text{Soc}(G) \le M$, we get Soc(G) = M.

COROLLARY 21. Let G be a group. Then

$$L_0(\alpha, G)R_{\alpha}(G) = \bigcap_{\substack{\text{all } M \text{ such that } M/R_{\alpha}(G)\\\text{is a chief factor of } G}} \operatorname{Inn}_G(M/R_{\alpha}(G)).$$

PROOF. Set $R_{\alpha}(G) = R$. Let M/R be a chief factor of G. Then $\text{Inn}_G(M/R)/R = C_{G/R}(M/R)(M/R)$. Thus

$$\left(\bigcap_{\substack{\text{all } M \text{ such that } M/R \\ \text{is a chief factor of } G}} \operatorname{Inn}_{G}(M/R)\right) \middle/ R = \bigcap_{\substack{K \text{ is minimal} \\ \text{normal in } G/R}} C_{G/R}(K)K$$
$$= \operatorname{Soc}(G/R)$$
$$= L_{0}(\alpha, G)R/R,$$

where the second equality is justified by Lemma 20 and the third by Proposition 18. \Box

PROOF OF THEOREM 4. Let M/N be a non- α chief factor of G. We show that $L_0(\alpha, G)R_{\alpha}(G) \leq \operatorname{Inn}_G(M/N)$. First note that $R_{\alpha}(G)N/N \cap M/N = 1$ and hence $R_{\alpha}(G) \leq C_G(M/N) \leq \operatorname{Inn}_G(M/N)$ ($C_G(M/N)$ is the preimage in G of $C_{G/N}(M/N)$). Next, let K be minimal α' normal in G. Then, by Lemma 14, either $K \leq N$ (implying that $K \leq \operatorname{Inn}_G(M/N)$) or KN/N is minimal α' normal in G/N. In the second case, since M/N is minimal normal in G/N and non- α , either KN/N =M/N or $KN/N \cap M/N = 1$. In both cases $KN/N \leq \operatorname{Inn}_G(M/N)$, and $L_0(\alpha, G) \leq$ $\operatorname{Inn}_G(M/N)$ follows. Thus we have proved the inclusion of $L_0(\alpha, G)R_{\alpha}(G)$ in the right-hand side of (1). Equality now follows from Corollary 21.

PROOF OF THEOREM 6.

(a) implies (c): $L_0(\alpha, G) = L_\alpha(G)$ implies that $L_0(\alpha, G)R_\alpha(G) = L_\alpha(G)R_\alpha(G)$. By Theorem 4(1),

$$L_{\alpha}(G)R_{\alpha}(G) = \bigcap_{\substack{M/N \text{ is a non-}\alpha \text{ chief} \\ \text{factor of } G}} \operatorname{Inn}_{G}(M/N).$$

Thus, if M/N is a non- α chief factor of G, then $L_{\alpha}(G) \leq \text{Inn}_{G}(M/N)$ and hence $\text{Out}_{G}(M/N) = G/\text{Inn}_{G}(M/N)$ is α .

(c) implies (b): Trivial.

(b) implies (a): We assume that every chief factor of *G* of the form $M/R_{\alpha}(G)$ has the α -Schreier property in *G*. Hence, for any such chief factor, $L_{\alpha}(G) \leq Inn_G(M/R_{\alpha}(G))$. Thus, by Corollary 21, $L_{\alpha}(G) \leq L_0(\alpha, G)R_{\alpha}(G)$. Since $L_0(\alpha, G) \leq L_{\alpha}(G)$ (Corollary 15), we obtain $L_{\alpha}(G) = L_0(\alpha, G)(L_{\alpha}(G) \cap R_{\alpha}(G))$. From this we get that $L_{\alpha}(G)/L_0(\alpha, G)$ is α . Since, by Lemma 9, $L_{\alpha}(L_{\alpha}(G)) = L_{\alpha}(G)$, we obtain $L_{\alpha}(G) = L_0(\alpha, G)$ as required.

LEMMA 22. Let G be a group. Then $C_G(L_\alpha(G)) \leq R_\alpha(G)$.

PROOF. Set $L = L_{\alpha}(G)$. Clearly $C_G(L) \leq G$, so it is sufficient to prove that $C_G(L)$ is α . Indeed, $C_G(L)L/L \cong C_G(L)/(L \cap C_G(L))$ is α , and $L \cap C_G(L)$ is abelian and hence α . Therefore, $C_G(L)$ is α .

PROOF OF THEOREM 8.

(a) implies (b): Suppose that $C_G(L_\alpha(G)) = R_\alpha(G)$. Let M/N be a chief factor of G such that $M \le R_\alpha(G)$. Then every element of M commutes with every element of $L_\alpha(G)$. Hence, $C_{G/N}(M/N) \ge L_\alpha(G)N/N$. Thus, by Lemma 13, $(G/N)/C_{G/N}(M/N)$ is α and M/N has the α -Schreier property in G.

(b) implies (a): Suppose that every chief factor M/N of G such that $M \leq R_{\alpha}(G)$ has the α -Schreier property in G. By Lemma 22, we may assume that $R_{\alpha}(G) > 1$. Let N be a minimal normal subgroup of G such that $N \leq R_{\alpha}(G)$. By Lemma 12, $R_{\alpha}(G/N) = R_{\alpha}(G)/N$. Hence, if $(M/N)/(K/N) \cong M/K$ is a chief factor of G/N and $M/N \leq R_{\alpha}(G/N)$, then M/K is a chief factor of G such that $M \leq R_{\alpha}(G)$. It follows from this and the definition of α -Schreier property (Definition 5) that condition (b) of the theorem holds for the group G/N. Hence, by induction,

$$C_{G/N}(L_{\alpha}(G/N)) = R_{\alpha}(G/N),$$

and so $C_{G/N}(L_{\alpha}(G)N/N) = R_{\alpha}(G)/N$. We get that $[L_{\alpha}(G), R_{\alpha}(G)] \leq N$. Moreover, since N has the α -Schreier property in G, we get that $G/C_G(N)N$ is α . Since

$$(G/C_G(N))/(C_G(N)N/C_G(N)) \cong G/(C_G(N)N),$$

and α is closed under extensions, we have that $G/C_G(N)$ is α which implies that $L_{\alpha}(G) \leq C_G(N)$. Thus,

$$[R_{\alpha}(G), L_{\alpha}(G), L_{\alpha}(G)] = 1.$$

Hence, by the three-subgroups lemma,

$$[L_{\alpha}(G), L_{\alpha}(G), R_{\alpha}(G)] = 1.$$

But $L_{\alpha}(G)$ is perfect (Lemma 9), hence $[L_{\alpha}(G), R_{\alpha}(G)] = 1$ and $C_G(L_{\alpha}(G)) = R_{\alpha}(G)$.

3. Some comments on $F^*(G)$

We begin by noting a formal similarity between $L_0(\alpha, G)R_\alpha(G)$ and $F^*(G)$. Recall that $F^*(G) = E(G)F(G)$, where E(G) is the layer of G. The following property of E(G) whose proof is omitted (see [3, Section 6.5]) is useful for our purposes (compare with Definition 1).

LEMMA 23. Let G be a group. Then E(G) is generated by all subgroups $1 < K \leq G$ such that K is perfect, and for all $N \leq G$ such that N < K we have $N \leq Z(K)$ (henceforth such K will be called a minimal z' normal subgroup of G).

Thus, $L_0(\alpha, G)$, which is generated by the minimal α' normal subgroups of G, resembles E(G), and F(G), which is the nilpotent radical of G, resembles $R_{\alpha}(G)$ (note that $F(G) \leq R_{\alpha}(G)$, and if α is the formation of solvable groups then $E(G) \leq L_0(\alpha, G)$).

A more direct connection between these subgroups is given by the following.

THEOREM 24. Let G be a group. Denote $F_{\alpha}(G) = R_{\alpha}(G) \cap F^*(G)$. Then

$$F^*(G) = L_0(\alpha, G) R_\alpha(G) \cap C_G(R_\alpha(G)) F_\alpha(G).$$

In particular, $F^*(G) = N_2 \cap C_G(R)F(G)$, where R is the solvable radical of G.

The proof of this theorem requires the following lemma.

LEMMA 25. Set

$$E_{\alpha}(G) = \prod_{\substack{K \text{ is minimal } \alpha' \text{ normal in } G \\ R_{\alpha}(K) = Z(K)}} K,$$

$$L_{1}(\alpha, G) = \prod_{\substack{K \text{ is minimal } \alpha' \text{ normal in } G \\ R_{\alpha}(K) \neq Z(K)}} K.$$

Then $L_0(\alpha, G) = E_{\alpha}(G)L_1(\alpha, G)$, $F^*(G) = E_{\alpha}(G)F_{\alpha}(G)$ (see Theorem 24) and $E_{\alpha}(G) \leq C_{E(G)}(R_{\alpha}(G))$.

PROOF. $L_0(\alpha, G) = E_{\alpha}(G)L_1(\alpha, G)$ is obvious from the definitions. Let *K* be minimal α' normal in *G* such that $R_{\alpha}(K) = Z(K)$. By Lemma 23, $K \leq E(G)$, from which $E_{\alpha}(G) \leq E(G)$ follows. Thus $E_{\alpha}(G)F_{\alpha}(G) \leq F^*(G)$. In order to prove the reverse inclusion, note that $F(G) \leq R_{\alpha}(G)$ implies $F(G) \leq F_{\alpha}(G)$. Next, let *K* be a minimal *z'* normal subgroup of *G* (see Lemma 23). If *K* is α then $K \leq R_{\alpha}(G) \cap F^*(G) = F_{\alpha}(G)$. If *K* is not α then $R_{\alpha}(K) < K$ and we get $R_{\alpha}(K) = Z(K)$. This proves that $E(G) \leq E_{\alpha}(G)F_{\alpha}(G)$ and concludes the proof that $E_{\alpha}(G)F_{\alpha}(G) = F^*(G)$. Finally, let *K* be minimal α' normal in *G* such that $R_{\alpha}(K) = Z(K)$. Since *K* is not α , then $K \cap R_{\alpha}(G) < K$ implying $[K, R_{\alpha}(G)] \leq$ $K \cap R_{\alpha}(G) \leq Z(K)$, hence $[K, R_{\alpha}(G), K] = 1$. Thus, by the three-subgroups lemma [3, 1.5.6], $[K, K, R_{\alpha}(G)] = 1$. Since *K* is perfect this implies that $[K, R_{\alpha}(G)] = 1$, leading to $K \leq C_{E(G)}(R_{\alpha}(G))$. Thus $E_{\alpha}(G) \leq C_{E(G)}(R_{\alpha}(G))$.

PROOF OF THEOREM 24. We use the notation of Lemma 25. Since $F_{\alpha}(G) \leq R_{\alpha}(G)$ and $E_{\alpha}(G) \leq C_G(R_{\alpha}(G))$ (Lemma 25),

$$L_0(\alpha, G)R_\alpha(G) \cap C_G(R_\alpha(G))F_\alpha(G)$$

= $E_\alpha(G)(L_1(\alpha, G)R_\alpha(G) \cap C_G(R_\alpha(G))F_\alpha(G)).$

Since $F^*(G) = E_{\alpha}(G)F_{\alpha}(G)$ (Lemma 25) it is sufficient to prove that $L_1(\alpha, G)R_{\alpha}(G) \cap C_G(R_{\alpha}(G)) \leq F_{\alpha}(G)$. In fact, it is sufficient to prove that $L_1(\alpha, G)R_{\alpha}(G) \cap C_G(R_{\alpha}(G))$ is α since then it is contained in $Z(R_{\alpha}(G))$ and hence in $F_{\alpha}(G)$. Assume to the contrary that $L_1(\alpha, G)R_{\alpha}(G) \cap C_G(R_{\alpha}(G))$ is not α . Then it must contain a minimal α' normal subgroup of G, say K. Since $K \leq C_G(R_{\alpha}(G))$, then $R_{\alpha}(K) = Z(K)$.

Let *N* be any minimal α' normal subgroup of *G* such that $R_{\alpha}(N) \neq Z(N)$ (such *N*'s generate $L_1(\alpha, G)$). Then $K \leq N$ and hence $K \cap N \leq Z(K)$. It follows that [K, N, K] = 1 and by the three-subgroups lemma [K, K, N] = 1 and (*K* is perfect) [K, N] = 1. Thus $[K, L_1(\alpha, G)] = 1$. But $K \leq L_1(\alpha, G)R_{\alpha}(G) \cap C_G(R_{\alpha}(G))$ now implies that $K \leq Z(L_1(\alpha, G)R_{\alpha}(G))$, contradicting the fact that *K* is not α .

We close this section with a proof that utilizes our Definition 1 of the following well-known fact. We only need Lemma 23.

[9]

105

FACT. For any group G, $C_G(F^*(G)) \leq F^*(G)$.

PROOF. In this proof the property α is solvability and $R_{\alpha}(K) = R(K)$. Recall [5, 7.67] that if $H \trianglelefteq G$ is solvable and H centralizes F(G) then $H \le F(G)$. From this and from the fact that $C_G(F^*(G)) \le C_G(F(G))$ it easily follows that the claim holds if $C_G(F^*(G))$ is solvable. Otherwise, $C_G(F^*(G))$ is a normal nonsolvable subgroup of G, and hence contains a minimal solvable' (that is, nonsolvable) normal subgroup K. Now $R(K) < K \le C_G(F(G))$, and hence, by the same result mentioned above, $R(K) \le F(G)$. Since $K \le C_G(F(G))$ we get R(K) = Z(K). Hence (Lemma 23) $K \le E(G)$. However, $K \le C_G(E(G))$, hence $K \le Z(E(G))$, contradicting the fact that K is nonsolvable.

References

- [1] D. F. Holt, *Handbook of Computational Group Theory* (Chapman & Hall/CRC Press, Boca Raton, FL, 2005).
- [2] B. Huppert and N. Blackburn, *Finite Groups* (Springer, Berlin, 1982).
- [3] H. Kurzweil and B. Stellmacher, *The Theory of Finite Groups, an Introduction* (Springer, Berlin, 2004).
- [4] D. J. S. Robinson, 'The structure of finite groups in which permutability is a transitive relation', J. Austral. Math. Soc. 70 (2001), 143–149.
- [5] J. S. Rose, A Course on Group Theory (Dover Publications/Cambridge University Press, Cambridge, 1978).
- [6] A. Seress, *Permutation Group Algorithms*, Cambridge Tracts in Mathematics, 152 (Cambridge University Press, Cambridge, 2003).

GIL KAPLAN, The School of Computer Sciences, The Academic College of Tel-Aviv-Yaffo, 4 Antokolsky St., Tel-Aviv 64044, Israel

DAN LEVY, The School of Computer Sciences,

The Academic College of Tel-Aviv-Yaffo, 4 Antokolsky St., Tel-Aviv 64044, Israel e-mail: danlevy@trendline.co.il

106