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ABSTRACT

We propose inference tools to analyse the concordance (or correlation) order
of random vectors. The analysis in the bivariate case relies on tests for upper
and lower quadrant dominance of the true distribution by a parametric or
semiparametric model, i.e. for a parametric or semiparametric model to give
a probability that two variables are simultaneously small or large at least as
great as it would be were they left unspecified. Tests for its generalisation in
higher dimensions, namely joint lower and upper orthant dominance, are also
analysed. The parametric and semiparametric settings are based on the cop-
ula representation for multivariate distribution, which allows for disentangling
behaviour of margins and dependence structure. A distance test and an inter-
section-union test for inequality constraints are developed depending on the
definition of null and alternative hypotheses. An empirical illustration is given
for US insurance claim data.
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INTRODUCTION

Random variables are concordant if they tend to be all large together or small
together. Concordance of random variables conveys the idea of clustering of
large and small events. An ordering of concordance was initially considered
for two random variables by YANAGIMOTO and OKAMOTO (1960), CAMBANIS,
SIMONS and STOUT (1976) and TCHEN (1980), and then extended by JOE (1990)
to the multivariate case. This ordering corresponds to a natural notion of sto-
chastic dominance between two distribution functions with fixed marginals.
Large and small values will tend to be more often associated under the distri-
bution which dominates the other one. This tool appears to be of particularly
relevance in actuarial science, as demonstrated by DHAENE and GOOVAERTS

(1996) (see also the review of applications of the concordance order in CEBRIAN,
DENUIT and SCAILLET (2002)).
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In fact detection of concordant behaviour is especially important in risk
management of large portfolios of insurance contracts or financial assets. In
these portfolios the main risk is the occurrence of many joint default events
or simultaneous downside evolution of prices. An accurate knowledge of con-
cordance between claims or financial asset prices will help to assess this risk
of loss clustering and there from allows for taking appropriate action to ensure
that the risk incurred by the financial institution remains within its stated risk
appetite. Clearly the presence of concordance affects risk measures and asset
allocations resulting from optimal portfolio selection. Analysis of concordance
cannot be neglected and reveals much of the danger associated to a given posi-
tion.

Modelling of concordance can be fully parametric or semiparametric. In
the first case specific parametric forms are selected for the dependence struc-
ture and the margins, while in the second case margins are left unspecified.
The dependence structure is expressed by means of a parametric copula func-
tion. Once these models estimated a natural concern of a risk manager ought
to be: does the adopted modelling reflect the dependence structure present in
the data safely enough? The aim of this paper is to provide inference tools to
answer this question. These tools will be tests for the ordering of concordance
for random variables. In fact we propose testing procedures for concordance
order between the chosen model and the empirical distribution. This allows for
checking whether the estimated parametric or semiparametric model gives a
safe picture of the association between small and large observed losses.

It is worth emphasising the difference between the actuarial approach and
the statistical one. For a statistician, the aforementioned problem is not really
relevant. Instead of addressing the issue whether the adopted modelling reflects
the dependence structure present in the data safely enough, the statistical pri-
mary concern is that the model adopted reflects the dependence structure as
accurately as possible, i.e. that it be realistic rather than conservative. For the
actuary, the model should also be realistic but primarily conservative. Indeed,
the adopted model will be used to price insurance products and any underes-
timation of the associated premium may result in severe financial losses for the
company. Here we take the point of view of a seller, for example an insurance
company whose core business is selling contracts with premiums high enough
to cover potential losses. The buyer point of view will be different, but insurance
premiums may often be considered to have only a marginal impact on busi-
ness revenues, as well as to be difficult to negotiate. Besides regulators may
also favour a conservative behaviour to guarantee the stability of the insurance
system.

The paper is organized as follows. In Section 2, we formally define con-
cordance and its ordering. We also recall the definition of copula functions,
as well as the classical Sklar’s representation theorem for multivariate distribu-
tions. Sections 3 and 4 are devoted to inference. The first one deals with the
parametric setting, and the second one with the semiparametric setting. Since
concordance is a copula-based concept, the natural way to proceed is to com-
pare the empirical copula with the estimated copula selected from a given para-
metric family. In Section 5 we develop the testing procedures, and describe the
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null and alternative hypotheses we are interested in. These procedures are
closely related to inference tools for traditional first order and second order
stochastic dominance, or for positive quadrant dependence. These tools also
rely on distance and intersection-union tests for inequality constraints (see
DAVIDSON and DUCLOS (2000), DENUIT and SCAILLET (2002) and the references
therein). An empirical illustration on US insurance claim data is proposed in
Section 6. Section 7 contains some concluding remarks. Proofs of all propo-
sitions are gathered in an appendix.

2. CONCORDANCE ORDER

Let F and G denote a n-dimensional cdf, and F and G their corresponding sur-
vival function. Then G is more concordant than F, written F ≤c G, if

F(y) ≤ G(y)   and   F(y) ≤ G(y), ∀y ∈ �n. (2.1)

The first inequality F(y) ≤ G(y) corresponds to lower orthant dominance, while
the second one F(y) ≤ G(y) corresponds to upper orthant dominance. If both
inequalities hold, large and small values will tend to be more often associated
under G than F. Condition (2.1) implies that F and G have the same jth uni-
variate marginal distribution (j = 1,…,n), and that all bivariate and higher
dimensional marginals of G are more concordant than the corresponding ones
for F. Hence we see that the ordering of concordance of variables is derived
from comparisons of pairs of distributions with identical marginals (YANA-
GIMOTO and OKAMOTO (1960), CAMBANIS, SIMONS and STOUT (1976), TCHEN

(1980), JOE (1990)). Besides the concordance order is equivalent to a partial
order among the parameters for elliptically contoured distributions, such as the
multivariate normal and student distributions. Henceforth we will freely use ≤c
between cdf's or random vectors to indicate that (2.1) holds.

At this stage, it is interesting to stress the very particular nature of the
bivariate case (compared to dimension ≥ 3). Indeed, consider F and G with iden-
tical marginals. Then, it is easily seen that one inequality in (2.1) implies the
other. The bivariate case is really particular, mainly because the concordance
order coincides with the supermodular order for random couples (this is not
the case for random vectors of larger dimension).

The concordance order can also be characterised in terms of copulas. The
marginal pdf and cdf of each element Yj of Y at point yj, j = 1,…,n, will be
written fj (yj), and Fj (yj), respectively. How the joint distribution F is “coupled”
to its univariate margins Fj , can be described by a copula. While the joint
distribution F provides complete information concerning the behaviour of Y,
copulas allow for separating dependence and marginal behaviour of the ele-
ments constituting Y = (Y1,…,Yn)�. Before defining formally a copula, we would
like to refer the reader to NELSEN (1999) and JOE (1997) for more extensive the-
oretical treatments.

A n-dimensional copula C is simply (the restriction to [0,1]n of) an n-dimen-
sional cdf with unit uniform marginals. The reason why a copula is useful in
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revealing the link between the joint distribution and its margins transpires
from the following theorem.

Theorem 2.1. (Sklar’s Theorem)
Let F be an n-dimensional cdf with margins F1,…,Fn. Then there exists an n-copula
C such that for all y in �n,

F(y) = C (F1(y1),…,Fn(yn)). (2.2)

If F1,…,Fn are all continuous, then C is uniquely defined. Otherwise, C is uniquely
determined on range F1 ≈ … ≈ range Fn. Conversely, if C is an n-copula and F1,
…,Fn are cdf’s, then the function F defined by (2.2) is an n-dimensional cdf with
margins F1,…,Fn.

Although copulas constitute a less well-known approach to describing dependence
than correlation, they offer the best understanding of the general concept of
dependency (see EMBRECHTS, MCNEIL and STRAUMANN (2000) for implications
on risk management). In particular, copulas share the nice property that strictly
increasing transformations of the underlying random variables result in the trans-
formed variables having the same copula (what is not true for linear correlation).

As an immediate corollary of Sklar’s Theorem, the representation

C(u) = F(F –1
1 (u1), …, F –1

n (un)) (2.3)

holds true for any u ∈ [0,1]n provided all margins F1,…,Fn are continuous.
Expression (2.3) shows that the dependence structure embodied by the copula
can be recovered from the knowledge of the joint cdf F and its margins Fj,
j = 1, …,n.

Let us now state the definition (2.1) of concordance in terms of copulas.
We denote by C the survival copula associated with C, and use subscripts F
and G to reflect their associated distribution. If F and G share the same uni-
variate margins, G is more concordant than F if

CF (u) ≤ CG(u)   and   CF (u) ≤ CG(u), ∀u ∈ [0,1]n. (2.4)

Note that the density c associated with the copula C is given by:

, ..., ...
, ...,

.c u u u u
C u u
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The density f of F can be expressed in terms of the copula density c and the
product of the univariate marginal densities fj :

jn, ..., , ..., .f y y c F y F y f yn n i
j

n

1 1 1
1

=
=

%^ ^ ^^ ^h h hh h

Obviously the latter equality does not depend on a parametric assumption for the
multivariate distribution. In the inference part of this paper we will consider
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two cases. The first case will put some parametric assumption fj(yj ; bj) on the
margins, while the second will not. The copula will be parameterised according
to c(u1,…,un; q ) in both cases.

Let us remark that independence between random variables can be char-
acterised through copulas. Indeed, n random variables are independent if, and
only if, their copula is C⊥(u) = j 1=

uj
n% , for all u ∈ [0,1]n. C⊥ is further referred

to as the independence copula.

3. INFERENCE UNDER PARAMETRIC SPECIFICATION

Now that the relevant theoretical concepts have been presented, we may turn
our attention to inference. We consider a setting made of i.i.d. observations
{Yt ; t = 1,…,T} of a random vector Y taking values in �n. These data may cor-
respond to either observed individual losses on n insurance contracts, amounts
of claims reported by a given policyholder on n different guarantees in a mul-
tiline product or observed returns of n financial assets.

We consider a fully parametric specification in this section, namely the
parametric family:

{F (y;n) = C(F1(y1; b1),…,Fn(yn; bn); q), n = (b�, q�)� ∈ C ⊂ �q+p}.

This parametric family is specified in terms of a parametric copula C(u; q) and
parametric margins Fj (yj ; bj), j = 1,…,n. The q-dimensional vector b = (b�1,…,
b�n)� and the p-dimensional vector q forming n are jointly estimated by pseudo
maximum likelihood. The estimator n̂ is derived from

jn nt it; , ..., ; ; ; ,max ln lnT c F Y F Y f Yb b q b1
, t n i

j

n

t

T

b q 1 1 1
11 ==

!! ^ ^^ ^h h h h

and its limit, i.e. the pseudo true value, is denoted by n0 = (b�0, q�0)�. Standard reg-
ularity conditions ensure consistency and asymptotic normality of the estimator.

Let us denote as F0, resp. F0j, f0j, the true underlying joint distribution, resp.
jth marginal cdf, jth marginal pdf, of the Yt’s. Here we assume that the mar-
ginals are correctly specified, i.e. misspecification if any is in the copula only.
This is because a comparison in the ≤c-sense implies that the distributions have
the same univariate marginals. Now, F (· ; n0) is the “best” approximation to F0
in a parametric family {F(· ; n)} in the Kullback-Leibler divergence. The question
is whether F (· ; n0) dominates the true F0 in the ≤c-sense, which is equivalent
to wonder whether the same ≤c ranking holds for the underlying copulas.

Let us take d points ui = (ui1,…,uin)�, with uij ∈ (0,1), i = 1,…, d, j = 1,…, n.
We assume hereafter that the cdf Fj0 is such that the equation Fj0(y) = uij admits
a unique solution denoted hij, i =1,…,d, j = 1,…,n, while fj0(hij) > 0 at each
quantile hij. We denote the stack of the univariate quantiles hij by hi.

We may then define Di
1 = C(ui; q0) –F0(hi), and D1 = (D1

1,…,Dd
1 )�. The survival

quantities will be Di
1 = C(ui; q0) – F0(hi), and D1 = (D1

1,…, Dd
1 )�. The empirical
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counterparts are then Di
1 = C(ui; q̂ ) – F(ĥi), and Dñ i

1 = C(ui; q̂ ) – Fñ (ĥi), where ĥi =
(ĥi1,…, ĥin)� is made of the empirical univariate quantiles ĥij .

Proposition 3.1. The random vector T (D1 – D1), resp. T (Dñ
1 – D1), converges

in distribution to a d-dimensional normal random variable with mean zero and
covariance matrix V1, resp. V1, whose elements are

, , , , ,..., ,lim � �v T ov B ov S S B k l dD D 1, kl T

k l k k l l
q q q q1 0 1 1 00 0 0 0

= = =
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q q; , ; ,logC C J E fu Yq q q q n
�

i
i 0 0
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while the elements of the cross covariance matrix CV1 are

, , , , ,..., .lim � �cv T ov B ov S k l dD D S B 1, kl T

k l k k l l
q q q q1 0 1 1 00 0 0 0

= = =
"3

�
7 8A B

Some of the asymptotic covariances involve derivatives of F0 and the univariate
densities fj0. These quantities may be estimated by standard kernel methods (see
e.g. SCOTT (1992)) in order to deliver a consistent covariance estimate. For
example we may take a Gaussian kernel and different bandwidth values hj in
each dimension, which leads to:

156 ANA C. CEBRIAN, MICHEL DENUIT AND OLIVIER SCAILLET

ˆ

ˆ ˆ

https://doi.org/10.2143/AST.34.1.504960 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.1.504960


j

jt

j
jt

lt ,

,

x Th h
Y

h
Y

Th h
Y

F

f

f
h h

h f
h

F
h

!

i
j

t

T

j

ij il

l j

n

ij j
t

T

j

ij

1

1

1

1

2

2
=

- -

=
-

-

=

-

=

l
! %

!

t t t

t
t

J

L

K
K

J

L

K
K

_
_ e

_ _

N

P

O
O

N

P

O
O

i
i o

i i

where f and F denote the pdf and cdf of a standard Gaussian variable. In the
empirical section of the paper, we opt for the standard choice (rule of thumb)
for the bandwiths hj, that is 1.05T –1/5 times the estimated standard deviation
of Yj. Note that since the marginals are assumed to have a correct parametric
specification, the univariate densities fj0 can also be estimated by fj (ĥij; b̂j).

4. INFERENCE UNDER SEMIPARAMETRIC SPECIFICATION

The previous section was devoted to the fully parametric specification. If we
wish to be less restrictive a priori on the univariate margins, we may leave them
unspecified, and use the family

{F (y; q) = C(F1(y1), …, Fn(yn); q), q ∈ Q ⊂ �p}.

Hence we get a semiparametric setting only parameterised through C(u; q).
The estimator q̂ of q is obtained by

nt, ..., ; ,max lnT c Y YF F q1
t n

t

T

q 1 1
1=

! ^ ^_ h h i

where

j jt( ) , , ..., .�y T Y y j nF 1 1
t

T

1

#= =
=

! 7 A (4.1)

Its limit is denoted by q*
0, and will correspond to q0 (the true value) if both copula

and margins are well specified in the parametric case. The asymptotic distri-
bution of q̂ under correct specification is given in GENEST, GHOUDI and RIVEST

(1995) and SHIH and LOUIS (1995) (its distribution in the misspecified case is
established in Appendix A.2). Again we wish to check whether F(· ; q*

0) is more
concordant than the true distribution function F0(·), namely

F0(y) ≤ F(y; q*
0)  and F0(y) ≤ F(y; q*

0), ∀y ∈ �n. (4.2)

We use

Di
2 = C(ui; q̂) – F(ĥ i),
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and

Dñ i
2 = C(ui; q̂) – Fñ (ĥ i).

This leads to the following proposition which is equivalent to Proposition 3.1
of the parametric setting.

Proposition 4.1. The random vector T (D2 – D2), resp. T (Dñ
2 – D2), converges

in distribution to a d-dimensional normal random variable with mean zero and
covariance matrix V2, resp. V2, whose elements are

q q q, , , , ,..., ,lim � �v T ov B ov S S B k l dD D 1, kl T
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while

q q q q, , , , ,..., .lim � �T ov B ov S k l dD D S B 1
T

k l k k l l
0 2 2 0= =

"3 0 0 0 0
* * * *
�

7 :A D

5. TESTING PROCEDURES

The distributional results of Propositions 3.1 and 4.1 are the building blocks
of the testing procedures. Let Zk, resp. Zk, be the stack of Dk, resp. Dk, and Dk,
resp. Dñ

k, k = 1,2.
The null hypothesis of a test for concordance may be written as

H 0
k = {Zk : Zk ≥ 0},

with alternative hypothesis:

Hk
1 = {Zk : Zk unrestricted}.

The vector inequality in the definition of the null hypothesis means that each
component of the vector should be positive. To examine such an hypothesis,
we will use the usual distance tests for inequality constraints, initiated in the
multivariate one-sided hypothesis literature for positivity of the mean (BAR-
THOLOMEW (1959a,b)). They are relevant when one or several components of
Zk are found to be negative (in such a case one wants to know whether this
invalidates concordance).

Let Zk, be solution of the constrained quadratic minimisation problem:

� . . ,inf ST s t ZZ ZZ Z 0k k kZ
$- -

1-

_ _i i (5.1)

where Ŝk is a consistent estimate of the asymptotic covariance matrix Sk of
T Zk, and put

ẑk
� .ST Z ZZ Zk k k k k= - -

1-

_ _i i

Roughly speaking, Zk is the closest point to Zk under the null hypothesis in the
distance measured via the metric of Ŝk, and the test statistic ẑk is the distance
between Zk and Zk. The idea is to reject Hk

0 when this distance becomes too
large.

The asymptotic distribution of ẑk under the null hypothesis (see e.g. GOU-
RIÉROUX, HOLLY and MONFORT (1982), KODDE and PALM (1986), WOLAK

(1989a,b)) is such that for any positive x:

, , ,SP x P x w d d iz x 2 2k i
i

d

k
2

1

2

$ $= -
=

!t a k7 7A A
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where the weight w (2d, 2d – i, Ŝk) is the probability that Zk has exactly 2d – i
positive elements.

Computation of the solution Zk can be performed by a numerical optimi-
sation routine for constrained quadratic programming problems available in
most statistical softwares. Closed form solutions for the weights are available
for 2d ≤ 4 (KUDO (1963)). For higher dimensions one usually relies on a sim-
ple Monte Carlo technique as advocated in GOURIÉROUX, HOLLY and MON-
FORT (1982) (see also WOLAK (1989a)). Indeed it is enough to draw a given large
number of realisations of a multivariate normal with mean zero and covari-
ance matrix Ŝk. Then use these realisations as Zk in the above minimisation
problem (5.1), compute Zk, and count the number of elements of the vector
greater than zero. The proportion of draws such that Zk has exactly 2d – i ele-
ments greater that zero gives a Monte Carlo estimate of w (2d, 2d – i, Ŝk). If
one wishes to avoid this computational burden, the upper and lower bound crit-
ical values of KODDE and PALM (1986) can be adopted.

Let us now turn our attention to the second testing procedure aimed to
test for non-concordance. It is based on the null hypothesis:

H0
k = {Zk : Zl

k ≤ 0 for some l, l = 1, …, 2d},

and the alternative hypothesis:

H1
k = {Zk : Zl

k > 0 for all l}.

These hypotheses will be tested through intersection-union tests based on the
minimum of a t-statistic. They are used when all components of Zk are found
to be positive. The questionis then whether this suffices to ensure concordance.

Let ĝ l
k = T Z l

k / s ,k l, where s ,k l is a consistent estimate of the asymptotic
standard deviation of T Z l

k , l =1, …, 2d. Then under H0
k , the limit of P [inf

ĝ l
k > z1–�] will be less or equal to �, and exactly equal to � if Zl

k = 0 for a given
l and Zs

k > 0 for s ! l, while its limit is one under H1
k . Hence the test consist-

ing of rejecting H0
k when inf ĝ l

k is above the (1 – �)-quantile z1–� of a standard
normal distribution has an upper bound � on the asymptotic size and is con-
sistent (see e.g. HOWES (1993), KAUR, PRAKASA RAO and SINGH (1994)).

Power issues are extensively studied for stochastic dominance and non-
dominance tests in DARDANONI and FORCINA (1999) (see also the comments
in DAVIDSON and DUCLOS (2000)). They carry over to our case. In principle the
second testing procedure should have better properties since its definition of
the null and alternative hypotheses is a better indication of the “truth” of the
hypothesis of concordance. However two points are worth being mentioned.
First, approaches based on distance tests exploit the covariance structure, and
are thus expected to achieve better power properties relative to approaches,
such as ones based on t-statistics, that do not account for it. In a set of thorough
Monte Carlo experiments, they find that, indeed, distance tests are worth the
extra amount of computational work. Second, it is possible that nonrejection
of the null hypothesis of dominance, here concordance, by distance tests occurs
along with the nonrejection of the null hypothesis of nondominance, here
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non-concordance, by intersection-union tests. This is due to the highly conser-
vative nature of the latter, and will typically occur in our setting if Zk is close
enough to zero for a number of coordinates. This empirical feature has already
been observed on tests for positive quadrant dependence (PQD) in DENUIT and
SCAILLET (2002).

6. AN EMPIRICAL ILLUSTRATION: US LOSSES AND ALAE’S

6.1. Presentation of the data

Often insurance processes involve correlated pairs of variables. A fine example
is the LOSS and allocated adjustment expenses (ALAE, in short) on a single
claim. ALAE’s are type of insurance company expenses that are specifically
attributable to the settlement of individual claims such as lawyers’ fees and
claims investigation expenses. The joint modelling in parametric settings of
those two variables is examined by FREES and VALDEZ (1998) who choose the
Pareto distribution to model the margins and select Gumbel and Frank’s copu-
las. Both models express PQD by their estimated parameter values. KLUGMAN

and PARSA (1999) opt for the Inverse Paralogistic for LOSS and for the Inverse
Burr for ALAE’s and use Frank’s copula to model the dependence between
them. DENUIT and SCAILLET (2002) test the existence of PQD for LOSS and
ALAE using a nonparametric approach and find that, as both previous models
suggest, significant positive quadrant dependence exists.

The database we have considered consist in T = 1,466 uncensored observed
values of the random vector (LOSS, ALAE). The estimated values for Pear-
son’s r, Kendall’s t and Spearman’s r are 0.381, 0.307 and 0.444, respectively;
all of them aresignificantly positive at a 1% level. Summary statistics for (LOSS,
ALAE) are provided in Table 6.1.

TABLE 6.1.

SUMMARY STATISTICS FOR VARIABLES LOSS AND ALAE.

LOSS ALAE

Mean 37,109.58 12,017.47
Std Dev. 92,512.80 26,712.35
Skew. 10.95 10.07
Kurt. 209.62 152.39
Min 10.00 15.00
Max 2,173,595.00 501,863.00
1st Quart. 3,750.00 2,318.25
Median 11,048.50 5,420.50
3rd Quart. 32,000.00 12,292.00

Because some very high values of the variables are contained in the data set,
we will work on a logarithmic scale to represent the data. This will not affect
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FIGURE 6.1: Kernel estimation of the bivariate pdf for (log(LOSS), log(ALAE)).
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testing for concordance ordering since this order enjoys a functional invariance
property (cf. Section 3.2). Figure 6.1 shows the kernel estimator of the bivariate
pdf of the couple (log(LOSS), log(ALAE)), together with its contour plot.
This estimation relies on a product of Gaussian kernels and bandwidth values
selected by the standard rule of thumb (SCOTT (1992)). The graphs obviously
suggest strong positive dependence between both variables.
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FIGURE 6.2: Plot of the estimation of the copula function C (u1, u2):
Gumbel estimation Cg (left), empirical estimation Ce (right).

6.2. Inference under parametric specification

First, the parametric framework suggested by FREES and VALDEZ (1998) is
studied. It relies on a Gumbel copula

, ; ,exp ln lnC u u u uq
/q q q1

= - - + -1 2 1 2^ ^^ ^^h hh hh8 B' 1

for the dependence structure and Pareto distributions

i ( ) , , ,F x x iz g1 1 1 2
/

i

z1 i

= - + =
-

ib l

for the marginal behaviours.
Estimated values for the parameter n = (z1, g1, z2, g2, q)� are shown in Table 6.2.

TABLE 6.2.

ESTIMATED PARAMETER VALUES OF THE BIVARIATE DISTRIBUTION OF (LOSS, ALAE).

LOSS Pareto ẑ1 = 0.760, b̂1 = 12,816.9
ALAE Pareto ẑ2 = 0.425, b̂2 = 6,756.5

Copula Gumbel q̂ = 1.425

In the testing procedures we use 81 points built on the grid of probability levels
{0.1, 0.2, …, 0.9} ≈ {0.1, 0.2, …, 0.9}. Since 105 of the 162 components of the
vector Z1 are negative, with 30 among them less than – 0.1, a concordance test
is applied. See Figures 6.2 and 6.3 for a representation of the Gumbel and the
empirical estimation of the copula function and the difference between both
estimations to make comparisons easier.

To compute the solution Z1 of the quadratic minimisation problem (5.1),
a local minimiser for nonlinear functions subject to boundary constraints is
used (specifically, nlminb in S-plus). Since Z1 represents in a way the closest
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point to Z1 under the null hypothesis, we take the vector max(0,Z1) as start-
ing point for the numerical optimisation routine. This initial value satisfies the
boundary restrictions. The minimum value of the function is then found to be
ẑ1 = 2. 096.

According to the bounds given in KODDE and PALM (1986), the null hypo-
thesis of a greater concordance of the fitted distribution cannot be rejected at
any level lower than 5%. This indicates that the amount of positive dependence
expressed by the parametric frameworkis at least as large as that suggested by
the data. This is particularly appealing to actuaries since it ensures that most
actuarial quantities computed in the Gumbel-Pareto model will not be under-
estimated.

It can also be of interest to test the concordance behaviour only in the
upper tails. We consider a 81 grid formed by the percentiles in {0.91, 0.92, …,
0.99} ≈ {0.91, 0.92, …, 0.99}. See Figures 6.4 and 6.5 for a representation of
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FIGURE 6.3: Plot of the difference between the Gumbel and the empirical estimations of the copula
function, Dg– e = Cg(u1, u2) – Ce(u1, u2).

 

FIGURE 6.4: Plot of the estimation of the copula function C (u1, u2) in the upper tail:
Gumbel estimation Cg (left), empirical estimation Ce (right).
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the estimations of the copula function. In this case only 10 components of Z1 are
found to be negative and the minimum value of the function is ẑ1 = 0.000035.
Thus, again the null hypothesis cannot be rejected.

6.3. Inference under semiparametric specification

In this section we wish to test the same type of hypothesis than in the previ-
ous subsection but using the semiparametric approach. We thus drop the Pareto
modelling of the marginals and leave them unspecified. Note, in Figures 6.6
and 6.7, the similarity between the parametric and empirical estimations of
the cumulative distribution function (CDF) of both margins, LOSS andALAE.
This explains why the estimated value q̂ = 1.415 of the Gumbel copula is not
much affected.
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FIGURE 6.5: Plot of the difference between the Gumbel and the empirical estimations of the copula
function, Dg– e = Cg(u1, u2) – Ce(u1, u2), in the upper tail.

 

FIGURE 6.6: Parametric (Generalized Pareto) and empirical estimations of the CDF of LOSS (left)
and ALAE (right).
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As before we perform inference based on the grid {0.1, 0.2, …, 0.9} ≈ {0.1,
0.2, …, 0.9}. 6.8 displays the differences between the semiparametric and empir-
ical estimations and the semiparametric and parametric estimations of the
copula on our data. Note again the small difference between the semipara-
metric and parametric estimations. We thus expect to get the same conclusion
under the semiparametric framework as under the parametric one.

The minimum value of the function is now found to be ẑ2 = 14.161. Since
this value does not allow us to get a conclusion about its significance using the
bounds of KODDE and PALM (1986), we need to rely on the simple Monte
Carlo technique described in Section 6. A p-value equal to 0.98 has been obtained
which clearly yields to not reject the null hypothesis of concordance.

Besides the results about the concordance behaviour in the upper tails are
equivalent to the ones from the parametric approach using the same grid. Dif-
ferences between the empirical and the semiparametric estimations and between
the semiparametric and the parametric estimations of the copula function are
shown in Figure 6.9. Only 12 components of Z2 are negative and the minimum
value of the function is ẑ2 = 0.000036, which does not allow to reject the null
hypothesis.
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FIGURE 6.7: Difference between the Generalized Pareto and the empirical estimations of the CDF
of LOSS (left) and ALAE (right).

FIGURE 6.8: Plot of the difference between the semiparametric (Gumbel) and the empirical estimations of
the copula function, Dsp– e = Csp(u1, u2) – Ce(u1, u2) (left) and between the semiparametric (Gumbel) and the

parametric (Gumbel) estimations of the copula function, Dsp– g = Csp(u1, u2) – Cg(u1, u2) (right).
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7. CONCLUDING REMARKS

In this paper we have analysed simple distributional free inference for concordance
ordering. The testing procedures have proven to be empirically relevant to the
analysis of dependencies among US insurance claim data. In particular they
suggest that the Gumbel copula reflects the dependence structure in the data
safely enough.
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FIGURE 6.9: Plot of the difference in the upper tail between the semiparametric (Gumbel) and the
empirical estimations of the copula function, Dsp– e = Csp – Ce (left) and between the semiparametric
(Gumbel) and the parametric (Gumbel) estimations of the copula function, Dsp– g = Csp – Cg (right).
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APPENDIX

A. ASYMPTOTIC DISTRIBUTIONS

We first derive the asymptotic distribution of the parametric estimator n̂ = (b̂�,
q̂�)� and the semiparametric estimator q̂ in a misspecified framework. For the
well specified case the results can be found in GENEST, GHOUDI and RIVEST

(1995) and SHIH and LOUIS (1995). Then we proceed with the asymptotic dis-
tribution of the various difference vectors Dk and Dñ

k, k = 1,2.

A.1. Asymptotic distribution of the parametric estimator

The asymptotic distribution of n̂ immediately results from usual pseudo maxi-
mum likelihood theory (see e.g. WHITE (1982), GOURIÉROUX, MONFORT and
TROGNON (1984)). Indeed from a standard Taylor expansion of the first order
condition of the maximum likelihood criterion and the law of large numbers,
we get:

p; ( ),logT v J
T v f v oYv 1 1v

t

T

t0
1

1
02

2- = +-

=
0

!^ ^h h

with

v ; ,logJ E v v f vY
�0

2

02 2
2= -

0
^ h; E

where E0 denotes expectation w.r.t. the true distribution F0, and by application
of the central limit theorem

( , ,T N J I Jv n 0 v v v0
1 1- - -

0 0 0
^ _h i

where

; ; .log logI E f fY Yn n n n
�v 0 0 02

2
2
2=

0
^ ^h h; E

When the parametric model is well specified, i.e. F(·,n0) = F0(·), we have Jn0
= In0

.

A.2. Asymptotic distribution of the semiparametric estimator

From a Taylor expansion of the first order condition of the maximum likeli-
hood criterion and the law of large numbers, we get:

q ntn0
, ..., ; ( ),logT J

T
c Y Y oF Fq q q q1 1

t

T

t p0
1

1
1 02

2- = +-

=
* 1

* *!_ ^ ^_i h h i (A.1)
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where

q nn0
, ..., ; .logJ E c F Y F Yq q q

�0

2

10 1 0 02 2
2= -* *^ ^_ h h i; E

The random part of the right hand side in (A.1) can be written:
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The second term converges to zero, and by the central limit theorem the third
term converges to N(0, Iq*

0
), where
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Now a Taylor expansion of the first term (see SERFLING (1980) for expansion
of von Mises differentiable statistical functions) leads to
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Hence by the central limit theorem the first term converges to N(0, Mq*
0
), where
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Since the conditional expectation of q2
2 logc (F10(Y1), …, Fn0(Yn); q*

0 )  w.r.t. any
Yj is null, the first term and the third term are uncorrelated, and we finally get:
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When the parametric model is well specified, i.e. F(·; q0
*) = F0(·), we have q q
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A.3. Asymptotic distribution of the difference vectors

A.3.1. Asymptotic distribution of D1 and Dñ
1

A Taylor expansion of C(ui; q̂ ) around q0 gives:

C(ui ; q̂ ) = C(ui ; q0) + q2
2 C(ui; q̂0)�(q̂ – q0) + op(T –1/2),

where q̂0 lies between q̂ and q0.
We get using Subsection A.1:
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Furthermore let M = {� [· ≤ x1]…� [· ≤ xn] : xj ∈ �, j = 1, …, n}. Since M satisfies
Pollard’s entropy condition for some finite constant taken as envelope, the
sequence
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is stochastically differentiable at hi with random derivative (n ≈ 1)-vector DF(hi)
(see e.g. POLLARD (1985), ANDREWS (1994, 1999) for definition, use and check
of stochastic differentiability). It means that we have the approximation:

F(ĥ i) = F(ĥ i) + DF(ĥ i)�(ĥ i – hi) + op(T –1/2),

where ĥ i is a mean value located between ĥ i and hi.
Similarly we get the approximations:

Fj (ĥij) = Fj (hij) + DFj (ĥij)(ĥij – hij) + op(T –1/2).
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Combining these approximations and using Fj0(hij) = uij = Fj(ĥij) leads to

F(ĥ i) = F(hi) – DF(ĥ i)�Si + op(T –1/2),

where Si is the stack of (Fj (hij) – uij) / DFj(ĥij), j = 1,…,n.
Hence we get:
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An application of the central limit theorem delivers:
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We also get:
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A.3.2. Asymptotic distribution of D2 and Dñ
2

The only difference between Di
1 and Di

2 lies in the replacement of the parameric
estimator q̂ by the semiparametric estimator q̂ . Hence the asymptotic distri-
bution of Di

2 is obtained after substituting �i
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0
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0

for �i
q0
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, and Uq*
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for
( ; )log f Y qq 02

2 in the asymptotic results for Di
1.

Similarly in order to derive the asymptotic normality of Dñ i
2, we only have to
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with �i
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