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Al-Sc alloys are strengthened by nanoscale Al3Sc precipitates [1]. By alloying with faster-diffusing Er 
and slower-diffusing Zr additions, complex core/double-shell precipitates are formed, consisting of an 
Er-enriched core surrounded by a Sc- and Zr-enriched shell [2].  The Er-enriched core enhances strength 
while the Zr-enriched outer shell improves thermal stability. The present study seeks ultimate strength 
and coarsening resistance by alloying Al-Er-Sc-Zr alloys with Group 5 additions (M = V, Nb, Ta), 
which are expected to be slower diffusers than Zr [3].  By sequential nucleation of the constituent 
solutes we have engineered complex core/triple shell Al3(Er,Sc,Zr,M) coarsening-resistant precipitates. 

 
This study investigates the nanostructures and compositions of Al3(Er,Sc,Zr,M) precipitates formed 
during isochronal aging of dilute Al-0.004Er-0.056Sc-0.060Zr-0.060(V/Nb/Ta) (at.%) alloys made by 
arc melting.  The alloys also contained 0.016–0.019 at.% Si, which decreases the Sc migration energy in 
Al thereby accelerating the precipitation kinetics [4].  Prior to aging, the alloys were first homogenized 
for 72 h at 640 °C to eliminate microsegregation of solutes after casting. The alloys were then aged 
isochronally in 25 °C increments each lasting 3 h, from 200–600 °C.  The specimens were water-
quenched between each aging increment and precipitation was monitored by Vickers microhardness and 
electrical conductivity measurements using a LECO AMH43 automatic hardness tester (200 g load) and 
a General Electric AutoSigma 3000 electrical conductivity meter, respectively.  The microstructures 
responsible for strengthening were investigated by atom-probe tomography (APT) with a Cameca LEAP 
4000x Si.  Specimens for APT were prepared using standard lift-out and focused ion beam (FIB) milling 
procedures [5] in an FEI Nova 600 NanoLab DualBeamTM SEM/FIB. 
 
Figure 1 displays the evolution of microhardness and electrical conductivity with temperature for the Al-
Er-Sc-Zr and Al-Er-Sc-Zr-V alloys.  Between 200 and 225 °C there is a small increase in microhardness 
and electrical conductivity, which is attributed to precipitation of Al3Er. The largest strength increase, 
~220 MPa, occurs between 250 and 300 °C, which is attributed to precipitation of Sc onto the Al3Er 
precipitates.  This is followed by a secondary increase in microhardness and electrical conductivity 
between 350 and 400 °C, which is attributed to precipitation of Zr onto the Al3(Er,Sc) precipitates.  The 
alloys reach peak microhardness at 400 or 425 °C and peak electrical conductivity, corresponding to a 
maximum volume fraction of precipitates, at 425 °C.  Above this temperature there is significant 
overaging, marked by a continuous decrease in strength.  The microhardness and electrical conductivity 
results in Figure 1 indicate no obvious benefits from the addition of V. 
 
Figure 2 displays an atom probe reconstruction of the Al-Er-Sc-Zr-V alloy isochronally aged to 425 °C 
(peak strength).  The core/triple-shell nanostructure of the Al3(Er,Sc,Zr,V) precipitates is seen in the 
reconstructions and also quantified in the proximity histogram [5].  While some of it partitions to the 
precipitates, most of the V remains in solid solution due to the slow diffusion kinetics of V in Al. 
 
This study will present the complete precipitate evolution of Al3(Er,Sc,Zr) precipitates during isochronal 
aging of Al-0.004Er-0.056Sc-0.060Zr (at.%) from 200–600 °C, and also discuss the effects of V, Nb, 
and Ta to this alloy. 
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Figure 1.  Vickers microhardness and electrical conductivity evolution during isochronal aging (3 h at 
each temperature) of the Al-Er-Sc-Zr and Al-Er-Sc-Zr-V alloys. 
 

 
Figure 2.  Atom probe reconstruction of the Al-Er-Sc-Zr-V alloy isochronally aged to 425 °C. The 
core/triple-shell nanostructure of the Al3(Er,Sc,Zr,V) precipitates is seen in the three-dimensional 
reconstructions and also quantified in the proximity histogram.  
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