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Abstract

Under certain assumptions on the dependence structure of the residual lives of the insured
(i.e. their independence, positive association, or negative association), in this paper we
establish some laws of large numbers for the convex upper bounds, derived by the
technique of comonotonicity, of the present value function of a homogeneous portfolio
composed of the whole-life insurance policies.
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1. Introduction

In this paper we consider a homogeneous portfolio composed of n whole-life insurance
policies. All the insured are assumed to be aged x. We denote the residual life of the insured
l as Tl , l = 1, . . . , n, and assume that the Tl have a common distribution function F(x). We
assume that the policy provides the insured l with the benefit amount of Kl units at the instant
of death, i.e. at time Tl . Moreover, we assume that the interest accumulation function, y(t), is
appropriately modelled by the Black–Scholes model, as follows:

y(t) := δt + σB(t), 0 ≤ t ≤ ∞.

Here δ > 0 and σ > 0 are constants and B(t) is the standard Brownian process. Consequently,
the present value of this homogeneous life portfolio is

Sn :=
n∑

l=1

Kle
−y(Tl), (1.1)

where Tl is assumed to be independent of the Brownian process B(t) for every l ∈ {1, . . . , n}. It
is noteworthy that Ahcan et al. (2006) considered a model similar to model (1.1) and presented
the convex upper and lower bounds for Sn. However, in Ahcan et al. (2006), Tl in Sn was taken
to be l, not a random variable.
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As reflected in (1.1), recently the effects of stochastic interest rates have been emphasized in
the life insurance literature because ‘durations of contracts in life insurance and the life annuity
business are typically very long (often 30 or even more years) and the financial and investment
risk—unlike the mortality risk—cannot be diversified with an increase in the number of policies’
(Hoedemakers et al. (2006)). In the actuarial literature there are many papers covering random
interest rates. To summarize, two kinds of methods are used to study this problem.

In most papers where the first method is used, the authors restrict themselves to calculat-
ing the first two or three moments of the present value function. For example, Panjer and
Bellhouse (1980) and Bellhouse and Panjer (1981) used autoregressive models of order one to
compute moments of insurance and annuity functions. In Beekman and Fuelling (1993), the
authors gave expressions for the mean and the standard deviation of the future life insurance
payments for certain policies. The first three moments of homogeneous portfolios of life
insurance and endowment policies were calculated in Parker (1994a), (1994b), and these
results were generalized to heterogeneous portfolios in Parker (1997). Papers involving the
calculation of the first few moments in stochastic interest rate frameworks include Boyle (1976),
Waters (1978), Wilkie (1976), Dhaene (1989), Norberg (1990), and many others.

The second method is to use the comonotonicity technique to estimate the upper and lower
bounds of the prevent values. This technique was proposed by Dhaene and Goovaerts (1996),
(1997) and adopted by Wang and Dhaene (1998), Goovaerts and Redant (1999), Goovaerts and
Dhaene (1999), Dhaene et al. (2002a), (2002b), Goovaerts et al. (2000), Simon et al. (2000),
Vyncke et al. (2001), Kaas et al. (2000), (2001), Ahcan et al. (2006), and others.

In this paper we aim to study the limiting properties of the upper bounds of the present
value of model (1.1), derived by the technique of comonotonicity, since an average insurer
usually has a large number of homogeneous policies and the upper bounds are very informative
and useful to the insurer in making conservative estimates about the risks and calculating
premiums. However, it would clearly be difficult to discuss the limiting distributions of
the upper bounds of model (1.1) under a general dependence structure for the Kl or the Tl .
Therefore, we consider the cases in which Tl , l = 1, . . . , n, are respectively independent,
negatively associated, and positively associated random variables, and establish some laws
of large numbers for each dependence structure. Note that, even if {Kl, l = 1, . . . , n} and
{Tl, l = 1, . . . , n} are independent random series, it is still not technically easy to establish
laws of large numbers for the present value Sn directly. The concepts of negative association
and positive association are frequently used in statistical science to describe the dependence
structure of random variables, since they encompass a wide range of dependence structures.
Of course, other dependence structures may be considered. In conclusion, in this paper we
propose to combine the techniques of comonotonicity and limit theory to further study present
values (or other values) in actuarial science.

The outline of the paper is as follows: in Section 2 the convex bounds of the present value
function are presented, and in Section 3 we discuss some limiting properties of the upper convex
bounds of the present value function.

2. Convex bounds of the present value function

In this section we focus on discussing the convex bounds of the random sum (1.1). We
denote by U and V two mutually independent random variables uniformly distributed on [0, 1].
Moreover, let � also be a random variable, independent of both U and V . We now recall the
definition of convex order.
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Definition 2.1. Let X and Y be two random variables with finite means. We say that X is less
than Y in convex order (written X ≤cx Y ) if E[f (X)] ≤ E[f (Y )] for all real convex functions
f for which the expectations exist.

The following lemma will play a critical role in the subsequent discussion.

Lemma 2.1. 1. Let X = (X1, . . . , Xn) be a random vector. Then

n∑
i=1

E[Xi | �] ≤cx

n∑
i=1

Xi ≤cx

n∑
i=1

F−1
Xi

(U),

where F−1
X (p) = inf{x ∈ R : FX(x) ≥ p} and FX(t) is the distribution function of X.

2. Let V = (V1, . . . , Vn) and W = (W1, . . . , Wn) be nonnegative random vectors, and assume
that X = (X1, . . . , Xn) is a random vector independent of both V and W . If, for every
(x1, . . . , xn), we have

n∑
i=1

xiVi ≤cx

n∑
i=1

xiWi,

then the corresponding scalar products are convex ordered, i.e.

n∑
i=1

XiVi ≤cx

n∑
i=1

XiWi.

Proof. We refer the reader to Kaas et al. (2000) for the proof of part 1, and to Ahcan et al.
(2006) for the proof of part 2.

Dhaene et al. (2002b) considered the case in which Xi = e−Yi in part 1 of Lemma 2.1, where
(Y1, . . . , Yn) constitutes a multivariate normal random vector with parameters E[Yi] = µi ,
var(Yi) = σi and cov(Yi, Yj ) = σij , i, j = 1, . . . , n. Using Lemma 2.1, Dhaene et al.
(2002b, Section 4) derived bounds for

∑n
i=1 Xi by taking � = ∑n

j=1 exp(µj + 1
2σ 2

j )Yj , as in
the following lemma.

Lemma 2.2. 1. Let U be uniform on [0, 1] and independent of the random variable �. Then

n∑
i=1

exp

(
−µi + 1

2
σ 2

i (1 − r2
i ) − σiri�

−1(V )

)
≤cx

n∑
i=1

e−Yi ≤cx

n∑
i=1

e−µi+σi�
−1(U),

where

ri = corr(Yi, �) = cov(Yi, �)√
var(Yi) var(�)

=
∑n

j=1 eµj +(1/2)σ 2
j σij

σi

√∑
1≤k,l≤n exp(µk + µl + 1

2 (σ 2
k + σ 2

l ))σkl

.

Now consider model (1.1). Since E[−y(Ti) | Ti] = −δTi , we have var(−y(Ti) | Ti) =
σ 2Ti and cov(−y(Ti), −y(Tj )) = σ 2 min{Ti, Tj }, i, j = 1, . . . , n. Using the conditional
expectation technique, we know that Lemma 2.2 applies to

∑n
i=1 e−y(Ti ) with the replacements

µi = −δTi , σi = σ
√

Ti , σij = σ 2 min{Ti, Tj }, and � = ∑n
i=1 e−µi−(1/2)σ 2

i (−y(Ti)). This
leads to the following proposition.

https://doi.org/10.1239/jap/1165505214 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505214


1158 Y. ZHANG ET AL.

Proposition 2.1. In model (1.1), we have

n∑
i=1

exp

(
−δTi + 1

2
σ 2Ti(1 − R2

i ) − σ
√

TiRi�
−1(V )

)
≤cx

n∑
i=1

e−y(Ti )

≤cx

n∑
i=1

exp(−δTi + σ
√

Ti�
−1(U)),

where

Ri =
∑n

j=1 e−δTj −(1/2)σ 2Tj min{Ti, Tj }√
Ti

∑n
1≤l,k≤n exp(−δ(Tl + Tk) − 1

2σ 2(Tl + Tk)) min{Tl, Tk}
.

For notational convenience, we henceforth write

Suu
n =

n∑
i=1

F−1
Ki

(U) exp(−δTi + σ
√

Ti�
−1(U)),

Su
n =

n∑
i=1

Ki exp(−δTi + σ
√

Ti�
−1(U)),

Sl
n =

n∑
i=1

Ki exp

(
−δTi + 1

2
σ 2Ti(1 − R2

i ) − σ
√

TiRi�
−1(V )

)
,

Sll
n =

n∑
i=1

E[Ki | �] exp

(
−δTi + 1

2
σ 2Ti(1 − R2

i ) − σ
√

TiRi�
−1(V )

)
,

where � is a random variable independent of � and y(Ti), i = 1, . . . , n, but which may depend
on Ki , i = 1, . . . , n.

Using Proposition 2.1 and repeatedly applying the result of part 2 of Lemma 2.1, we can
derive the following proposition about the bounds of the present value function (1.1).

Proposition 2.2. In model (1.1), we have Sll
n ≤cx Sl

n ≤cx Sn ≤cx Su
n ≤cx Suu

n .

Remark 2.1. Note that if � is chosen differently, we may obtain different bounds for the
present value function (1.1). For example, if we take � = ∑n

i=1 λ(Ti)B(Ti) with any function
λ(x) : R

+ → R
+, the lower bounds are Sl

n and Sll
n as above with Ri as follows:

Ri =
∑n

j=1 λ(Tj ) min{Ti, Tj }
σ
√

Tiσ�

, where σ 2
� =

n∑
j=1

n∑
k=1

λ(Tk)λ(Tj ) min{Tk, Tj }.

3. The limiting properties of the upper convex bounds

From the expressions for the bounds we obtained in the previous section, we seems that
the upper convex bounds are more mathematically tractable than the lower bounds. Moreover,
for the reason given in Section 1, the insurer may be much more interested in the results of
studying the former. In light of this, we now investigate the limiting properties of the upper
convex bounds. Specifically, we establish laws of large numbers under three kinds of assumption
on the dependence structure: independence, negative association, and positive association.
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Let
µuu = F−1

K1
(U) E[exp(−δT1 + σ

√
T1�

−1(V )) | V ],
µu = E[K1] E[exp(−δT1 + σ

√
T1�

−1(V )) | V ].
The following theorem holds when the residual lives are independent.

Theorem 3.1. Consider model (1.1).

1. If Tl , l = 1, . . . , n, are independently and identically distributed random variables, then

Suu
n

n
→ µuu almost surely, as n → ∞. (3.1)

2. If Kl , l = 1, . . . , n, are independently and identically distributed random variables, then

Su
n

n
→ µu almost surely, as n → ∞. (3.2)

Proof. To prove part 1, we let

Yl = F−1
Kl

(U) exp(−δTl + σ
√

Tl�
−1(V )) and Bl = σ(T1, . . . , Tl, U, V ).

Then { n∑
l=1

(Yl − E[Yl | Bl−1]), Bn, n = 1, 2, . . .

}

is a martingale and

E[Yl | Bl−1] = E[F−1
Kl

(U) exp(−δTl + σ
√

Tl�
−1(V )) | U, V ]

= F−1
K1

(U) E[exp(−δT1 + σ
√

T1�
−1(V )) | V ]

= µuu.

Hence, it follows from the strong law of large numbers for a martingale (see Hall and Heyde
(1980, pp. 36–39)) that

1

n

n∑
l=1

(Yl − E[Yl | Bl−1]) → 0 almost surely, as n → ∞,

which completes the proof of (3.1).
To prove part 2, we let

Zl = Kl exp(−δTl + σ
√

Tl�
−1(V )) and Wl = E[Kl] E[exp(−δTl + σ

√
Tl�

−1(V )) | V ].
Clearly Wl = W1 = µu for all l = 1, 2, . . . . Then, similarly to in the proof of (3.1), we have

1

n

n∑
l=1

(Zl − Wl) → 0 almost surely, as n → ∞.

That is,
1

n

n∑
l=1

Zl → µu almost surely, as n → ∞.

As a result, (3.2) follows immediately.
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Next we consider the respective cases in which Tl , l = 1, . . . , n, are mutually dependent in
the following two senses.

Definition 3.1. 1. A random vector X = (X1, . . . , Xm) is said to be negatively associated if

cov(f (Xi, i ∈ L), g(Xj , j ∈ M)) ≤ 0

for all disjoint subsets L and M of {1, . . . , m} and all increasing functions f : R
d(L) → R and

g : R
d(M) → R, where d(A) denotes the cardinality of the (generic) set A.

2. A random vector X = (X1, . . . , Xm) is said to be positively associated if

cov(f (X), g(X)) ≥ 0

for all increasing functions f, g : R
m → R.

For our further discussion, we introduce the following definition and present three lemmas.
See Newman (1980) for the proof of Lemma 3.1, Lin (2003) for the proof of Lemma 3.2, and
respectively Liu et al. (1999) and Birkel (1988) for the proofs of parts 1 and 2 of Lemma 3.3.

Definition 3.2. A sequence of functions {gi(·, ·), i ≥ 1} is said to satisfy a uniform Lipschitz
condition of order one if there exists a constant B > 0 such that

|gi(x + u, y + v) − gi(x, y)| ≤ B(|u| + |v|)
for any x, y, u, v ∈ R.

Lemma 3.1. If X and Y are positively associated random variables then, for any s, t ∈ R,

| E[eisX+itY ] − E[eisX] E[eitY ]| ≤ st | cov(X, Y )|,
where i is the imaginary unit.

Lemma 3.2. Assume that {Ti, i ≥ 1} is a sequence of positively associated random variables
with common density function p(·) and characteristic function ϕ(·). Let p1j (·, ·) and ϕ1j (·, ·) be
the joint density function and the joint characteristic function of T1 and Tj , j ≥ 2, respectively.
Then, if

(C1) p(t) is bounded and satisfies a uniform Lipschitz condition of order one,

(C2) p1j (·, ·), j ≥ 1, satisfy a uniform Lipschitz condition of order one, and

(C3) ϕ(·) and ϕ1j (·, ·), j ≥ 2, are absolutely integrable,

it follows that, for any D > 0 and j ≥ 2,

sup
x,y

|p1j (x, y) − p(x)p(y)| ≤ 1

4π2

∫ D

−D

∫ D

−D

|ϕ1j (s, t) − ϕ(s)ϕ(t)| ds dt + 6
√

2B(1 + A)

D
,

where B is the constant implicit in condition (C2) and A = supx p(x).

Lemma 3.3. 1. Let {Xi, i ≥ 1} be a sequence of negatively associated random variables with
a common distribution. For 0 < p < 2, the condition necessary and sufficient to ensure that∑n

i=1 Xi − n E[X1]
n1/p

→ 0 almost surely, as n → ∞,

is E[|X1|p] < ∞.
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2. Let {Xi, i ≥ 1} be a sequence of positively associated random variables with finite variances.
If

∞∑
j=1

j−2 cov

(
Xj ,

j∑
i=1

Xi

)
< ∞,

then (
∑n

i=1 Xi − ∑n
i=1 E[Xi])/n → 0 almost surely, as n → ∞.

Theorem 3.2. Assume that E[exp(−δT1 + σ
√

T1�
−1(U))] < ∞ and that E[|K1|] < ∞.

1. If Tl , l = 1, . . . , n, are negatively associated random variables, then (3.1) holds.

2. If, additionally, Kl , l = 1, . . . , n, are independently and identically distributed random
variables, then (3.2) holds.

Proof. To prove part 1, it suffices to show that, for any u1, u2 ∈ [0, 1],

1

n

n∑
i=1

f (Ti) → F−1
K1

(u2) E[exp(−δT1 + σ
√

T1�
−1(u1))] almost surely, as n → ∞, (3.3)

where f (x) = F−1
K1

(u2) exp(−δx + σ
√

x�−1(u1)). We can decompose f (x) as f (x) =
f1(x) + f2(x) with

f1(x) = F−1
Ki

(u2) exp

(
−δ

(√
x − σ�−1(u1)

2δ

)2

+ σ 2[�−1(u1)]2

4δ

)
1

{
x ≤

[
σ�−1(u1)

2δ

]2}

+ F−1
Ki

(u2) exp

(
σ 2[�−1(u1)]2

4δ

)
1

{
x >

[
σ�−1(u1)

2δ

]2}

and

f2(x) = F−1
Ki

(u2) exp

(
−δ

(√
x − σ�−1(u1)

2δ

)2

+ σ 2[�−1(u1)]2

4δ

)
1

{
x >

[
σ�−1(u1)

2δ

]2}

− F−1
Ki

(u2) exp

(
σ 2[�−1(u1)]2

4δ

)
1

{
x >

[
σ�−1(u1)

2δ

]2}
,

where 1{·} denotes the indicator function. Note that the sequences {f1(Ti), i = 1, . . . , n} and
{f2(Ti), i = 1, . . . , n} are both negatively associated, since f1(x) and f2(x) are respectively
increasing and decreasing in x. Hence, by part 1 of Lemma 3.3, we can show that

1

n

n∑
i=1

f1(Ti) → F−1
Ki

(u2) E

[
exp

(
−δ

(√
T 1 − σ�−1(u1)

2δ

)2

+ σ 2[�−1(u1)]2

4δ

)

× 1

{
T1 ≤

[
σ�−1(u1)

2δ

]2}]

+ F−1
Ki

(u2) exp

(
σ 2[�−1(u1)]2

4δ

)
E

[
1

{
T1 >

[
σ�−1(u1)

2δ

]2}]

almost surely, as n → ∞, (3.4)
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and that

1

n

n∑
i=1

f2(Ti) → F−1
Ki

(u2) E

[
exp

(
−δ

(√
T 1 − σ�−1(u1)

2δ

)2

+ σ 2[�−1(u1)]2

4δ

)

× 1

{
T1 >

[
σ�−1(u1)

2δ

]2}]

− F−1
Ki

(u2) exp

(
σ 2[�−1(u1)]2

4δ

)
E

[
1

{
T1 >

[
σ�−1(u1)

2δ

]2}]

almost surely, as n → ∞. (3.5)

The combination of (3.4) and (3.5) immediately yields (3.3).
To prove part 2, we let

Zi = Ki exp(−δTi + σ
√

Ti�
−1(U)) and Vi = E[Xi] exp(−δTi + σ

√
Ti�

−1(U)).

Note that Kl , l = 1, . . . , n, are independently and identically distributed random variables.
Then, similarly to in the proof of part 1 of Theorem 3.1, we find that

1

n

n∑
i=1

(Zi − Vi) → 0 almost surely, as n → ∞,

from which it immediately follows that

1

n

n∑
i=1

Vi → µu almost surely, as n → ∞.

The proof is thus complete.

Theorem 3.3. 1. Let Tj , j = 1, . . . , n, be positively associated random variables satisfying
conditions (C1), (C2), and (C3) of Lemma 3.2. Furthermore, assume that Tj ≤ M for j =
1, 2, . . . , where M is a constant, and that

∞∑
j=1

j−2
j∑

k=1

| cov(Tj , Tk)|1/5 < ∞. (3.6)

Then (3.1) holds.

2. If Kj , j = 1, . . . , n, are independently and identically distributed random variables,
then (3.2) holds.

Proof. To prove part 1 it is sufficient to verify (3.3). We decompose the function f (x)

in (3.3) as f (x) = f1(x) + f2(x) as in the proof of Theorem 3.2. Then, if we can prove (3.4)
and (3.5), combining them immediately yields (3.3).

By the monotonicity of f1(x) and f2(x), we know that the sequences {f1(Ti), i = 1, . . . , n}
and {f2(Ti), i = 1, . . . , n} are positively associated. Consequently, by part 2 of Lemma 3.3, a
sufficient condition for (3.4) and (3.5) to hold is that

∞∑
j=1

j−2 cov

(
fi(Tj ),

j∑
k=1

fi(Tk)

)
< ∞, i = 1, 2. (3.7)
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Now, combining Lemma 3.1 and Lemma 3.2 yields

cov(fi(Tj ), fi(Tk))

=
∫ M

0

∫ M

0
fi(t1)fi(t2)(pjk(t1, t2) − p(t1)p(t2)) dt1 dt2

≤
∫ M

0

∫ M

0
fi(t1)fi(t2) dt1 dt2

× 1

4π2

∫ D

−D

∫ D

−D

|ϕjk(s, t) − ϕ(s)ϕ(t)| ds dt + 6
√

2B(1 + A)

D

≤ M2[F−1
X1

(u2)]2 exp

(
σ 2[�−1(u1)]2

2δ

){
D4

4π2 | cov(Tj , Tk)| + 6
√

2B(1 + A)

D

}

≤ cM2| cov(Tj , Tk)|1/5,

where c ≡ c(u1, u2) denotes a positive constant and the last inequality results from setting
D = cov(Ti, Tk)

−1/5. Consequently, (3.7) holds due to assumption (3.6).
The proof of part 2 is similar to the proof of part 2 of Theorem 3.2. We omit the details.
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