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Abstract

A collection £P of bounded linear operators in li is constructed in such a manner that given any
separable metric space X, and any countable collection 9" of continuous self-maps of X, there
is a homeomorphism h of X onto a subset of li such that for each / 6 & there is P e & with
hf = Ph.

While similar results were obtained by Baayen and De Groot, our construction makes it pos-
sible to impose additional conditions on h (depending on &~). For example, if all the members
of !F are uniformly continuous then h too can be made uniformly continuous.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 C 05, 54 C 05.

1. Introduction

By a well-known result of Urysohn [3], every separable metric space X is
homeomorphic to a precompact subset of h. If / is a self-map of X and
h: X —> h is a homeomorphism onto h[X] then a self-map JF of h[X] is
induced, where F — hfh~l. Of course F is topologically indistinguishable
from / . However, in the setting of a linear space the natural preference is
to have F related to a linear mapping. Thus, in li, we may wish to choose
h in such a manner that F become the restriction of a bounded linear oper-
ator. Somewhat surprisingly, a much stronger requirement can be satisfied.
For, as shown by DeGroot and McDowell [2], one can produce a bounded
linear operator in Hilbert space, such that an appropriate h exists, making
the induced map a restriction of that operator.

© 1990 Australian Mathematical Society 0263-6115/90 $A2.00 + 0.00

214

https://doi.org/10.1017/S1446788700035643 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035643


[2] Linear operators in li with a universality property 215

Along similar lines Baayen and DeGroot [1] proved existence theorems for
semigroups of mappings on a metric space.

In this paper we construct a concrete collection & of bounded linear oper-
ators on l2, which generates a free semigroup, and has the following univer-
sality property: given a separable metric space X and a countable family of
self-maps / of X there is an h such that to any / e & there is a P e S° with
hf = Ph. Since there is considerable latitude in the manner in which h can
be chosen one may impose some additional requirements on it. It is in this
direction that our discussion is aimed. Thus, we show that if all members of
the family of maps on X are uniformly continuous, or the semigroup gener-
ated by it is equicontinuous, then h, as constructed, is uniformly continuous.
Similarly, if each map satisfies a Lipschitz condition then h can be made to
satisfy a similar condition (with coefficient 1).

2. Construction of the set 3s

2.1. We begin by denning a sequence {Pn: n = 1,2,...} of linear operators
on h. The action of each Pn on an arbitrary x = (XQ,XI,...) e h could
be roughly described as a generalized shift. Hence the need for setting up
appropriate correspondences between the indices of the coordinates x^ of x
and those of Pn{x). If k, m are nonnegative integers set

r{k;m) = \{k + m)(k + m+ \) + m
and write r(k) for r(k;0).

2.2. LEMMA 1. For every nonnegative integer n there is exactly one ordered
pair of nonnegative integers k, m such that

(1) n = r(k;m).

PROOF. For 0 < n < 1 the result is trivially true (with 0 = r(0; 0) and
1 = r(l;0) uniquely). Proceeding by induction, suppose that for some n > 1
(1) is satisfied uniquely, and consider the mutually exclusive cases: (i) k > 1;
and (ii) k = 0. In case (i) we have, by direct calculation, n+1 = r(k; m) +1 =
r(k - 1; m + 1). And, if n + 1 = r(k' - 1; m' + 1) for k', m' > 0 then we must
have n = r(k',m') implying k' = k and m' = m. (To rule out the other
alternative, namely n + 1 = r(k'; 0), we observe that r(k'; 0) = r(k - 1; m + 1)
clearly implies k' > k > 1. Hence r(k';0) = r{k' - 1; 1) + 1 and, therefore,
n — r(k' - 1; 1) = r{k;m). Uniqueness for n being assured, it follows that
k' — k + 1 and m = 1. However, then

a contradiction).
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In case (ii) n + 1 = r(0;m) + 1 = r{m + l;0) = \{m + l)(m + 2). Suppose
n + 1 = r(m';m") with m" > 1. Then n + 1 = r(m' + l ;w" - 1) + 1 and
n = r(m' + \;m" - 1) which is impossible as m' + 1 / 0. Hence m" = 0
and m' = m + 1, proving that « + 1 = r(m + l;0) uniquely. Thus, in both
cases, « + 1 satisfies the conclusion of the lemma, and every integer n > 0 is
uniquely representable by (1).

2.3. To define Pn: l2 — l2 {n = 1,2,...) set

(2) Pn{x) = C

Because the coordinates of /^(x) are chosen from those of JC without repe-
tition it is clear that each Pn is well defined. Furthermore, Pn is linear, with

llfl.ll < 1-
2.4. Let {kn: n = 1,2,...} be a given sequence of real numbers with kn >

2" (n = 1,2,...), and set

(3) <? = {X"Pn:n=l,2,...}.

2.5. In the sequel we shall need an extended definition of r. Thus we
define r(k;m\,m2) — r{r{k;m\);mi), and inductively

(1') r(k; mi,..., mn-\,mn) = r(r(k; m i , . . . , w n _ i ) ; mn).

Here k,m\,...,mn are arbitrary nonnegative integers.

LEMMA 2. Let k,m\,...,mn,m\,...,m'j be integers with 1 < n < j , k >
0, mP > 1 (1 < P < n), m'q > 1 (1 < q < j). If r{k;mu...,mn) =
r(k;m\,...,m'j) then j = n and m'j = m, (I < i < n).

PROOF. We proceed by induction on the positive integer n. For n - 1 the
result is an easy consequence of Lemma 1. Suppose the assertion is true for
n = / - 1. Then r(fc;/wi,...,/n/_1,m/) = r{k;m\,...,m'j_vm'j) with k, mp,
m'q satisfying the hypotheses of the lemma. It follows that

r(r(k; mu..., W/_i); m,) = r{r{k; m\,..., m'j_{); m'j)

and, by Lemma 1, r{k;m\,...,mi_\) — r(l:;ffi/
1,...,mj.1) as well as m/ =

m'j. This, together with the inductive hypothesis shows that, as asserted,
j = I and m\ = m, (I < i < I), completing the induction and the proof of
the lemma.

Next we define s(k; mx,..., mn) by setting s(k) = r(k) and s(k; m\,..., mn)
— r(k;0,nt\,...,mn), where k,m\,...,mn are integers; the first nonnegative;
the rest positive.
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LEMMA 3. For every nonnegative integer p there exists an integer k > 0
and an ordered set {possibly empty) of positive integer m\,...,mn such that

(1") p = s(k;mu...,mn).

Furthermore the representation in (1") is unique.

PROOF. Suppose, for a contradiction, that there exist nonnegative integers
for which no such representation is possible and let p be the smallest among
them. By Lemma 1, p = r(k;m) for a unique ordered pair of nonnegative
integers k, m; and, clearly, m > 1. Now since k < p we have, by the
denning property of p , k = r(k'; 0,m\,..., mj) — s(k'; mi,..., mj), with k' >
0 and m\,...,mj positive. It follows that, contrary to the assumption, p —
s{k';mi,...,mj,m). Finally, the uniqueness property of the representation
(1") follows directly from Lemma 2.

2.6. We observe that the set {/>„} is free of relations and, therefore, the
semigroup £P generated by it is a free semigroup. Indeed, by definition,
(Pm(x))k = xr(k.m). Hence

= ' ' ' = Xr(k;m\,m2,...,mn)-

If then PmiPmi •Pmn = PitPi2 • • • Pij with, say, j <n then r(k; mi,m2,..., mn)
= r{k;ii,i2,...,ij). By Lemma 2 we have n = j , mx = iu...,mn = in (= ij),
and the only relation is the identity.

3. Construction of a homeomorphism

Let X be a subset of l2 and fn: X ^ X, n — 1,2,..., continuous mappings.
For x = (XQ,X\,X2,...) € h set <t>S(k)(x) = xk and, inductively on n,

(4) <f>s(k;mi,m2,...,mn)(x) = Kt^" 4> s(k;mumi mn

Having thus defined <f>i(x) for i — 0 , 1 , 2 , . . . we set

(5)

PROPOSITION 1. Let (X,d) be a bounded separable metric space and let
fn: X -+ X, n = 1,2,..., be continuous self-maps ofX. Let 38 be a countable
base for the topology of X consisting of balls Bn - Bn{xw,rn), centered at
points JC(n) G X and of radii rn, with

(6) rn<X-l<2-" (n = l,2,...).
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)

where {Xn: n — 1,2,...} is a given sequence of reals. Let

2-k-iinf{d(x,y):yeX\Bk} i

and <j>S(ktmum2 mn)(x)> inductively, as in (4). Then h (as defined by (5)) maps
X homeomorphically onto a precompact set in h; and with Pn, as given by (2),

(8) Kfn(x)) = XnPn{h{x)) (x e X; n = 1,2,...).

PROOF. From (4) it readily follows that

Also, <f>S(k)(") < 2~k~i where S = sup{d(v,w): v,w e X} (u e X), and
V < 2-". Hence

< 00,}-2mi I . . . | V^ j-2mn
I /—'

k=0 n=0

showing that h is well defined (and h[X] is bounded). To prove that h is
continuous and h[X] is precompact let A(iV): X —> /2 be defined by setting

C*(iV)(-*))*(A:;m1,...,m,,) = &(*;„,, „,„)(*)

if t = k + 53"_, w, < N, and zero otherwise. It readily follows that
||*(JC) - hW(x)\\2 < 52Y,ZN+\

 2~'- H e n c e hW(x) - • h(x) uniformly over
X proving that h is continuous. Further, h^[X] is precompact since it is
a bounded subset of a finite dimensional subspace of l2. Given e > 0 an N
exists such that \\h(x) - /?(AV)II < e/3 (x e X). Let {xi,x2,...,xn} c X
have the property that, to any x e X, there is a j = j(x), 1 < j < n, such
that ||AW(x) - hW(Xj)\\ < e/3. Then

||A(JC) - h{Xj)\\ < \\h(x) - h{N)(x)\\ + \\h{N)(x) - h{N){Xj)\\

+ \\hW(Xj) - h(Xj)\\ < e/3 + e/3 + e/3 = e,

showing that h[X] is precompact. That h is one-to-one is obvious. [If x,y e
X, x ± y, then there is an integer j such that x € Bj, y e X\Bj, so that
<Ps(k}(y) = o but <f>s(k)(x) * 0.]

It is also clear that h~l is continuous. [If not then there must be a sequence
{h{xin)): n = 1,2,...} converging to some h(x) in /2 with {x(n): « = 1,2,...}
having no convergent subsequence. But then there is an open ball Bj such
that JC e Bj and {x(n): n = 1,2,...} c X\Bj, so that (j>su)(x{n)) -h 4>su)(x)> a

contradiction.] Finally,

(x&X; n = 1,2,...).
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3.2. PROPOSITION 2. Let X be a separable {not necessarily bounded) metric
space and fn: X —> X, n = 1,2,..., continuous. Let 3s and {kn: n = 1,2,...}
be as defined before. Then, as in the conclusion of Proposition 1, there is a
homeomorphism h: X —» h[X] c ^ such that h[X] is precompact and

h(fn(x)) = XnPn{h(x)) (xeX; n=\,2,...).

PROOF. Let Y be a bounded metric space which is homeomorphic to X.
Then Y is separable too. Let hi: X -+ Y be a homeomorphism and, for « =
1,2,..., set jtn = h\fnh^1. Then, by Proposition 1, there is a homeomorphism
hi of Y onto a precompact subset of h such that hifn = XnPnhi {n = 1,2,...).
Let h = hih\. Then /i maps homeomorphically X onto a precompact subset
of £ and

hfn = hih\fn = hih\h^x fnh\ = hifnh\

= XnPnh2hx = XnPnh (n = l , 2 , . . . ) .

4. Uniformly continuous homeomorphisms

4.1. THEOREM 1. Let {fn: n = 1,2,...} be uniformly continuous self-maps
on the separable metric space (X,d). Then the conclusions of Proposition 2
hold and the homeomorphism h is uniformly continuous.

PROOF. Since the identity mapping from (X,d) to (X,S) with S(x,y) =
min{l,t/(x,y)} is a uniformly continuous homeomorphism, we may assume
that {X,d) is bounded with diamX = 1. Let h: X -* h be denned by (2)
with Xn = 2". In view of the conclusions of Proposition 2 it remains to be
shown that h is uniformly continuous. Let s > 0 be given, and observe that,
by (7),

|^(*)(«) ~ &(*)(v)| < \D(u, X\Bk) - D(v, X\Bk)\

where, for {z}, S C X, D(z,S) = inf{d(z,w): w e S}. Thus, since D is
Lipshitzian with coefficient 1,

\<f>s(k)(u) - (f>S(k){v)\ < d(u,v) < diamX = 1.

Hence the series expansion for \\h(x) - h(y)\\2 is dominated by a convergent
positive series and therefore uniformly convergent. Now let N be such that

N N

2~2k-2

ii*w-*ooii2<;
k,n=O m ,mn = \

e2

J ffln \-̂ " / ) J ftl\ ' Jttln \y )) ) ' >̂ *
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Since this sum involves finitely many continuous mappings a S > 0 exists
such that it is less than e2/2 whenever d{x,y) < 8. Thus d(x,y) < 6 implies
that ||h(JC) - h(y)|| < e proving the assertion of the theorem.

REMARK. The following example serves to show that the assumption of
uniform continuity for each fn, n = 1,2,..., is essential for the conclusion of
the theorem. Let X - {l/n: n = 2 ,3 , . . . }u{ 1,2,3,...} with the usual metric
and take / : X — X to be defined by / ( l / « ) = n, n = 2 ,3 , . . . , f(n) = 1,
n even, and /(«) = 2, n odd. If there exists a bounded linear operator
P: h —> h and a homeomorphism h of X into l2 such that h(f(x)) = P(h(x))
with h uniformly continuous then the sequence {h(l/n): n = 1,2,...} must
converge to some point u e h. Now h{f{n)) = P(h(n)) - P(h(f{l/n))) =
P2(h(l/n)) — P2(u). But *(/(/!)) = A(l) if n is even and h{2) if n is odd
implying A(l) = h{2), a contradiction.

4.2. THEOREM 2. Le<&~ = {fn: n = 1,2,...} be a countable and equicon-
tinuous semigroup of self maps on a separable metric space (X, d). Then there
is a uniformly continuous homeomorphism of X into I2 satisfying the conclu-
sion of the preceding theorem.

PROOF. AS in the proof of Theorem 1 we proceed by assuming, as we may,
that (X,d) is a bounded metric space with diamX = 1. Let h: X —> l2 be
defined by (4) and (5) with Xn = 2n. By (4),

\<f>s(k;mi,...,mn)(x) ~ <l>s(k;mu...,mn){y)\

~ <t>s(k-mu...,mn-X){fmn{
X))\

By the equicontinuity of &~, given e > 0, there is a 6 > 0 such that the above
distance is less than e if d{x,y) < d. It follows that \\h{x) - h(y)\\ < Me for
some positive M, independent of x, y, proving the theorem.

5. Nonexpansive homeomorphisms

5.1. THEOREM 3. Let {fn: n = 1,2,...} be continuous self-maps of the
separable metric space (X, d) satisfying the Lipschitz condition

(9) d{fn{x),fn{y))<Lnd{x,y) (x,y e X, n = 1,2,...).

Then, with Xn > max(2",2nLn), there is a homeomorphism h of X onto a
precompact subset ofh such that

(10) \\h(x)-h(y)\\<d(x,y) (x,yeX),
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and
h(fn(x)) = XnPn(h(x)) (xeX;n=l,2,.-.).

PROOF. In view of Proposition 2 only (10) has to be verified. From (9) it
follows that

Hence

\\h(x) - h(y)\\2 <
k=0 n=0 mi "iB=l

<(d{x,y))2;

and so \\h(x) - h(y)\\ < d(x,y) as claimed.

6. Unboundedness

The universal set £P consists of operators 2"Pn where ||P|| — 1; hence & is
not uniformly bounded. As shown below all such universal sets of operators
share this property.

6.1. PROPOSITION 3. Let Q be a countable set of linear operators in a
separable Hilbert space H having the following universal property. Given a
separable metric space X and a countable collection £? of self-maps ofX there
is a homeomorphism h of X into H such that for any f e 9~ there is a q eQ
with hf — qh. Then Q is not uniformly bounded.

PROOF. Choose X = h and 9~ = &. Then there is a homeomorphism h of
h into H such that h(2nPn) = qnh, n = 1,2,..., for some {qn} c Q. Suppose
Q is uniformly bounded; that is, \\q\\ < M for all q e Q and some M > 0.
Let y be an arbitrary, but fixed, nonzero point in l2. For each n > 1, P^l(y)
contains exactly one point zn with ||z,,|| = ||y||. (The coordinates of zn are
equal to the corresponding ones of y in those coordinate positions selected
by Pn, and zeros elsewhere.) If xn - 2~"zn then xn -> 0 and 2nPn{xn) = y.
Since lim^oo h{xn) = h(0), \\h(xn) - h(0)\\ < e for given e > 0 and all n > N
for sufficiently large N. Hence

eM > \\qn(h(xn)) - qn(h(0))\\

= \\h(2"Pn(xn) - h{2"Pn(0))\\ = \\h(y) - h(0)\\.

Thus h(y) = h(0), implying y = 0, a contradiction.
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